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Introduction

• Auctions have been historically reported as early as Babylon around 
500 BC and in the Roman Empire in 193 AD. 

• They remain popular nowadays through online auctions such as eBay, eBid, 
QuiBids, AuctionMaxx, DealDash, or LiveAuctioneers, etc.

• Understanding optimal bidding behavior in different auction formats, 
then, is not only an interesting application of BNEs but also a useful 
tool for online shopping.

• We will consider different auction formats:
• First-price auction (FPA). The bidder submitting the highest bid wins the 

auction. She pays the bid she submitted.
• Second-price auction (SPA). The bidder submitting the highest bid wins the 

auction. But does not pay her bid; she pays, instead, the second-highest bid.
• Common value auctions.



Auctions as allocation mechanisms

Two basic criteria to characterize auctions: the assignment and 
payment rules.
a. Assignment Rule

• Informally, the assignment (or allocation) rule in an auction just answers the 
question “who gets the object?”

• In the first-price auction, for instance, the individuals submitting the highest bid receives 
the object for sale.

• A similar assignment rule applies to other auction formats, such as:
• the second-price, third-price, 𝑘𝑘𝑡𝑡𝑡-price, or all-pay auctions (APA), where the object still goes 

to the bidder submitting the highest bid.
• In settings where the seller offers 𝑚𝑚 ≥ 2 units of the same good (multi-unit auctions), 

the assignment rule in first-price auctions, for instance, determines that:
• the first unit of the object goes to the individual submitting the highest bid, 
• the second unit to the individual submitting the second-highest bid, 
• and similarly for the remaining units.



Auctions as allocation mechanisms

a. Assignment Rule
• In lottery auctions, however, bidder 𝑖𝑖 may not receive the object even when 

she submits the highest bid. In particular, bidder 𝑖𝑖’s probability of winning the 
auction is

Pr 𝑤𝑤𝑤𝑤𝑤𝑤 =
𝑏𝑏𝑖𝑖

𝑏𝑏𝑖𝑖 + 𝐵𝐵−𝑖𝑖
where 𝐵𝐵−𝑖𝑖 = ∑𝑗𝑗≠𝑖𝑖 𝑏𝑏𝑗𝑗 denotes the aggregate bids of player 𝑖𝑖’s rivals. Therefore, 
bidder 𝑖𝑖’s probability of winning:

i. Increases in her own bid, 𝑏𝑏𝑖𝑖;
ii. Satisfies 𝑃𝑃𝑃𝑃 𝑤𝑤𝑤𝑤𝑤𝑤 < 1 if at least one of her rivals submits a positive bid, 𝐵𝐵−𝑖𝑖 > 0; and
iii. Decreases in her rivals’ bids.

• Example: bidder i submits 𝑏𝑏𝑖𝑖 = $100, 𝑁𝑁 = 10, and 𝑏𝑏𝑗𝑗 = $5 for every 𝑗𝑗 ≠ 𝑖𝑖, 
then  Pr 𝑤𝑤𝑤𝑤𝑤𝑤 = 100

100+(10×5)
= 2

3
.



Auctions as allocation mechanisms

b. Payment Rule 
• The criterion answers the question “how much each bidder pays,” which 

allows for the winner and losers to pay a monetary amount to the seller.
• In the first-price auction, the winner is the only bidder paying to the seller, 

and she must pay the bid she submitted.
• In the second-price auction, the winner is again the only player to the seller, 

but in this case she pays the second-highest bid (not the bid that she 
submitted).

• A similar argument applies to 𝑘𝑘𝑡𝑡𝑡-price auctions, where only the winning 
bidder pays to the seller, specifically the 𝑘𝑘𝑡𝑡𝑡-highest bid.

• In the all-pay auction, all bidders (the winner and the 𝑁𝑁 − 1 losers) pay the 
bid that each of them submitted.



Setting
• All auctions we consider in this chapter will share these ingredients:
• A seller offers an object to 𝑁𝑁 ≥ 2 bidders.
• Every bidder 𝑖𝑖 privately observes her valuation for the object, 𝑣𝑣𝑖𝑖 ∈ 0,1 , but 

does not observe bidder 𝑗𝑗’s valuation, 𝑣𝑣𝑗𝑗, for every bidder 𝑗𝑗 ≠ 𝑖𝑖.
• It is common knowledge, however, that valuations 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 are independent and 

identically distributed (i.i.d.)
• 𝑣𝑣𝑗𝑗 is drawn from a cumulative distribution function 𝐹𝐹𝑗𝑗 𝑣𝑣 = Pr 𝑣𝑣 ≤ 𝑣𝑣𝑗𝑗 , with 

positive density in all its support, i.e., 𝑓𝑓𝑗𝑗 𝑣𝑣 = 𝐹𝐹𝑗𝑗′ 𝑣𝑣 > 0 for all 𝑣𝑣 ∈ 0,1 . 
• After observing her valuation 𝑣𝑣𝑖𝑖, every bidder 𝑖𝑖 simultaneously and 

independently submits her bid 𝑏𝑏𝑖𝑖 ≥ 0 for the object. 
• The seller observes the profile of submitted bids, 𝑏𝑏 = 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑁𝑁 , and:

• According to the assignment and payment rules of the auction, the seller
declares:

• a winning bidder, 
• the price that the winning bidder must pay for the object, 
• and potentially the prices that losing bidders must pay.



Second-price auctions (SPA)

• Assignment rule in SPA prescribes that the object goes to the 
individual who submitted the highest bid.

• Payment rule says that the winner must pay the second-highest bid 
while all other bidders pay zero.

• Tie-breaking rule: If two or more bidders submit the highest bid, then 
the object is randomly assigned among them with equal probabilities.



Second-price auctions (SPA)

• We seek to show that submitting a bid equal to her valuation, 
𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖

is a weakly dominant strategy for every player, i.e., it is a weakly 
dominant BNE of this game.
• This means that:

• Regardless of the valuation bidder 𝑖𝑖 assigns to the object, and 
• Independently of her opponents’ bids, 

• submitting a bid equal to her valuation, 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖, yields an 
expected profit equal to or higher than deviating to:

• A bid lower than her valuation, 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 < 𝑣𝑣𝑖𝑖, or 
• A bid higher than her valuation, 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 > 𝑣𝑣𝑖𝑖.



Case 1: Bid equal to his valuation

1.1 Bidder 𝑖𝑖 wins. 
• Define the highest competing bid among all bidder 𝑖𝑖’s rivals, ℎ𝑖𝑖 , as follows

ℎ𝑖𝑖 = max 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑖𝑖−1, 𝑏𝑏𝑖𝑖+1, … , 𝑏𝑏𝑁𝑁
• If the highest competing bid, ℎ𝑖𝑖 , lies below bidder 𝑖𝑖′s bid, ℎ𝑖𝑖 < 𝑏𝑏𝑖𝑖:

• bidder 𝑖𝑖 wins the auction, 
• earning a net payoff of 𝑣𝑣𝑖𝑖 − ℎ𝑖𝑖 because in a SPA, the winning bidder does not pay the bid she 

submitted, but rather the second highest bid, ℎ𝑖𝑖.
1.2 Bidder 𝑖𝑖 loses. 

• If, instead, the highest competing bid lies above her bid, ℎ𝑖𝑖 > 𝑏𝑏𝑖𝑖, then:
• bidder 𝑖𝑖 loses the auction, earning zero payoff. 

1.3 Tie in bids.
• If a tie occurs, where 𝑏𝑏𝑖𝑖 = ℎ𝑖𝑖 , the object is randomly assigned, and bidder 𝑖𝑖’s 

expected payoff becomes 1
2
𝑣𝑣𝑖𝑖 − ℎ𝑖𝑖 , where 1

2
is the probability that bidder 𝑖𝑖 receives 

the object.
• However, because 𝑣𝑣𝑖𝑖 = ℎ𝑖𝑖, in this case, the bidder earns a zero expected payoff.



Case 2: Downward deviations, bidding below 
her valuation
2.1 If the highest competing bid ℎ𝑖𝑖 lies below her bid i.e., ℎ𝑖𝑖 < 𝑏𝑏𝑖𝑖 < 𝑣𝑣𝑖𝑖 :
• bidder 𝑖𝑖 still wins the auction, 
• earning a payoff 𝑣𝑣𝑖𝑖 − ℎ𝑖𝑖, as when she does not shade her bid. 
• This indicates that bidder  𝑖𝑖’s payoff does not increase relative to case 1.1, thus not having incentives to shade 

her bid.

2.2 If the highest competing bid, ℎ𝑖𝑖, lies between 𝑏𝑏𝑖𝑖 and 𝑣𝑣𝑖𝑖 i.e., 𝑏𝑏𝑖𝑖 < ℎ𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖 :
• bidder  𝑖𝑖 loses, 
• earning a payoff of zero. 
• As a consequence, bidder 𝑖𝑖’s payoff is the same (zero) as when she does not shade her bid, as shown in case 1.2.

2.3 If the highest competing bid ℎ𝑖𝑖 is higher than 𝑣𝑣𝑖𝑖 (i.e., 𝑏𝑏𝑖𝑖 < 𝑣𝑣𝑖𝑖 < ℎ𝑖𝑖):
• bidder 𝑖𝑖 loses the auction, 
• yielding the same outcome as when she submits a bid, 𝑏𝑏𝑖𝑖 = 𝑣𝑣𝑖𝑖. 
• In this case, bidder 𝑖𝑖′𝑠𝑠 payoff exactly coincides when she bids according to her valuation (case 1.3) and when she 

shades her bid.



Case 2: Downward deviations, bidding below 
her valuation
• Overall, when bidder 𝑖𝑖 shades her bid:

• she earns the same or lower payoff than when she submits a bid that coincides 
with her valuation for the object.

• In other words, she does not have strict incentives to shade her bid:
• her payoff would not strictly improve from doing so, 
• regardless of the exact position of the highest competing bid.



Case 3: Upward deviations, bidding above her 
valuation
3.1 If the highest competing bid ℎ𝑖𝑖 lies below bidder 𝑖𝑖’s valuation, 𝑣𝑣𝑖𝑖:
• she wins, 
• earning a payoff of 𝑣𝑣𝑖𝑖 − ℎ𝑖𝑖 .
• Her payoff in this case coincides with that when submitting a bid equal to her valuation, 𝑏𝑏𝑖𝑖 = 𝑣𝑣𝑖𝑖 , as in case 1.1, implying that she 

has no strict incentives to bid above her valuation.

3.2 If the highest competing bid ℎ𝑖𝑖 lies between 𝑣𝑣𝑖𝑖 and 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 < ℎ𝑖𝑖 < 𝑏𝑏𝑖𝑖 :
• bidder 𝑖𝑖 wins the object, 
• but earns a negative payoff because 𝑣𝑣𝑖𝑖 − ℎ𝑖𝑖 < 0.
• If, instead, bidder 𝑖𝑖 submits a bid equal to her valuation, 𝑏𝑏𝑖𝑖 = 𝑣𝑣𝑖𝑖, she would have lost the object, earning a zero payoff. 
• In other words, bidder 𝑖𝑖 would be better off submitting a bid 𝑏𝑏𝑖𝑖 = 𝑣𝑣𝑖𝑖, and losing, than submitting a bid 𝑏𝑏𝑖𝑖 > 𝑣𝑣𝑖𝑖, and winning but 

earning a negative payoff.

3.3 If the highest competing bid ℎ𝑖𝑖 lies above 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 < 𝑏𝑏𝑖𝑖 < ℎ𝑖𝑖 :
• bidder 𝑖𝑖 loses the auction, 
• earning a zero payoff. 

• When she submits a bid equal to her valuation, 𝑏𝑏𝑖𝑖 = 𝑣𝑣𝑖𝑖, in case 1.3, a tie occurs, but her expected payoff 1
2
𝑣𝑣𝑖𝑖 − ℎ𝑖𝑖 , is zero given 

that 𝑣𝑣𝑖𝑖 = ℎ𝑖𝑖 in that case. Therefore, bidder 𝑖𝑖 has no strict incentives to deviate from bidding 𝑏𝑏𝑖𝑖 = 𝑣𝑣𝑖𝑖.



Case 3: Upward deviations, bidding above her 
valuation
• Overall, bidder 𝑖𝑖 can earn the same payoff as in cases 1.1-1.3, or a 

lower payoff, 
• but cannot strictly improve her payoff.

• In short, bidding according to her valuation 𝑏𝑏𝑖𝑖 = 𝑣𝑣𝑖𝑖, is a weakly 
dominant strategy for every bidder 𝑖𝑖 in the SPA.



Discussion

• Bidding BNE vs. Dominant Strategies.
• Every bidder 𝑖𝑖 finds that bidding according to her valuation is:

• not only a BNE of the SPA, 
• it is the BNE where every player uses weakly dominant strategies.

• If bidder 𝑖𝑖 finds that her bidding function 𝑏𝑏𝑖𝑖∗ = 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 is a BNE, this means 
that

𝐸𝐸𝐸𝐸𝑖𝑖 𝑏𝑏𝑖𝑖∗, 𝑏𝑏−𝑖𝑖∗ |𝑣𝑣𝑖𝑖 ≥ 𝐸𝐸𝐸𝐸𝑖𝑖 𝑏𝑏𝑖𝑖 , 𝑏𝑏−𝑖𝑖∗ |𝑣𝑣𝑖𝑖
for every bid 𝑏𝑏𝑖𝑖 ≠ 𝑏𝑏𝑖𝑖∗ and every valuation 𝑣𝑣𝑖𝑖 .
• Intuitively, equilibrium bid 𝑏𝑏𝑖𝑖∗ provides bidder 𝑖𝑖 with a higher expected payoff than any 

other bid 𝑏𝑏𝑖𝑖 ≠ 𝑏𝑏𝑖𝑖∗ , conditional on her rivals selecting equilibrium bids 𝑏𝑏−𝑖𝑖∗ .
• But we showed something stronger than that! (Next slide.)



Discussion

• Bidding BNE vs. Dominant Strategies.
• When we say that bidder 𝑖𝑖 finds that her equilibrium bid 𝑏𝑏𝑖𝑖∗ is a weakly dominant 

strategy, we mean that
𝐸𝐸𝐸𝐸𝑖𝑖 𝑏𝑏𝑖𝑖∗, 𝑏𝑏−𝑖𝑖|𝑣𝑣𝑖𝑖 ≥ 𝐸𝐸𝐸𝐸𝑖𝑖 𝑏𝑏𝑖𝑖 , 𝑏𝑏−𝑖𝑖|𝑣𝑣𝑖𝑖

for:
• every bid 𝑏𝑏𝑖𝑖 ≠ 𝑏𝑏𝑖𝑖∗
• every valuation 𝑣𝑣𝑖𝑖 , and 
• every bidding profile her rivals use 𝑏𝑏−𝑖𝑖 → NEW. 

• This inequality entails that bidder 𝑖𝑖’s expected payoff from submitting bid 𝑏𝑏𝑖𝑖∗ is higher 
than from any other bid 𝑏𝑏𝑖𝑖 ≠ 𝑏𝑏𝑖𝑖∗, regardless of the specific bidding profile that her rivals 
use, 𝑏𝑏−𝑖𝑖, that is:

• both when they submit equilibrium bids,  𝑏𝑏−𝑖𝑖 = 𝑏𝑏−𝑖𝑖∗ , 
• and when they do not,  𝑏𝑏−𝑖𝑖 ≠ 𝑏𝑏−𝑖𝑖∗ .

• This is a strong property in the bidding strategy in SPAs, saying that bidder 𝑖𝑖, when 
submitting 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖, can essentially, ignore her opponents’ bids: 

• both when they submit equilibrium bids and when they do not.



Discussion

• No Bid shading.
• Intuitively, by shading her bid, 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 < 𝑣𝑣𝑖𝑖 , bidder 𝑖𝑖:

• lowers the chance that she wins the auction, but…
• does not lower the price that she pays upon winning.
• No tradeoff!

• In the FPA, in contrast, bid shading gives rise to a trade-off:
• A lower chance of winning the auction,
• But paying a lower price upon winning the object.



First-price auctions (FPA)

• Assignment rule coincides with that in the SPA: 
• the winner is the bidder submitting the highest bid.

• Payment rule in the FPA, however, differs: 
• the winning bidder must pay the highest bid.

• This seemingly small difference between both auction formats give 
rise to bid shading in the FPA 

• a result that we could not sustain in equilibrium when bidders face a SPA.



First-price auctions (FPA)

Step 1. Writing bidder 𝑖𝑖’s maximization problem.
• Bidder 𝑖𝑖’s maximization problem is as follows:

max
𝑏𝑏𝑖𝑖≥0

𝑃𝑃𝑃𝑃 𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑣𝑣𝑖𝑖 − 𝑏𝑏𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

− 𝑃𝑃𝑃𝑃 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 × ⏟0

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

• At this point, we need to write the probability of winning, 𝑃𝑃𝑃𝑃 𝑤𝑤𝑤𝑤𝑤𝑤 , as a 
function of bidder 𝑖𝑖’s bid, 𝑏𝑏𝑖𝑖 .

• To do this, note that every bidder 𝑖𝑖 uses a symmetric bidding function 
𝑏𝑏𝑖𝑖: 0,1 → ℝ+, a function mapping her valuation 𝑣𝑣𝑖𝑖 ∈ 0,1 into a positive 
dollar amount (her bid).



First-price auctions (FPA)

• If bidding functions are symmetric across players and monotonic, bidder 𝑖𝑖 wins 
when her bid satisfies 𝑏𝑏𝑗𝑗 ≤ 𝑏𝑏𝑖𝑖 ,

• which must indicate that her valuation satisfies 𝑣𝑣𝑗𝑗 ≤ 𝑣𝑣𝑖𝑖. 
• This ranking between valuations 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 occurs if Pr 𝑣𝑣𝑗𝑗 ≤ 𝑣𝑣𝑖𝑖 = 𝐹𝐹 𝑣𝑣𝑖𝑖 .

• Therefore, when bidder 𝑖𝑖 faces 𝑁𝑁 − 1 rivals, her probability of winning the 
auction is:

• the probability that her valuation exceeds that of all other 𝑁𝑁 − 1 rivals.
• Since valuations are i.i.d., we can write this probability as the product

𝑃𝑃𝑃𝑃 𝑣𝑣𝑗𝑗 ≤ 𝑣𝑣𝑖𝑖 × 𝑃𝑃𝑃𝑃 𝑣𝑣𝑘𝑘 ≤ 𝑣𝑣𝑖𝑖 ×…× 𝑃𝑃𝑃𝑃 𝑣𝑣𝑙𝑙 ≤ 𝑣𝑣𝑖𝑖

= 𝐹𝐹 𝑣𝑣𝑖𝑖 × 𝐹𝐹 𝑣𝑣𝑖𝑖 × … × 𝐹𝐹 𝑣𝑣𝑖𝑖

𝑁𝑁−1 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

= 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1

where bidders 𝑗𝑗 ≠ 𝑘𝑘 ≠ 𝑙𝑙 represent 𝑖𝑖𝑖𝑖𝑖 rivals. 



First-price auctions (FPA)

As a result, we can express the above expected 
utility maximization problem as follows:

max
𝑏𝑏𝑖𝑖≥0

𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1

𝑃𝑃𝑃𝑃(𝑤𝑤𝑤𝑤𝑤𝑤)

𝑣𝑣𝑖𝑖 − 𝑏𝑏𝑖𝑖



First-price auctions (FPA)

• Using the above bidding function, we can write
• 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝑥𝑥𝑖𝑖 , where 𝑥𝑥𝑖𝑖 ∈ ℝ+ is the bidder 𝑖𝑖𝑖s bid when her valuation is 𝑣𝑣𝑖𝑖.
• Or 𝑣𝑣𝑖𝑖 = 𝑏𝑏𝑖𝑖−1 𝑥𝑥𝑖𝑖 by applying the inverse of 𝑏𝑏𝑖𝑖 . on both sides.

• So, the program becomes

max
𝑥𝑥𝑖𝑖≥0

𝐹𝐹 𝑏𝑏𝑖𝑖−1 𝑥𝑥𝑖𝑖
𝑁𝑁−1

𝑣𝑣𝑖𝑖 − 𝑥𝑥𝑖𝑖



First-price auctions (FPA)

Step 2. Finding equilibrium bids.
• Differentiating with respect to 𝑥𝑥𝑖𝑖 , yields

− 𝐹𝐹 𝑏𝑏𝑖𝑖−1 𝑥𝑥𝑖𝑖
𝑁𝑁−1

+ 𝑁𝑁 − 1 𝐹𝐹 𝑏𝑏𝑖𝑖−1 𝑥𝑥𝑖𝑖
𝑁𝑁−2

𝑓𝑓 𝑏𝑏𝑖𝑖−1 𝑥𝑥𝑖𝑖
𝜕𝜕𝑏𝑏𝑖𝑖−1 𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

𝑣𝑣𝑖𝑖 − 𝑥𝑥𝑖𝑖 = 0

• Since 𝑏𝑏𝑖𝑖−1 𝑥𝑥𝑖𝑖 = 𝑣𝑣𝑖𝑖 , we can use the inverse function theorem to obtain 𝜕𝜕𝑏𝑏𝑖𝑖
−1 𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

=
1

𝑏𝑏′ 𝑏𝑏𝑖𝑖
−1 𝑥𝑥𝑖𝑖

. So simplifying and rearranging,

𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1𝑏𝑏′ 𝑣𝑣𝑖𝑖 + 𝑁𝑁 − 1 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 = 𝑁𝑁 − 1 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝑣𝑣𝑖𝑖 𝑣𝑣𝑖𝑖

• The left-hand side is 𝜕𝜕 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖
𝜕𝜕𝑣𝑣𝑖𝑖

, which let us write the above expression more 
compactly as

𝜕𝜕 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖
𝜕𝜕𝑣𝑣𝑖𝑖

= 𝑁𝑁 − 1 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝑣𝑣𝑖𝑖 𝑣𝑣𝑖𝑖



First-price auctions (FPA)

Step 2. Finding equilibrium bids.

• Integrating both sides of 𝜕𝜕 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖
𝜕𝜕𝑣𝑣𝑖𝑖

= 𝑁𝑁 − 1 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝑣𝑣𝑖𝑖 𝑣𝑣𝑖𝑖, yields

𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = ∫0
𝑣𝑣𝑖𝑖 𝑁𝑁 − 1 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝑣𝑣𝑖𝑖 𝑣𝑣𝑖𝑖𝑑𝑑𝑣𝑣𝑖𝑖

• We could now solve for 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 and obtain an equilibrium bidding function

𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 =
𝑁𝑁 − 1

𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1 �
0

𝑣𝑣𝑖𝑖

𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝑣𝑣𝑖𝑖 𝑣𝑣𝑖𝑖𝑑𝑑𝑣𝑣𝑖𝑖

• But this presentation does not help us see the role of bid shading. 
• For that, we need to represent the bid as a function of bidder i’s valuation, 𝑣𝑣𝑖𝑖, minus one 

term capturing bid shading.
• For that, we need to apply integration by parts on the RHS. (Next slide.)



First-price auctions (FPA)
Step 3. Applying integration by parts.

• Recall that

𝑔𝑔 𝑥𝑥 ℎ 𝑥𝑥 = �𝑔𝑔′ 𝑥𝑥 ℎ 𝑥𝑥 𝑑𝑑𝑑𝑑 + �𝑔𝑔 𝑥𝑥 ℎ′ 𝑥𝑥 𝑑𝑑𝑑𝑑

• Reordering this expression, we find

�𝑔𝑔′ 𝑥𝑥 ℎ 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑔𝑔 𝑥𝑥 ℎ 𝑥𝑥 −�𝑔𝑔 𝑥𝑥 ℎ′ 𝑥𝑥 𝑑𝑑𝑑𝑑

• Applying this in the above expression (RHS), yields:

�
0

𝑣𝑣𝑖𝑖

[ 𝑁𝑁 − 1 𝐹𝐹 𝑥𝑥 𝑁𝑁−2𝑓𝑓(𝑥𝑥)] ⏟𝑥𝑥

ℎ(𝑥𝑥)

𝑔𝑔′(𝑥𝑥)

𝑑𝑑𝑑𝑑 = 𝐹𝐹(𝑣𝑣𝑖𝑖)𝑁𝑁−1

𝑔𝑔(𝑥𝑥)

⏟𝑣𝑣𝑖𝑖

ℎ(𝑥𝑥)

− �
0

𝑣𝑣𝑖𝑖

𝐹𝐹(𝑥𝑥)𝑁𝑁−1

𝑔𝑔(𝑥𝑥)

⏟1

ℎ′(𝑥𝑥)



First-price auctions (FPA)
Step 3. Applying integration by parts.

• Inserting this results in the right-hand side of first-order condition, yields
𝐹𝐹(𝑣𝑣𝑖𝑖)𝑁𝑁−1𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝐹𝐹(𝑣𝑣𝑖𝑖)𝑁𝑁−1 𝑣𝑣𝑖𝑖 − ∫0

𝑣𝑣𝑖𝑖 𝐹𝐹(𝑣𝑣𝑖𝑖)𝑁𝑁−1𝑑𝑑𝑣𝑣𝑖𝑖
• Solving for 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 , we obtain the equilibrium bid in the FPA:

𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖 −
∫0
𝑣𝑣𝑖𝑖 𝐹𝐹(𝑣𝑣𝑖𝑖)𝑁𝑁−1𝑑𝑑𝑣𝑣𝑖𝑖
𝐹𝐹(𝑣𝑣𝑖𝑖)𝑁𝑁−1

𝐵𝐵𝐵𝐵𝐵𝐵 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

• Intuitively, bidder 𝑖𝑖 submits a bid:
• equal to her valuation for the object, 𝑣𝑣𝑖𝑖 ,
• less an amount captured by the second term, which we refer as her “bid shading.”



First-price auctions (FPA)

Step 4. Checking Monotonicity
• We finally check that the above bidding function 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 is monotonically 

increasing in bidder 𝑖𝑖′s valuation, 𝑣𝑣𝑖𝑖. A marginal increase in 𝑣𝑣𝑖𝑖 produces the 
following effect in bidder 𝑖𝑖′s equilibrium bidding function:

𝜕𝜕𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖
𝜕𝜕𝑣𝑣𝑖𝑖

= 1 −
𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1 − 𝑁𝑁 − 1 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−2 ∫0

𝑣𝑣𝑖𝑖 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1𝑑𝑑𝑣𝑣𝑖𝑖
𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1 2

=
𝑁𝑁−1 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝑣𝑣𝑖𝑖 ∫0

𝑣𝑣𝑖𝑖 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1𝑑𝑑𝑣𝑣𝑖𝑖
𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1 2

which is positive since 𝐹𝐹 𝑣𝑣𝑖𝑖 ∈ 0,1 , 𝑓𝑓 𝑣𝑣𝑖𝑖 > 0 for all 𝑣𝑣𝑖𝑖 and 𝑁𝑁 ≥ 2 by 
definition. 
But this effect is less than proportional (See next slide).



First-price auctions (FPA)
Step 4. Checking Monotonicity

• Note also that  𝜕𝜕𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖
𝜕𝜕𝑣𝑣𝑖𝑖

=
𝑁𝑁−1 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝑣𝑣𝑖𝑖 ∫0

𝑣𝑣𝑖𝑖 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1𝑑𝑑𝑣𝑣𝑖𝑖
𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1 2 < 1:

⇒
𝑁𝑁 − 1 𝑓𝑓 𝑣𝑣𝑖𝑖 ∫0

𝑣𝑣𝑖𝑖 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1𝑑𝑑𝑣𝑣𝑖𝑖
𝐹𝐹(𝑣𝑣𝑖𝑖)𝑁𝑁

= 𝑁𝑁 − 1
𝑓𝑓(𝑣𝑣𝑖𝑖)
𝐹𝐹(𝑣𝑣𝑖𝑖)

×
∫0
𝑣𝑣𝑖𝑖 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1𝑑𝑑𝑣𝑣𝑖𝑖
𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1

⇒ 𝑁𝑁 − 1 ×
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣𝑖𝑖)

𝑑𝑑𝑣𝑣𝑖𝑖
×
∫0
𝑣𝑣𝑖𝑖 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1𝑑𝑑𝑣𝑣𝑖𝑖
𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1

• Let log𝐹𝐹 𝑣𝑣𝑖𝑖 = 𝑔𝑔(𝑣𝑣𝑖𝑖), then we have:

⇒ 𝑁𝑁 − 1 ×
𝑑𝑑𝑑𝑑(𝑣𝑣𝑖𝑖)
𝑑𝑑𝑣𝑣𝑖𝑖

×
∫0
𝑣𝑣𝑖𝑖 𝑒𝑒 𝑁𝑁−1 𝑔𝑔(𝑣𝑣𝑖𝑖)𝑑𝑑𝑣𝑣𝑖𝑖
𝑒𝑒 𝑁𝑁−1 𝑔𝑔(𝑣𝑣𝑖𝑖)

= (𝑁𝑁 − 1)
∫0
𝑣𝑣𝑖𝑖 𝑒𝑒 𝑁𝑁−1 𝑔𝑔(𝑣𝑣𝑖𝑖)𝑑𝑑𝑔𝑔(𝑣𝑣𝑖𝑖)

𝑒𝑒 𝑁𝑁−1 𝑔𝑔(𝑣𝑣𝑖𝑖)

⇒ �
1

𝑁𝑁−1 𝑒𝑒 𝑁𝑁−1 𝑔𝑔(𝑣𝑣𝑖𝑖)

𝑒𝑒 𝑁𝑁−1 𝑔𝑔(𝑣𝑣𝑖𝑖)
0

𝑣𝑣𝑖𝑖
× 𝑁𝑁 − 1 = 𝑒𝑒 𝑁𝑁−1 𝑔𝑔(𝑣𝑣𝑖𝑖)−𝑒𝑒 𝑁𝑁−1 𝑔𝑔(0)

𝑒𝑒 𝑁𝑁−1 𝑔𝑔(𝑣𝑣𝑖𝑖)
< 𝑒𝑒 𝑁𝑁−1 𝑔𝑔(𝑣𝑣𝑖𝑖)

𝑒𝑒 𝑁𝑁−1 𝑔𝑔(𝑣𝑣𝑖𝑖)
= 1.

Meaning that an increase in bidder i’s valuations leads her to increase her bid, but less than proportionally.



Example 9.1. FPA with uniformly distributed valuations

• Consider, for instance, when individual valuations are uniformly distributed, i.e.
𝐹𝐹 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖.

• In this setting, we obtain 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1 = 𝑣𝑣𝑖𝑖𝑁𝑁−1 and ∫0
𝑣𝑣𝑖𝑖 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1𝑑𝑑𝑣𝑣𝑖𝑖 = 1

𝑁𝑁
𝑣𝑣𝑖𝑖𝑁𝑁,

producing a bidding function of

𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖 −
1
𝑁𝑁 𝑣𝑣𝑖𝑖𝑁𝑁

𝑣𝑣𝑖𝑖𝑁𝑁−1
= 𝑣𝑣𝑖𝑖 − ⏟

𝑣𝑣𝑖𝑖
𝑁𝑁

𝐵𝐵𝐵𝐵𝐵𝐵
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑣𝑣𝑖𝑖
𝑁𝑁 − 1
𝑁𝑁

• In this context, every bidder shades her bid by 𝑣𝑣𝑖𝑖
𝑁𝑁

, which increases in the number 
of competing bidders.

• In addition, the equilibrium bidding function 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖
𝑁𝑁−1
𝑁𝑁

is monotonically 
increase in the valuation that bidder 𝑖𝑖 assigns to the object, 𝑣𝑣𝑖𝑖, as required.



Example 9.1. FPA with uniformly distributed valuations

• When only 2 bidders compete for the 
object, 𝑁𝑁 = 2, this bidding function 
simplifies to 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖

2
as depicted in 

Figure 9.1.
• When 𝑁𝑁 = 3, equilibrium bids increase to 
𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 2𝑣𝑣𝑖𝑖

3
.

• When 𝑁𝑁 = 4, equilibrium bids increase to 
𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 3𝑣𝑣𝑖𝑖

4
.



Example 9.1. FPA with uniformly distributed 
valuations

• Informally, as more bidders participate in 
the auction, every bidder 𝑖𝑖 submits more 
aggressive bids since:

• she faces a higher probability than another 
bidder 𝑗𝑗 has a higher valuation for the object.

• And, given symmetric bidding functions, bidder 
𝑗𝑗 submits a higher bid than she does, leading to 
bidder 𝑖𝑖 to lose the auction.

• In the extreme case that 𝑁𝑁 → ∞, the 
bidding function converges to 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖.



Efficiency in auctions

• An auction is deemed “efficient” when it assign the object to the individual with 
the highest valuation. 

• That is, when the assignment rule allocates the object to bidder 𝑖𝑖 if only if her valuation, 𝑣𝑣𝑖𝑖 ,
satisfies 𝑣𝑣𝑖𝑖 > 𝑣𝑣𝑗𝑗 for all 𝑗𝑗 ≠ 𝑖𝑖.

• Otherwise, if bidder 𝑗𝑗 receives the object despite having a lower valuation than 
bidder 𝑖𝑖:

• these two bidders could negotiate at the end of the auction, 
• with bidder 𝑖𝑖 paying a price 𝑝𝑝 that satisfies 𝑣𝑣𝑖𝑖 > 𝑝𝑝 > 𝑣𝑣𝑗𝑗, 
• making both bidders better off.

• The assignment rule that allocates the object to bidder 𝑗𝑗 is Pareto inefficient.
• We can find an alternative allocation that improves the payoff of at least one individual 

without making any other individual worse off.
• If bidders use a symmetric, strictly increasing, bidding function in equilibrium:

• the winner of the auction must be the individual with the highest valuation, 
• making the auction efficient.



Efficiency in auctions

• Symmetric and strictly increasing bidding function:
• Because bidder A has a higher valuation than B does, he submits a higher bid 

and wins the object.

vi
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bB



Efficiency in auctions

• Symmetric but Not strictly increasing bidding function:
• Bidder A has a higher valuation than B does, but he may submit a lower bid 

and lose the object.



Efficiency in auctions

• Asymmetric but strictly increasing bidding functions:
• Bidder A has a higher valuation than B does, but he may submit a lower bid 

and lose the object.



Efficiency in auctions

• Two typical features that “break” efficiency in auctions: 
• Budget constraints, either symmetric or asymmetric.
• Asymmetric risk averse bidders.



Budget constraints

• When bidder 𝑖𝑖 faces a budget constraint 𝑤𝑤𝑖𝑖, 
• her bidding function is increasing in 𝑣𝑣𝑖𝑖 for all 𝑏𝑏𝑖𝑖 < 𝑤𝑤𝑖𝑖 (affordable bids).
• But becomes flat at the height of 𝑤𝑤𝑖𝑖 for all valuations for which 𝑏𝑏𝑖𝑖> 𝑤𝑤𝑖𝑖

(unaffordable bids)

vi

bi

bA=wA

bA(vi)



Budget constraints

• Budget constraints imply that bidding functions are weakly increasing 
in 𝑣𝑣𝑖𝑖, not strictly increasing, 

• so we cannot guarantee that the auction is efficient.
• Recall that we need bidders to use “symmetric, strictly increasing, bidding 

functions in equilibrium”

• Figure to illustrate this point (next slide).



Budget constraints

• Bidder A values the object more than B does…
• yet he may submit a lower bid, losing the object.



Budget constraints

• Budget constraints imply that bidding functions are weakly increasing 
in 𝑣𝑣𝑖𝑖, not strictly increasing, 

• so we cannot guarantee that the auction is efficient.
• Recall that we need bidders to use “symmetric, strictly increasing, bidding 

functions in equilibrium”

• This occurs even if:
• only one individual suffers from budget constraints, 
• or if all bidders face the same budget constraint 𝑤𝑤𝑖𝑖 = 𝑤𝑤, 
• making their bidding functions symmetric (but not strictly increasing). 



Asymmetric risk averse bidders

• Another context where efficiency is not satisfied is that where players 
exhibit different degrees of risk aversion.

• Bidders competing in a FPA submit more aggressive bids when they 
become more risk-averse. 

• If both bidders are symmetric in their risk aversion, the above condition hold 
(i.e. bidders use a symmetric, strictly increasing, bidding function).

• When bidders are asymmetric in their risk preferences, however, the 
FPA is not efficient.



Asymmetric risk averse bidders

• Consider FPA with two bidders, 𝐴𝐴 and 𝐵𝐵, where bidder 𝐴𝐴 exhibits more (less) risk 
aversion.

• Scenarios: 
• Bidder 𝐴𝐴 can be risk averse, while bidder 𝐵𝐵 is risk neutral or risk-loving, 
• both bidders can be risk-averse but 𝐴𝐴 is more risk averse than 𝐵𝐵, 
• or both are risk lovers but 𝐴𝐴 is less so than 𝐵𝐵.

• In any of these settings, bidder 𝐴𝐴 submits a more aggressive bid than 𝐵𝐵 does, 
𝑏𝑏𝐴𝐴 > 𝑏𝑏𝐵𝐵 , implying that 𝐴𝐴 wins the auction.

• If bidder 𝐴𝐴 values the object more than 𝐵𝐵 does, 𝑣𝑣𝐴𝐴 > 𝑣𝑣𝐵𝐵, the outcome of the 
auction is still efficient; but otherwise the outcome is inefficient.

• Generally, then, we cannot guarantee that the object goes to the individual who 
values the object the most, especially if bidders are relatively asymmetric in their 
risk aversion, entailing that the FPA is not efficient when players are risk averse.



Seller’s expected revenue: Expected revenue 
in the FPA
Step 1. Finding each bidder’s payment

• The seller receives a payment from bidder 𝑖𝑖 if she wins the auction. In other 
words, bidder 𝑖𝑖’s payment is

𝑚𝑚 𝑣𝑣𝑖𝑖 = 𝑃𝑃𝑃𝑃 𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖
• We know that 𝑃𝑃𝑃𝑃 𝑤𝑤𝑤𝑤𝑤𝑤 = 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1, so

𝑚𝑚 𝑣𝑣𝑖𝑖 = 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1 × 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝐺𝐺 𝑣𝑣𝑖𝑖 × 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 , where 𝐺𝐺 𝑣𝑣𝑖𝑖 = 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1

• Recall that the equilibrium bidding function in the FPA is

𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖 −
∫0
𝑣𝑣𝑖𝑖 𝐹𝐹 𝑥𝑥 𝑁𝑁−1𝑑𝑑𝑑𝑑
𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1 = 𝑣𝑣𝑖𝑖 −

∫0
𝑣𝑣𝑖𝑖 𝐺𝐺 𝑥𝑥 𝑑𝑑𝑑𝑑
𝐺𝐺 𝑣𝑣𝑖𝑖

=
𝐺𝐺 𝑣𝑣𝑖𝑖 𝑣𝑣𝑖𝑖 − ∫0

𝑣𝑣𝑖𝑖 𝐺𝐺 𝑥𝑥 𝑑𝑑𝑑𝑑
𝐺𝐺 𝑣𝑣𝑖𝑖



Seller’s expected revenue: Expected revenue 
in the FPA
Step 1. Finding each bidder’s payment

• Applying integration by parts in the numerator, we obtain 

𝐺𝐺 𝑣𝑣𝑖𝑖 𝑣𝑣𝑖𝑖 − �
0

𝑣𝑣𝑖𝑖
𝐺𝐺 𝑥𝑥 𝑑𝑑𝑑𝑑 = �

0

𝑣𝑣𝑖𝑖
𝑥𝑥𝑥𝑥 𝑥𝑥 𝑑𝑑𝑑𝑑

• So we can rewrite the equilibrium bidding function:

𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 =
∫0
𝑣𝑣𝑖𝑖 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑑𝑑𝑑𝑑
𝐺𝐺 𝑣𝑣𝑖𝑖

• Inserting this equilibrium bidding function in bidder 𝑖𝑖’s expected payment, 
yields

𝑚𝑚 𝑣𝑣𝑖𝑖 = 𝐺𝐺 𝑣𝑣𝑖𝑖 ×
∫0
𝑣𝑣𝑖𝑖 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑑𝑑𝑑𝑑
𝐺𝐺 𝑣𝑣𝑖𝑖

𝐵𝐵𝐵𝐵𝐵𝐵, 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖

= �
0

𝑣𝑣𝑖𝑖

𝑥𝑥𝑥𝑥 𝑥𝑥 𝑑𝑑𝑑𝑑



Seller’s expected revenue: Expected revenue 
in the FPA
Step 2. Finding the expected payment.

• Since the seller cannot observe bidder 𝑖𝑖′𝑠𝑠 value for the object, she needs to take 
expectations over all possible values to find the expected payment from this bidder, 
𝐸𝐸 𝑚𝑚 𝑣𝑣𝑖𝑖 , as follows:

𝐸𝐸 𝑚𝑚 𝑣𝑣𝑖𝑖 = ∫0
1𝑚𝑚 𝑥𝑥 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 = ∫0

1 ∫0
𝑣𝑣𝑖𝑖 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑑𝑑𝑑𝑑

𝑚𝑚 𝑣𝑣𝑖𝑖

𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑

Step 3. Sum across all bidders.
• The seller sums across all 𝑁𝑁 bidders participating in the auction, which yields the 

expression of her revenue in the FPA.

𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 = �
𝑖𝑖=1

𝑁𝑁

𝐸𝐸 𝜋𝜋𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝑁𝑁 × 𝐸𝐸 𝑚𝑚 𝑣𝑣𝑖𝑖 = 𝑁𝑁�
0

1

�
0

𝑣𝑣𝑖𝑖

𝑥𝑥𝑥𝑥 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑



Example 9.2. Expected Revenue in FPA with 
Uniformly Distributed Valuations
• When valuations are uniformly distributed, 𝐹𝐹 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖, we obtain that:

• 𝑓𝑓 𝑣𝑣𝑖𝑖 = 𝐹𝐹′ 𝑣𝑣𝑖𝑖 = 1
• 𝐺𝐺 𝑣𝑣𝑖𝑖 = 𝐹𝐹 𝑣𝑣𝑖𝑖 𝑁𝑁−1 = 𝑣𝑣𝑖𝑖𝑁𝑁−1, which implies that:
• 𝑔𝑔 𝑣𝑣𝑖𝑖 = 𝐺𝐺′ 𝑣𝑣𝑖𝑖 = 𝑁𝑁 − 1 𝑣𝑣𝑖𝑖𝑁𝑁−2,
• 𝑣𝑣𝑖𝑖𝑔𝑔 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖 𝑁𝑁 − 1 𝑣𝑣𝑖𝑖𝑁𝑁−2 = 𝑁𝑁 − 1 𝑣𝑣𝑖𝑖𝑁𝑁−1,

• Therefore, bidder 𝑖𝑖𝑖𝑖𝑖 equilibrium bid is

𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖
𝑁𝑁 − 1
𝑁𝑁

• Step 1. The expected payment from bidder 𝑖𝑖 is:

𝑚𝑚 𝑣𝑣𝑖𝑖 = �
0

𝑣𝑣𝑖𝑖

𝑥𝑥𝑥𝑥 𝑥𝑥 𝑑𝑑𝑑𝑑 = �
0

𝑣𝑣𝑖𝑖

𝑁𝑁 − 1 𝑥𝑥𝑁𝑁−1

𝑥𝑥𝑥𝑥(𝑥𝑥)

𝑑𝑑𝑑𝑑 =
𝑁𝑁 − 1
𝑁𝑁

𝑥𝑥𝑁𝑁 0
𝑣𝑣𝑖𝑖 =

𝑁𝑁 − 1
𝑁𝑁

𝑣𝑣𝑖𝑖𝑁𝑁 − 0 =
𝑁𝑁 − 1
𝑁𝑁

𝑣𝑣𝑖𝑖𝑁𝑁



Example 9.2. Expected Revenue in FPA with 
Uniformly Distributed Valuations
• Step 2. Therefore, bidder 𝑖𝑖𝑖𝑖𝑖 expected payment is:

𝐸𝐸 𝑚𝑚 𝑣𝑣𝑖𝑖 = �
0

1

𝑚𝑚 𝑣𝑣𝑖𝑖 𝑓𝑓 𝑣𝑣𝑖𝑖 𝑑𝑑𝑣𝑣𝑖𝑖 = �
0

1
𝑁𝑁 − 1
𝑁𝑁

𝑣𝑣𝑖𝑖𝑁𝑁

𝑚𝑚 𝑣𝑣𝑖𝑖

⏟1

𝑓𝑓 𝑣𝑣𝑖𝑖

𝑑𝑑𝑣𝑣𝑖𝑖 =
𝑁𝑁 − 1
𝑁𝑁

�
0

1

𝑣𝑣𝑖𝑖𝑁𝑁𝑑𝑑𝑣𝑣𝑖𝑖 =
𝑁𝑁 − 1
𝑁𝑁

𝑣𝑣𝑖𝑖𝑁𝑁+1

𝑁𝑁 + 1 0

1

=
𝑁𝑁 − 1

𝑁𝑁 𝑁𝑁 + 1

• Step 3. Finally, the seller sums across all 𝑁𝑁 bidders to obtain the expected 
revenue from the FPA, 𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹, as follows,

𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 = �
𝑖𝑖=1

𝑁𝑁

𝐸𝐸 𝑚𝑚 𝑣𝑣𝑖𝑖 = 𝑁𝑁 × 𝐸𝐸 𝑚𝑚 𝑣𝑣𝑖𝑖 = 𝑁𝑁
𝑁𝑁 − 1

𝑁𝑁(𝑁𝑁 + 1)
=
𝑁𝑁 − 1
𝑁𝑁 + 1



Example 9.2. Expected Revenue in FPA with 
Uniformly Distributed Valuations
• Therefore,

𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑁𝑁 − 1
𝑁𝑁 + 1

• The expected revenue is:
• increasing in the number of bidders, 𝑁𝑁, 
• but at a decreasing rate.
• Approaches 1 when 𝑁𝑁 → ∞.

• This result goes in line with that in Example 9.1:
• as more bidders compete in the auction, they submit more aggressive bids, i.e., 
𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 increases in 𝑁𝑁, 

• increasing as a result the expected winning bid that the seller earns. 



Expected Revenue in the SPA

• In this auction format, the seller anticipates that every bidder 𝑖𝑖
submits a bid 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖.

• The winning bidder pays the second-highest bid.
• The second-highest bid coincides with the second-highest valuation 

for the object, 𝑣𝑣1
2 . That is,

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐸𝐸 𝑣𝑣1
2 = �

0

1

𝑥𝑥𝑓𝑓 2 𝑥𝑥 𝑑𝑑𝑑𝑑



Expected Revenue in the SPA

• We first identify the cumulative distribution function 𝐹𝐹2 𝑥𝑥 =
𝑃𝑃𝑃𝑃 𝑣𝑣2 ≤ 𝑥𝑥 which happens when two events occur:

1. The valuations of all 𝑁𝑁 bidders are below 𝑥𝑥, or formally, 𝑣𝑣𝑖𝑖 ≤ 𝑥𝑥 for every 
bidder 𝑖𝑖. This event happens with probability
𝑃𝑃𝑃𝑃 𝑣𝑣1 ≤ 𝑥𝑥 × … × 𝑃𝑃𝑃𝑃 𝑣𝑣𝑁𝑁 ≤ 𝑥𝑥 = 𝐹𝐹 𝑥𝑥 × … × 𝐹𝐹 𝑥𝑥

𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

= 𝐹𝐹(𝑥𝑥) 𝑁𝑁

2. The valuations of 𝑁𝑁 − 1 bidders are below 𝑥𝑥, 𝑣𝑣𝑖𝑖 ≤ 𝑥𝑥 , but that of only one 
bidder 𝑗𝑗 is above 𝑥𝑥, 𝑣𝑣𝑖𝑖 > 𝑥𝑥. This even can occur in 𝑁𝑁 different ways: 
• 𝑣𝑣1 > 𝑥𝑥 for bidder 1 but 𝑣𝑣𝑖𝑖 ≤ 𝑥𝑥 for every bidder 𝑖𝑖 ≠ 1;
• 𝑣𝑣2 > 𝑥𝑥 for bidder 2 but 𝑣𝑣𝑖𝑖 ≤ 𝑥𝑥 for every bidder 𝑖𝑖 ≠ 2;
• …
• 𝑣𝑣𝑁𝑁 > 𝑥𝑥 for bidder 𝑁𝑁 but 𝑣𝑣𝑖𝑖 ≤ 𝑥𝑥 for every bidder 𝑖𝑖 ≠ 𝑁𝑁.



Expected Revenue in the SPA
• Each of these 𝑁𝑁 cases happens with probability

1 − 𝐹𝐹(𝑥𝑥)

𝑣𝑣𝑖𝑖 > 𝑥𝑥 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖

× 𝐹𝐹(𝑥𝑥) 𝑁𝑁−1

𝑣𝑣𝑗𝑗 ≤ 𝑥𝑥 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑗𝑗≠𝑖𝑖

where 1 − 𝐹𝐹(𝑥𝑥) denotes the probability that 𝑣𝑣𝑖𝑖 > 𝑥𝑥 for a given bidder 𝑖𝑖, while 
𝐹𝐹(𝑥𝑥) 𝑁𝑁−1 represents the probability that 𝑣𝑣𝑗𝑗 ≤ 𝑥𝑥 for all other bidders 𝑗𝑗 ≠ 𝑖𝑖 .

• Summing over the above 𝑁𝑁 cases, we find that event (2) happens with probability
∑𝑖𝑖=1𝑁𝑁 1 − 𝐹𝐹(𝑥𝑥) 𝐹𝐹(𝑥𝑥) 𝑁𝑁−1 = 𝑁𝑁 1 − 𝐹𝐹(𝑥𝑥) 𝐹𝐹(𝑥𝑥) 𝑁𝑁−1

• Summarizing, the cumulative distribution function of the second-highest 
valuation 𝐹𝐹 2 𝑥𝑥 , is

𝐹𝐹 2 𝑥𝑥 = 𝐹𝐹(𝑥𝑥) 𝑁𝑁 + 𝑁𝑁 1 − 𝐹𝐹(𝑥𝑥) 𝐹𝐹(𝑥𝑥) 𝑁𝑁−1



Expected Revenue in the SPA
• Rearranging,

𝐹𝐹 2 𝑥𝑥 = 𝑁𝑁 𝐹𝐹(𝑥𝑥) 𝑁𝑁−1 − 𝑁𝑁 − 1 𝐹𝐹(𝑥𝑥) 𝑁𝑁

• Differentiating with respect to 𝑥𝑥:

𝑓𝑓 2 𝑥𝑥 = 𝑁𝑁 𝑁𝑁 − 1 𝐹𝐹 𝑥𝑥 𝑁𝑁−2 1 − 𝐹𝐹 𝑥𝑥 𝑓𝑓 𝑥𝑥
• Inserting density function into seller’s expected revenue

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = �𝑥𝑥𝑓𝑓 2 𝑥𝑥 𝑑𝑑𝑑𝑑 = �𝑥𝑥𝑁𝑁(𝑁𝑁 − 1)𝐹𝐹 𝑥𝑥 𝑁𝑁−2 1 − 𝐹𝐹 𝑥𝑥 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑

𝑓𝑓 2 𝑥𝑥



Example 9.3. Expected Revenue in SPA with 
uniformly distributed valuations
• When valuations are uniformly distributed, 𝐹𝐹 𝑥𝑥 = 𝑥𝑥 and 𝑓𝑓 𝑥𝑥 = 1, the seller’s 

expected revenue becomes

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = �
0

1
𝑥𝑥𝑥𝑥 𝑁𝑁 − 1 𝑥𝑥𝑁𝑁−2 1 − 𝑥𝑥 𝑑𝑑𝑑𝑑

= 𝑁𝑁 − 1 �
0

1
𝑁𝑁𝑥𝑥𝑁𝑁−1𝑑𝑑𝑑𝑑 − 𝑁𝑁 𝑁𝑁 − 1 �

0

1
𝑥𝑥𝑁𝑁𝑑𝑑𝑑𝑑

= �𝑁𝑁 − 1 𝑥𝑥𝑁𝑁
0

1
− �
𝑁𝑁 𝑁𝑁 − 1 𝑥𝑥𝑁𝑁+1

𝑁𝑁 + 1
0

1

= 𝑁𝑁 − 1 −
𝑁𝑁 𝑁𝑁 − 1
𝑁𝑁 + 1

=
𝑁𝑁 − 1
𝑁𝑁 + 1

which coincides with that in the FPA, 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆, found in Example 9.2., thus being increasing 
and concave in the number of bidders, 𝑁𝑁.



Revenue Equivalence Principle

• When bidders’ valuations are uniformly distributed, 𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆, implying 
that the seller can expect to earn the same revenue from both auction 
formats.

• This “revenue equivalence” result extends to several other auction formats:
• yielding the same expected revenue as the FPA and SPA, 
• and to settings where bidders’ valuations are non-uniformly distributed.

• We can identify the two main requirements that two auction formats must 
satisfy to yield the same expected revenue for the seller:

1. Same allocation rule in both auction formats, e.g., the bidder submitting the 
highest bid receives the object, as in the FPA and SPA.

2. Same expected utility of the bidder who has the lowest valuation for the object, 
e.g., zero in most auction formats since this bidder loses the auction, not receiving 
the object.



Revenue Equivalence Principle

• It is straightforward to note that the comparison of FPA and SPA satisfies 
conditions (1) and (2), thus generating the same expected revenue.

• But the comparison of FPA and APA does not satisfy condition (2):
• because the bidder with the lowest valuations earns a zero payoff in the FPA but a 

negative payoff in the APA after paying here bid.
• Therefore, the FPA and APA do not necessarily generate the same expected 

revenue.
• Similarly, the comparison of the FPA and the lottery auction does not 

satisfy condition (1), 
• since the lottery auction does not necessarily assign the object to the individual 

submitting the highest bid in the FPA.
• As a consequence, the FPA and the lottery auction do not yield the same 

expected revenue for the seller.



Common value auctions and the winner’s curse

• Every bidder 𝑖𝑖 shares a common value for the object, 𝑣𝑣, but privately 
observes a noisy signal 𝑠𝑠𝑖𝑖 about the object’s value drawn from 𝐹𝐹 𝑠𝑠𝑖𝑖 , 
where 𝑠𝑠𝑖𝑖 ∈ 0,1 .

• Based on this signal, every bidder 𝑖𝑖 submits her bid, 𝑏𝑏𝑖𝑖 .
• This setting is known as “common value” auctions
• Bidders participate in a first-price, sealed-bid auction: 

• if bidder 𝑖𝑖 wins, her realized payoff becomes 𝑣𝑣 − 𝑏𝑏𝑖𝑖, 
• and if she loses her payoff is zero.

• Experimentally tested with a jar of nickels (Explain).
• For simplicity, we consider a setting with only two bidders, and that the 

true value is equal to the average of bidders' signals, so that 𝑣𝑣 = 𝑠𝑠𝑖𝑖+𝑠𝑠𝑗𝑗
2

.



Bid shading is a must!

• Note that bidder 𝑖𝑖 falls prey of the winner’s curse if her bid exceeds the 
object’s true value (which no bidder observes), 𝑏𝑏𝑖𝑖 > 𝑣𝑣, 

• thus earning a negative payoff, 𝑣𝑣 − 𝑏𝑏𝑖𝑖 < 0, from winning the auction.
• In particular, this occurs if

𝑏𝑏𝑖𝑖 >
𝑠𝑠𝑖𝑖 + 𝑠𝑠𝑗𝑗

2
• When bidder 𝑖𝑖𝑖𝑖𝑖 bid is a function of her privately observed signal, 𝑏𝑏𝑖𝑖 =
𝛼𝛼𝑠𝑠𝑖𝑖 , where 𝛼𝛼 ∈ 0,1 , this inequality becomes

𝛼𝛼𝑠𝑠𝑖𝑖 > 𝑠𝑠𝑖𝑖+𝑠𝑠𝑗𝑗
2

⇒ 𝑠𝑠𝑖𝑖 > 𝑠𝑠𝑗𝑗
2𝛼𝛼−1

• When bidder 𝑖𝑖 submits a bid equal to the signal she received, the 
winner’s curse occurs if 𝑠𝑠𝑖𝑖 > 𝑠𝑠𝑗𝑗.



Bid shading is a must!
• Intuition: 

• If every bidder submits a bid that coincides with her privately observed signal, the 
bidder who received the highest signal ends up submitting the highest bid, 

• She wins the auction
• But suffers form the winner’s curse.

• In other words, the fact that she won the auction means that she received an 
overestimated signal of the object.

• If instead, bidder 𝑖𝑖 submits a bid equal to  3
4

of the signal she received, 𝛼𝛼 = 3
4
, 

the winner’s curse only emerges if 𝑠𝑠𝑖𝑖 > 2𝑠𝑠𝑗𝑗;
• that is, when bidder 𝑖𝑖’s signal is larger than the double of bidder 𝑗𝑗𝑗s.

• More generally, as bidder 𝑖𝑖 shades her bid more severely (decreasing 𝛼𝛼), 
• Ratio  

𝑠𝑠𝑗𝑗
2𝛼𝛼−1

increases, 
• and the winner’s curse is less likely to occur.



Equilibrium Bidding in Common Value Auctions

Step 1. Finding the expected utility. 
• Bidder 𝑖𝑖𝑖𝑠𝑠 expected payoff from participating in the auction is

𝑃𝑃𝑃𝑃 𝑏𝑏𝑖𝑖 > 𝑏𝑏𝑗𝑗 × 𝐸𝐸 𝑣𝑣|𝑠𝑠𝑖𝑖 , 𝑏𝑏𝑖𝑖 > 𝑏𝑏𝑗𝑗 − 𝑏𝑏𝑖𝑖
where 𝐸𝐸 𝑣𝑣|𝑠𝑠𝑖𝑖 , 𝑏𝑏𝑖𝑖 > 𝑏𝑏𝑗𝑗 is bidder 𝑖𝑖𝑖𝑖𝑖 expected valuation, conditional on her 
signal 𝑠𝑠𝑖𝑖 , and on knowing that she submitted the highest bid, i.e., 𝑏𝑏𝑖𝑖 > 𝑏𝑏𝑗𝑗.

• Since bidder 𝑗𝑗 uses bidding function 𝑏𝑏𝑗𝑗 = 𝛼𝛼𝑠𝑠𝑗𝑗 , as this expression becomes
𝑃𝑃𝑃𝑃 𝑏𝑏𝑖𝑖 > 𝛼𝛼𝑠𝑠𝑗𝑗 × 𝐸𝐸 𝑣𝑣|𝑠𝑠𝑖𝑖 , 𝑏𝑏𝑖𝑖 > 𝛼𝛼𝑠𝑠𝑗𝑗 − 𝑏𝑏𝑖𝑖

• Solving for 𝑠𝑠𝑗𝑗 in the probability (first term) and in the inequality inside the 
expectation operator (second term), we obtain that

𝑃𝑃𝑃𝑃
𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗 × 𝐸𝐸 𝑣𝑣|𝑠𝑠𝑖𝑖 ,
𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗 − 𝑏𝑏𝑖𝑖



Equilibrium Bidding in Common Value Auctions

• Step 1. Finding the expected utility. 
• Next, inserting 𝑣𝑣 =

𝑠𝑠𝑖𝑖+𝑠𝑠𝑗𝑗
2

in the expectation operator, yields

𝑃𝑃𝑃𝑃
𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗 × 𝐸𝐸 �
𝑠𝑠𝑖𝑖 + 𝑠𝑠𝑗𝑗

2
𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗 − 𝑏𝑏𝑖𝑖
• Recall that bidder 𝑖𝑖 observes her signal, 𝑠𝑠𝑖𝑖 , so that 𝐸𝐸 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑖𝑖, but does not know her rival’s, 𝑠𝑠𝑗𝑗 ,

entailing that

𝑃𝑃𝑃𝑃
𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗 ×
𝑠𝑠𝑖𝑖
2

+
1
2
𝐸𝐸 �𝑠𝑠𝑗𝑗

𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗 − 𝑏𝑏𝑖𝑖
• Using the uniform distribution on 𝑠𝑠𝑗𝑗, we have

𝑃𝑃𝑃𝑃 𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗 = 𝑏𝑏𝑖𝑖
𝛼𝛼

and   𝐸𝐸 �𝑠𝑠𝑗𝑗
𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗 = 𝑏𝑏𝑖𝑖
2𝛼𝛼

because 𝑠𝑠𝑗𝑗 , which is a uniformly distributed random variable, falls into the range 0, 𝑏𝑏𝑖𝑖
𝛼𝛼

, yielding an 
expected value of 𝑏𝑏𝑖𝑖

2𝛼𝛼
. 

• Inserting these results into bidder 𝑖𝑖𝑖𝑖𝑖 expected payoff, we obtain that
𝑏𝑏𝑖𝑖
𝛼𝛼

𝑠𝑠𝑖𝑖
2

+
1
2

𝑏𝑏𝑖𝑖
2𝛼𝛼

− 𝑏𝑏𝑖𝑖



Equilibrium Bidding in Common Value Auctions

Step 2. Taking first-order conditions. 
• Every bidder 𝑖𝑖 chooses her bid 𝑏𝑏𝑖𝑖 to maximize her expected utility, solving the 

following problem

max
𝑏𝑏𝑖𝑖≥0

𝑏𝑏𝑖𝑖
𝛼𝛼

𝑠𝑠𝑖𝑖
2

+
1
2

𝑏𝑏𝑖𝑖
2𝛼𝛼

− 𝑏𝑏𝑖𝑖

Taking the first-order conditions with respect to 𝑏𝑏𝑖𝑖, we obtain
1
𝛼𝛼
𝑠𝑠𝑖𝑖
2

+
1
2

𝑏𝑏𝑖𝑖
2𝛼𝛼

− 𝑏𝑏𝑖𝑖 +
𝑏𝑏𝑖𝑖
𝛼𝛼

1
4𝛼𝛼

− 1 = 0

Simplifying, yields
1 − 4𝛼𝛼

2𝛼𝛼2
𝑏𝑏𝑖𝑖 = −

𝑠𝑠𝑖𝑖
2𝛼𝛼

⇒ 𝑏𝑏𝑖𝑖 =
𝛼𝛼

4𝛼𝛼 − 1
𝑠𝑠𝑖𝑖



Equilibrium Bidding in Common Value Auctions

Step 3. Finding the equilibrium bidding function.
• Recall that we considered a symmetric bidding function 𝑏𝑏𝑖𝑖 = 𝛼𝛼𝑠𝑠𝑖𝑖 for a generic 

value of 𝛼𝛼.
• The above expression, 𝑏𝑏𝑖𝑖 = 𝛼𝛼

4𝛼𝛼−1
𝑠𝑠𝑖𝑖, is indeed linear in signal 𝑠𝑠𝑖𝑖 , so we can write

𝛼𝛼𝑠𝑠𝑖𝑖 = 𝛼𝛼
4𝛼𝛼−1

𝑠𝑠𝑖𝑖 or 

𝛼𝛼 =
𝛼𝛼

4𝛼𝛼 − 1
⇒ 4𝛼𝛼 − 1 = 1 ⇒ 𝛼𝛼 =

1
2

• In summary, a symmetric BNE has every bidder 𝑖𝑖 using the bidding function

𝑏𝑏𝑖𝑖 𝑠𝑠𝑖𝑖 =
1
2
𝑠𝑠𝑖𝑖

That is, she submits a bid equal to half of her privately observed signal, 𝑠𝑠𝑖𝑖.



Equilibrium Bidding in Common Value Auctions

• Extension to N bidders: 

𝑏𝑏𝑖𝑖 𝑠𝑠𝑖𝑖 =
(𝑁𝑁 + 2)(𝑁𝑁 − 1)

2𝑁𝑁2 𝑠𝑠𝑖𝑖
where 𝑁𝑁 + 2 𝑁𝑁 − 1 < 2𝑁𝑁2 simplifies to 𝑁𝑁2 − 𝑁𝑁 + 2 > 0, which holds since 
𝑁𝑁 ≥ 2 by definition. 

• In addition, 𝜕𝜕𝑏𝑏𝑖𝑖 𝑠𝑠𝑖𝑖
𝜕𝜕𝑛𝑛

= (4−𝑁𝑁)
2𝑁𝑁3

𝑠𝑠𝑖𝑖, which is positive for all 𝑛𝑛 < 4, but negative 
otherwise. 



Equilibrium Bidding in Common Value Auctions

• A natural question at this point is whether this bidding function helps 
bidders avoid the winner’s curse. 

• Exercise 9.16 helps you confirm that it does.
• Hint: We only need to evaluate the winning bidder’s utility at her equilibrium bid. 

No need to compute expected utility (we know she won).
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