Abatement Thresholds: How Merger Prospects Affect Green Investments

Ana Espinola-Arredondo, Felix Munoz-Garcia, and Luis Gautier

October, 2025

- In several high-profile mergers, firms increased their green investments years before submitting the merger request.
 - Siemens invested \$1.2 billion in offshore wind R&D during 2015-16,
 - prior to its merger with Gamesa in April 2017.
 - Orsted invested \$1.5 billion to US wind and solar projects in 2016.
 - before merging with Lincoln Clean Energy in Aug 2018.
 - Schneider Electric invested \$800 million in smart grid and energy efficiency in 2017,
 - before merging with L&T in 2018.

- Other examples include the merger between:
 - Duke Energy and Progress Energy in 2012, \$9 billion in ER&D.
 - BP and Lightsource in 2017, \$200 million in ER&D.
 - Hitachi and ABB PowerGrids in 2020, \$1.9 billion in ER&D.

- Firms often portray these investments as part of their sustainability goals.
 - But can there be another reason?
- We show that these investments influence antitrust evaluations,
 - and improving the chances of mergers being approved.

- We consider a sequential-move game à la Poyago-Theotoky (2007):
 - In the first stage, every firm invests in abatement.
 - In the second stage, the EPA sets a per-unit emission fee.
 - In the third stage, firms decide whether to submit a merger request to the antitrust authority (AA).
 - In the fourth stage, the AA approves/block the merger.
 - In the fifth stage, firms compete.

- We show the presence of "abatement thresholds":
 - The AA approves the merger only when total industry abatement exceeds a minimum amount.
 - When the AA assigns a moderate weight on pollution.

- Results draw a parallel with public good games with threshold effects.
 - Larger abatement induces less stringent emission fees
 - Like donations from one indiv. increase the total public good.
 - Greater abatement facilitates merger approvals.
 - Like contributions are only matched if aggreg. donations meet the threshold.
- Latter effect is new in the environmental econ literature.
 - Ameliorates free-riding incentives in abatement.
 - Robust to extensions.

Implications - Env. policy

- Abatement is higher when firms anticipate a potential merger.
 - Requiring less stringent emission fees.
- In other words:
 - If the EPA ignored merger prospects...
 - it would set socially excessive fees.

Implications - Merger policy

- When the AA places a moderate weight on pollution:
 - Abatement increases.
- If the AA assigns a high weight on pollution:
 - (Still lower than the EPA, but high)
 - investment behavior is unaffected.
- Current debate about merger guidelines:
 - E.U., Australia, and Japan.
 - Partial, not full, regulatory alignment between agencies is the most effective at increasing abatement.

Literature-I

- We contribute to four branches:
- Firms' abatement decisions.
 - Poyago-Theotoky (2007), Lambertini et al. (2017), and Strandholm et al. (2025), among others.
 - Assumes that abatement decisions do not affect merger incentives.
- Merger policy and imperfect competition.
 - Seminal work: Salant et al. (1983) Farrell and Shapiro (1990).
 - Env. externalities: Montero (2002) and Fowlie and Reguant (2018).
 - Mergers and pollution: Fikru and Gautier (2016, 2024).

Literature-II

- Threshold public goods
 - Palfrey and Rosenthal (1984) and Barbieri and Malueg (2008).
 - Attenuation of free-riding effects.
- Policy coordination between diff. agencies.
 - Bohringer et al. (2017), Fischer and Newell (2008)
 - Acemoglu et al. (2012) and Aghion et al. (2016) on innovation.

Outline of the presentation

- Model
- Equilibrium behavior.
- Merger profiles in other regulatory regimes:
 - EPA without AA.
 - AA without EPA.
 - What if abatement happens after the merger evaluation?
 - What if emission fee is chosen after the merger evaluation?
- Extensions.
 - Spillover e§ects, ERCs, and convex production costs.

Model

Model

Time structure:

- Stage 1. Every firm $i = \{1, 2\}$ chooses its investment in abatement, z_i , where $e_i = q_i z_i$.
- Stage 2. The regulator responds with emission fee $t \ge 0$.
- Stage 3. Firms choose whether to submit a merger request to the AA.
- Stage 4. The AA responds approving or blocking the merger.
- Stage 5. Firms choose their output levels.
- Inverse demand function p(Q) = 1 Q, and marginal cost $c \in [0,1]$.

Model

The EPA considers welfare

$$W = CS + PS + T - ED$$
,

where $CS = \frac{Q^2}{2}$, $PS = \pi_1 + \pi_2$, T = tE where E = Q - Z, and $ED = dE^2$, where $d \ge \frac{1}{2}$.

The AA considers welfare

$$W = CS + PS + T - ED_{AA}$$

where $ED_{AA} = d_{AA}E^2$, where $0 \le d_{AA} \le d$. It embodies special cases:

- $d_{AA} = 0$ (ignoring pollution).
- $d_{AA} = d$ (full alignment with EPA).
- What about CS criterion? The AA's presence would be irrelevant.

• Fifth stage - Output

- When the merger does not ensue, equilibrium output is $q_i^{NM} = \frac{1-c-t}{3}$, with profits $\pi_i^{NM} = (q_i^{NM})^2 + tz_i$.
- When the merger ensues, equilibrium output is $q_i^M = \frac{1-c-t}{4}$, with associated profits $\pi_i^M = 2(q_i^M)^2 + tz_i$.
- The merger, then, decreases output from q_i^{NM} to q_i^M .

- Fourth stage Merger approval
 - The merger is welfare improving if and only if

$$d_{AA} \ge \overline{d}_{AA}(t, Z) \equiv \frac{5(1-c)+7t}{2[7(1-c-t)-12Z]},$$

where cutoff $\overline{d}_{AA}(t,Z)$ is unambiguously positive and increasing in t, Z, and c.

- The merger produces two well-known welfare effects:
 - less output (↓ welfare).
 - less emissions († welfare).
- When d_{AA} is sufficiently high, the second effect dominates.
 - Total welfare is not enough! The AA needs to care enough about pollution.
 - Otherwise, all merger requests are declined.
- High t and Z make the "emission-reduction benefit" of the merger less necessary.

Third stage - Merger request

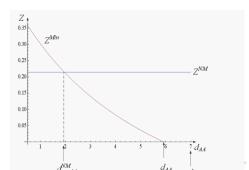
- Anticipating $d_{AA} \ge \overline{d}_{AA}(t, Z)$, firms find the merger profitable and submit a request, which is approved.
- Otherwise, no merger request is submitted.

- Second stage Emission fee
 - If $d_{AA} \ge \overline{d}_{AA}(t^M, Z)$ holds, the EPA sets fee $t^M = \frac{(2d-1)(1-c)-4dZ}{2d+1}$.
 - Otherwise, the EPA sets fee $t^{NM}=\frac{(4d-1)(1-c)-6dZ}{2(2d+1)}$.
- Condition $d_{AA} \ge \overline{d}_{AA}(t^M, Z)$ can be rewritten as an "abatement threshold",

$$Z \ge Z^{Min} \equiv \frac{(1-c)(12d-14d_{AA}-1)}{2[7d+2d_{AA}(d-3)]}$$

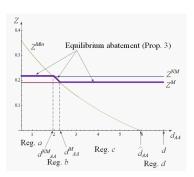
where Z^{Min} is increasing in d, but decreasing in d_{AA} .

- As agencies become more symmetric (higher d_{AA}), Z^{Min} decreases:
 - expanding the region where EPA sets t^M and the AA approves.

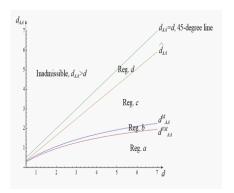

- First stage Abatement
- Firms' aggreg. abatement, Z, dictates the market structure:
 - Merger if $Z \ge Z^{Min}$.
 - No merger if $Z < Z^{Min}$.
- As in public good games with threshold effects.
 - More time consuming (next slide).

- First stage Abatement
- Five steps:
 - Consider one of the above cases (e.g., no merger, $Z < Z^{Min}$).
 - Find individual abatement in this context, $z_i^{N\bar{M}}$.
 - Find aggregate abatement, Z^{NM} .
 - Confirm that Z^{NM} satisfies $Z^{NM} < Z^{Min}$.
 - No unilateral incentives to deviate to "trigger" a different market structure (e.g., increase z_i^{NM} to reach Z^{Min}).
- If all steps hold, then z_i^{NM} is equilibrium abatement.
- Same steps, but starting with $Z \ge Z^{Min}$.

First stage - Abatement


•
$$z_i^{NM} = \frac{(1-c)[4d(2d+1)-1]}{2(18d^2+13d+1)}$$
, which satisfies $z_i^{NM} + z_j^{NM} < Z^{Min}$ iff $d_{AA} < d_{AA}^{NM} \equiv \frac{d(15+52d)-1}{26+2d(39+8d)}$, where $d_{AA}^{NM} < d$.
• Z^{Min} decreases in d_{AA} , but Z^{NM} is constant.

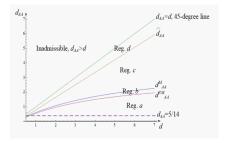
- $d_{\Delta\Delta}$ is bounded.


• First stage - Abatement

- $z_i^M = \frac{(1-c)[2d(2d+1)-1]}{4d(4+5d)+1}$, which satisfies $z_i^M + z_j^M \ge Z^{Min}$ iff $d_{AA} \ge d_{AA}^M \equiv \frac{d(26+64d)-1}{4d(23+4d)+38}$, where $d_{AA}^{NM} < d_{AA}^M < d$.
- In addition, $z_i^M < z_i^{NM}$.

• First stage - Abatement

 Presenting the above results, but in terms of symmetry/asymmetry between agencies.


- First stage Abatement
- **Proposition 3.** In equilibrium, investments in abatement satisfy:
- Region a: If $d_{AA} \leq d_{AA}^{NM}$, every firm chooses z_i^{NM} , and a merger does not ensue.
- **2** Region b: If $d_{AA}^M < d_{AA} \le d_{AA}^{NM}$, every firm chooses $z_i^{Min} \equiv \frac{Z^{Min}}{2}$, and a merger ensues.
- § Regions c and d: If $d_{AA} > d_{AA}^M$, every firm chooses z_i^M , and a merger ensues.

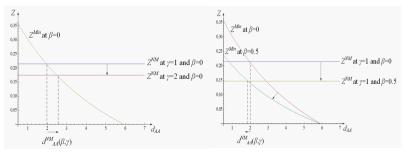
No AA

- Firms can merge without legal constraints.
- They invest $z_i^{\bar{M}}$.
- These results coincide with those when $d_{AA} > d_{AA}^{M}$ holds.
- Otherwise, firms invest *more* when the AA is present (z_i^{NM}) or z_i^{Min} than absent (z_i^{M}) .

No EPA

- The AA approves if $d_{AA} \geq \overline{d}_{AA}(0,Z) = \frac{5(1-c)}{2[7(1-c)-12Z]}$ since t=0.
- But firms have no incentives to invest in abatement, z = 0.
- Then, $d_{AA} \geq \overline{d}_{AA}(0,0) = \frac{5}{14}$ since t = 0.

• Very likely merger approvals.


Later investments:

- Firms invest in abatement after the AA evaluates the merger request.
- Then abatement can no longer facilitate merger approvals.

• Later emission fees:

- The emission fee is set in the fourth stage.
- The EPA can always "nail" the first best, regardless of what the AA does in previous stages.
- The AA, then, anticipates the same welfare level.
- The AA's role becomes inconsequential.

• Allowing for γ and β

Role of γ .

Role of β .

- $d_{AA}^{NM}(\beta, \gamma)$ unambiguously increases in γ .
- $d_{AA}^{NM}(\beta,\gamma)$ decreases in β if and only if $\gamma > \gamma^{NM} \equiv \frac{d(1+\beta)^2(4d-3)}{2d(3+4d+2\beta)-1}$, where cutoff γ^{NM} increases in

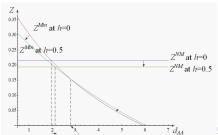
Allowing for ERCs

• Firms coordinate abatement to maximize joint profits.

No Merger:

- Abatement is higher than in the non-cooperative case if pollution is mild (i.e., when $d < \frac{5}{4}$). Otherwise, it is lower.
- ERCs facilitate mergers when pollution is mild (cutoff d_{AA}^{NM} increases).
- ERCs hinder mergers when pollution is severe (cutoff d_{AA}^{NM} decreases).
- EPA sets more stringent fees under ERCs when pollution is severe due to lower abatement.

- Allowing for ERCs
- Merger:
 - Firms invest more in abatement under ERCs than in the baseline model
 - They internalize both output and abatement externalities.
- Merger Approval Threshold:
 - ERCs reduce the minimal abatement threshold needed for merger approval.
 - This expands the region where mergers are approved.
 - EPA sets less stringent emission fees under ERCs due to higher abatement
- Overall comparison:
 - ERCs amplify the strategic role of abatement in inducing mergers.
 - Facilitate (hinder) mergers when pollution is low (high).


Allowing for cost convexities

- Consider $C(q_i) = cq_i + \frac{h}{2}q_i^2$, where $c, h \ge 0$.
- Marginal costs are, then, $MC(q_i) = c + hq_i$.
- Diseconomies of scale.
- What's the role of h?
 - Firms: produce fewer units.
 - EPA: sets less stringent fees.
 - Less incentives to invest in abatement (Z^{NM} decreases)
- What about the AA?
 - Output reduction of the merger, $q_i^{NM}(h) q_i^M(h)$, decreases in h.
 - Mergers are, then, less necessary to curb pollution when costs are convex than linear.
 - Formally, cutoff $\overline{d}_{AA}(t, Z, h)$ increases in h.

Allowing for cost convexities

- Cutoff $Z^{Min}(h)$ rotates counterclockwise while Z^{NM} decreases in h.
- Which effect dominates?
- Appendix 3 shows that the latter, i.e., cutoff $d_{AA}^{NM}(h)$ increases in h.
- In English: the AA blocks the merger under a wider range of d_{AA} values.

• Future mergers affecting investment.

- Comparing the model with and without AA...
- We find that abatement levels are unaffected when AA and EPA have extremely similar or disimilar objectives.
- When the AA assigns a moderate weight to pollution, d_{AA} in region b, firms have incentives to increase their abatement to influence merger approvals.
- For practitioners: do not make the AA completely ignore pollution or consider it as much as the EPA.

Timing of regulation.

- When abatement occurs before the merger review (main model), firms can strategically use z to influence approvals.
- When it occurs after the merger review...
 - This strategic channel disappears.
- A similar argument applies with emission fees.
 - If they occur before the merger review, firms have incentives to use z to influence approvals.
 - If they occur after the merger review, first-best outcomes arise. No incentives

Spillovers:

- Can either help or hinder merger approvals.
- If spillovers reduce the abatement threshold more than they reduce investment incentives, mergers are more likely.
- Otherwise, free-riding dominates and mergers become less likely.

Abatement costs:

- Higher costs raise the threshold for merger approval.
- This makes it harder for firms to invest enough to trigger a merger.

Environmental R&D Cartels (ERCs):

- Facilitate mergers when pollution is mild, even with regulatory asymmetries.
- Hinder mergers when pollution is severe, requiring closer alignment between agencies.

Further research

- Firm heterogeneity:
 - ullet Allowing for asymmetric abatement efficiencies, γ_1 and γ_2 .
- Multiple firms:
 - Industry with $n \ge 2$ firms, where $k \ge 2$ out of n submit a merger request.
- Uncertainty in:
 - Regulatory thresholds (because firms do not observe the AA's weight, d_{AA}).
 - Emission fees (because firms do not observe the EPA's weight, d).
 - Effect on strategic abatement and merger approval regions.
- Empirical validation:
 - Test the model's predictions using data on green investments and merger approvals across countries.

Thank you!