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Introduction

* Auctions have been historically reported as early as Babylon around
500 BC and in the Roman Empire in 193 AD.

* They remain popular nowadays through online auctions such as eBay, eBid,
QuiBids, AuctionMaxx, DealDash, or LiveAuctioneers, etc.

* Understanding optimal bidding behavior in different auction formats,
then, is not only an interesting application of BNEs but also a useful
tool for online shopping.

 We will consider different auction formats:

* First-price auction (FPA). The bidder submitting the highest bid wins the
auction. She pays the bid she submitted.

* Second-price auction (SPA). The bidder submitting the highest bid wins the
auction. But does not pay her bid; she pays, instead, the second-highest bid.

e Common value auctions.



Auctions as allocation mechanisms

Two basic criteria to characterize auctions: the assignment and
payment rules.

a. Assignment Rule

* Informally, the assignment (or allocation) rule in an auction just answers the
guestion “who gets the object?”
* In the first-price auction, for instance, the individuals submitting the highest bid receives
the object for sale.
* A similar assignment rule applies to other auction formats, such as:

* the second-price, third-price, k*-price, or all-pay auctions (APA), where the object still goes
to the bidder submitting the highest bid.

* In settings where the seller offers m = 2 units of the same good (multi-unit auctions),
the assignment rule in first-price auctions, for instance, determines that:

* the first unit of the object goes to the individual submitting the highest bid,
* the second unit to the individual submitting the second-highest bid,
e and similarly for the remaining units.



Auctions as allocation mechanisms

a. Assignment Rule

* |In lottery auctions, however, bidder i may not receive the object even when
she submits the highest bid. In particular, bidder i’s probability of winning the
auction is

b;
where B_; = Zjii b; denotes the aggregate bids of player i’s rivals. Therefore,
bidder i’s probability of winning:
i Increases in her own bid, b;;
ii. Satisfies Pr(win) < 1 if at least one of her rivals submits a positive bid, B_; > 0; and
iii. Decreases in her rivals’ bids.

* Example: bidder i submits b; = $100, N = 10, and b; = $5 for every j # 1,
100 2

100+(10x5) _ 3°

Pr(win) =

then Pr(win) =



Auctions as allocation mechanisms

b. Payment Rule

* The criterion answers the question “how much each bidder pays,” which
allows for the winner and losers to pay a monetary amount to the seller.

* |In the first-price auction, the winner is the only bidder paying to the seller,
and she must pay the bid she submitted.

* |In the second-price auction, the winner is again the only player to the seller,
but in this case she pays the second-highest bid (not the bid that she
submitted).

« A similar argument applies to k"-price auctions, where only the winning
bidder pays to the seller, specifically the kt"-highest bid.

* In the all-pay auction, all bidders (the winner and the N — 1 losers) pay the
bid that each of them submitted.



Setting

* All auctions we consider in this chapter will share these ingredients:
* A seller offers an objectto N = 2 bidders.

* Every bidder i privately observes her valuation for the object, v; € [0,1], but
does not observe bidder j’s valuation, v}, for every bidder j # i.

* It is common knowledge, however, that valuations v; and v; are independent and
identically distributed (i.i.d.)

* v; is drawn from a cumulative distribution function F; (v) = Pr{v < v-}, with

positive density in all its support, i.e., f;(v) = P}-’(v) SO0forallv € [(),1].
» After observing her valuation v;, every bidder i simultaneously and
independently submits her bid b; = 0 for the object.

* The seller observes the profile of submitted bids, b = (b4, b,, ..., by), and:

* According to the assignment and payment rules of the auction, the seller
declares:
* a winning bidder,
* the price that the winning bidder must pay for the object,
* and potentially the prices that losing bidders must pay.



Second-price auctions (SPA)

* Assignment rule in SPA prescribes that the object goes to the
individual who submitted the highest bid.

* Payment rule says that the winner must pay the second-highest bid
while all other bidders pay zero.

 Tie-breaking rule: If two or more bidders submit the highest bid, then
the object is randomly assigned among them with equal probabilities.



Second-price auctions (SPA)

* We seek to show that submitting a bid equal to her valuation,
b;(v;) = v;

is @ weakly dominant strateqy for every player, i.e., it is a weakly

dominant BNE of this game.

* This means that:
» Regardless of the valuation bidder i assigns to the object, and
* Independently of her opponents’ bids,

* submitting a bid equal to her valuation, b;(v;) = v;, yields an
expected profit equal to or higher than deviating to:
* A bid lower than her valuation, b;(v;) < v;, or
* A bid higher than her valuation, b;(v;) > v;.



Case 1: Bid equal to his valuation

1.1 Bidder i wins.
* Define the highest competing bid among all bidder i’s rivals, h;, as follows
hi - maX{bl, bz, . bi—l’ bi+1, “ee ) bN}
* If the highest competing bid, h;, lies below bidder i’s bid, h; < b;:
* bidder i wins the auction,

* earning a net payoff of v; — h; because in a SPA, the winning bidder does not pay the bid she
submitted, but rather the second highest bid, h;.

1.2 Bidder i loses.

* If, instead, the highest competing bid lies above her bid, h; > b;, then:
* bidder i loses the auction, earning zero payoff.

1.3 Tie in bids.
* If a tie occurs, where b; =1hl-, the object is randomly assigned, and bidder i’s
expected payoff becomes = (v; — h;), where = is the probability that bidder i receives
the object. 2 2
* However, because v; = hy, in this case, the bidder earns a zero expected payoff.



Case 2: Downward deviations, bidding below
her valuation

2.1 If the highest competing bid h; lies below her bid (i.e., h; < b; < v;):
* bidder i still wins the auction,
* earning a payoff v; — h;, as when she does not shade her bid.

. Ehisgnddicates that bidder i’s payoff does not increase relative to case 1.1, thus not having incentives to shade
er bid.

2.2 If the highest competing bid, h;, lies between b; and v; (i.e., b; < h; < v;):

* bidder i loses,

e earning a payoff of zero.

* As a consequence, bidder i’s payoff is the same (zero) as when she does not shade her bid, as shown in case 1.2.

2.3 If the highest competing bid h; is higher than v; (i.e., b; < v; < h;):
* bidder i loses the auction,
* vyielding the same outcome as when she submits a bid, b; = v;.

* |n this case, bidder i’s payoff exactly coincides when she bids according to her valuation (case 1.3) and when she
shades her bid.



Case 2: Downward deviations, bidding below
her valuation

e Overall, when bidder i shades her bid:

* she earns the same or lower payoff than when she submits a bid that coincides
with her valuation for the object.

* |n other words, she does not have strict incentives to shade her bid:

* her payoff would not strictly improve from doing so,
* regardless of the exact position of the highest competing bid.



Case 3: Upward deviations, bidding above her
valuation

3.1 If the highest competing bid h; lies below bidder i’s valuation, v;:
* she wins,

* earning a payoff of v; — h;.

Her payoff in this case coincides with that when submitting a bid equal to her valuation, b; = v;, as in case 1.1, implying that she
has no strict incentives to bid above her valuation.

3.2 If the highest competing bid h; lies between v; and b; (v; < h; < b;):

* bidder i wins the object,

* but earns a negative payoff because v; — h; < 0.

* If, instead, bidder i submits a bid equal to her valuation, b; = v;, she would have lost the object, earning a zero payoff.

* In other words, bidder i would be better off submitting a bid b; = v;, and losing, than submitting a bid b; > v;, and winning but
earning a negatlve payoff.

3.3 If the highest competing bid h; lies above b; (v; < b; < h;):

bidder i loses the auction,

* earning a zero payoff.

When she submits a bid equal to her valuation, b; = v;, in case 1.3, a tie occurs, but her expected payoff (vl h;), is zero given
that v; = h; in that case. Therefore, bidder i has no strict incentives to deviate from bidding b; = v;.



Case 3: Upward deviations, bidding above her
valuation

* Overall, bidder i can earn the same payoff as in cases 1.1-1.3, or a
lower payoff,
* but cannot strictly improve her payoff.

* In short, bidding according to her valuation b; = v;, is a weakly
dominant strategy for every bidder i in the SPA.



Discussion

* Bidding BNE vs. Dominant Strategies.

* Every bidder i finds that bidding according to her valuation is:
* not only a BNE of the SPA,
* it is the BNE where every player uses weakly dominant strategies.
* If bidder i finds that her bidding function b; = b;(v;) is a BNE, this means
that
EUl(bzk, biilvi) = EUi(bi, biilvi)
for every bid b; # b; and every valuation v;.

* Intuitively, equilibrium bid b; provides bidder i with a higher expected payoff than any
other bid b; # b; , conditional on her rivals selecting equilibrium bids b’ ; .

* But we showed something stronger than that! (Next slide.)



Discussion

* Bidding BNE vs. Dominant Strategies.
* When we say that bidder i finds that her equilibrium bid b;" is a weakly dominant
strategy, we mean that
EU;(b;,b_;|v;) = EU;(b;, b_;|v;)

for:
 every bid b; # b;
* every valuation v;, and
 every bidding profile her rivals use b_; - NEW.

* This inequality entails that bidder i’s expected payoff from submitting bid b; is higher

than from any other bid b; # b;, regardless of the specific bidding profile that her rivals
use, b_;, that is:

* both when they submit equilibrium bids, b_; = b’
 and when they do not, b_; # bZ;.
e This is a strong property in the bidding strategy in SPAs, saying that bidder i, when
submitting b; (v;) = v;, can essentially, ignore her opponents’ bids:
* both when they submit equilibrium bids and when they do not.



Discussion

* No Bid shading.
* Intuitively, by shading her bid, b; (v;) < v;, bidder i:
* |lowers the chance that she wins the auction, but...
* does not lower the price that she pays upon winning.
* No tradeoff!
* In the FPA, in contrast, bid shading gives rise to a trade-off:

* A lower chance of winning the auction,
* But paying a lower price upon winning the object.



First-price auctions (FPA)

e Assignment rule coincides with that in the SPA:
* the winner is the bidder submitting the highest bid.

* Payment rule in the FPA, however, differs:
* the winning bidder must pay the highest bid.

* This seemingly small difference between both auction formats give
rise to bid shading in the FPA

 a result that we could not sustain in equilibrium when bidders face a SPA.



First-price auctions (FPA)

Step 1. Writing bidder i’s maximization problem.
e Bidder i’'s maximization problem is as follows:

max Pr(win) X (v; —b;) — Pr(lose) X 0
b;=0 -~ ]
net payof f that payoff
bidder i earns fromlosing

when she wins

At this point, we need to write the probability of winning, Pr(win), as a
function of bidder i’s bid, b;.

* To do this, note that every bidder i uses a symmetric bidding function
b;: [0,1] — R,, a function mapping her valuation v; € [0,1] into a positive
dollar amount (her bid).



First-price auctions (FPA)

* If bidding functions are symmetric across players and monotonic, bidder i wins
when her bid satisfies b; < b;,

* which must indicate that her valuation satisfies v; < v;.
* This ranking between valuations v; and v; occurs if Pr(vj < vi) = F(v;).

* Therefore, when bidder i faces N — 1 rivals, her probability of winning the
auction is:

* the probability that her valuation exceeds that of all other N — 1 rivals.
* Since valuations are i.i.d., we can write this probability as the product

Pr(v; <v;) x Pr(vp < v) X..x Pr(v; < v;)

— E(vi) X F(vl-) X ... X F(vll =F(Ui)N_1

N-1times
where bidders j # k # [ represent i's rivals.



First-price auctions (FPA)

As a result, we can express the above expected
utility maximization problem as follows:

max  F ()" (v; = by)

Pr(win)



First-price auctions (FPA)

* Using the above bidding function, we can write
* b;(v;) = x;, where x; € R, isthe bidder i’s bid when her valuation is v;.
* Or v; = b; *(x;) by applying the inverse of b;(.) on both sides.

* So, the program becomes
» N-1
max F (bi (xl-)) (v; — x;)

x;i=0



First-price auctions (FPA)

Step 2. Finding equilibrium bids.
* Differentiating with respect to x;, yields

~[r (b)) |+ - DF () (b e) abg;(ixi) (v —x) = 0
abi_l(xi) _

e Since b; *(x;) = v;, we can use the inverse function theorem to obtain — =
1 i

. So simplifying and rearranging,

FwpV='b'(vy) + (N = DFw)"*f(w)x; = (N = 1) FwpN*f (v,

AN=13, (1.
e The left-hand side is O|F ) biwy)]

dv;
compactly as ’
O[F (w)"N~1b;(vy)]

Bvi

, which let us write the above expression more

= (N - 1DFW)"*f(w)v;



First-price auctions (FPA)

Step 2. Finding equilibrium bids.

AN=1p (1.
* Integrating both sides of a[F(v‘)av' biwa)] _ (N — DF(w)N2f(v;))v;, yields

Fw)N=1b(vy) = [J'(N — 1) F(w)N=2f (v)v;dv;

* We could now solve for b;(v;) and ollgtain an equilibrium bidding function

i) = g | POV 2 vy

* But this presentation does not help us see the role of bid shading.

* For that, we need to represent the bid as a function of bidder i’s valuation, v;, minus one
term capturing bid shading.

* For that, we need to apply integration by parts on the RHS. (Next slide.)



First-price auctions (FPA)

Step 3. Applying integration by parts.
* Recall that

geORE = [ g h@adx + | gk (dx
* Reordering this expression, we find

| g @hEdx = gGne - [ gen @ax

e Applying this in the above expression (RHS), yields:

Vi Vi

| v = DF@*2f @] 5 dx= FE)Y y - [ PO
’ h(x) gx)  hX) ° gx) h'(x)

g'(x)



First-price auctions (FPA)

Step 3. Applying integration by parts.

* |Inserting this results in the right-hand side of first-order condition, yields
F)"b(v) = Fw)V ™" vy — [T F )V 'dy,
* Solving for b; (v;), we obtain the equilibrium bid in the FPA:

[ F ()N~ tdy;

bi(v)) = v; — Fo)N-1
N— l' S

Bid shading

* Intuitively, bidder i submits a bid:
* equal to her valuation for the object, v;,
* Jess an amount captured by the second term, which we refer as her “bid shading.”



First-price auctions (FPA)

Step 4. Checking Monotonicity

* We finally check that the above bidding function b;(v;) is monotonically

increasing in bidder i’s valuation, v;. A marginal increase in v; produces the
following effect in bidder i’s equilibrium bidding function:

Obi(v) | F@)ME@)M - (V- D@2 [ F )Y,

dv; [F(v)N 1]
(N-DF)N"2f () [ L Fwp)NLdv;

[F(w)N—1]2

which is positive since F(v;) € [0,1], f(v;) > 0 forall v; and N > 2 by
definition.

But this effect is less than proportional (See next slide).



First-price auctions (FPA)

Step 4. Checking Monotonicity

0bi(vy) _ (N-DF@w)N=2f(v)) fv‘F(v W1y,

* Note also that o0, FoON-1]2 <1
(N = Df (W) [;' Fw)" " dv, f(vi) Jy Fw)Vtdy,
= N — (N - 1) X N—1
F(Ul') 13 1 F(vi)
dlogF (v;) f F(Uz) dv;
=>(N—-1)x
dv; F(v;)N-1
* LetlogF(v;) = g(v;), then we have:
dg(v)) fo"i e(N-Dg) gy, f”l eN-D3@i g g(v,)
= (N —-1) X dv; X e(N-1)g(vy) =W - 1) e(N-1)g(v;)
(s )e VD90 Vi (N-Dgw) _,(N-1)g(0)  ,(N-1g(v})
e i/—e e i
= - 1(N ICD) X(N—-1)= e (N-1)g(v;) < e (N-1)g(v;) -

0

Meaning that an increase in bidder i’s valuations leads her to increase her bid, but less than proportionally.



Example 9.1. FPA with uniformly distributed valuations

e Consider, for instance, when individual valuations are uniformly distributed, i.e.
F(v;) =v;.
-1
l

* In this setting, we obtain F (v,
producing a bidding function of1

N
_ NV Vi N -1
b;(v;) SV T VT oy —vi< N >

= p) andf "F(w)N1dv; =%va,

Bid
shadmg
* |n this context, every bidder shades her bid by , Which increases in the number

of competing bidders.

* In addition, the equilibrium bidding function b; (v;) = v; (M) is monotonically

increase in the valuation that bidder i assigns to the object, v;, as required.



Example 9.1. FPA with uniformly distributed valuations

* When only 2 bidders compete for the

b;‘

object, N = 2, this bidding function o S
simplifies to b; (v;) = %as depicted in ol 7 N4
. /X N=3
Figure 9.1. \ .
* When N = 3, equilibrium bids increase to |
2V
b;(v;) = 3
* When N = 4, equilibrium bids increase to Ty,

3Vj
bi(v) = =,

4 Figure 9.1. Equilibrium bids in the first-price auction with uniformly distributed valuations.



Example 9.1. FPA with uniformly distributed
valuations
* Informally, as more bidders participate in

the auction, every bidder i submits more bj.zi,._._ﬁ.clcgfce ine
aggressive bids since: A

0s} v \:_}
* she faces a higher probability than another A e
bidder j has a higher valuation for the object. _N=2

* And, given symmetric bidding functions, bidder
J submits a higher bid than she does, leading to of
bidder i to lose the auction.

| L L i L i | i -
02 04 0 08 1y

* In the extreme case that N —» oo, the
b | d d | N g f un Ct | on conve r‘ge S to bl (vl) — vl _ Figure 9.1. Equilibrium bids in the first-price auction with uniformly distributed valuations.



Efficiency in auctions

* An auction is deemed “efficient” when it assign the object to the individual with
the highest valuation.

* That is, when the assignment rule allocates the object to bidder i if only if her valuation, v;,
satisfies v; > v; forall j # 1.
* Otherwise, if bidder j receives the object despite having a lower valuation than
bidder i:
* these two bidders could negotiate at the end of the auction,
* with bidder i paying a price p that satisfies v; > p > v;,
* making both bidders better off.

* The assignment rule that allocates the object to bidder j is Pareto inefficient.
* We can find an alternative allocation that improves the payoff of at least one individual
without making any other individual worse off.
* |f bidders use a symmetric, strictly increasing, bidding function in equilibrium:
* the winner of the auction must be the individual with the highest valuation,
* making the auction efficient.



Efficiency in auctions

 Symmetric and strictly increasing bidding function:

* Because bidder A has a higher valuation than B does, he submits a higher bid
and wins the object.

bi(Vi)




Efficiency in auctions

 Symmetric but Not strictly increasing bidding function:

* Bidder A has a higher valuation than B does, but he may submit a lower bid
and lose the object.

bi(v;)

VB Vy Vi



Efficiency in auctions

 Asymmetric but strictly increasing bidding functions:

* Bidder A has a higher valuation than B does, but he may submit a lower bid
and lose the object.

bi

i

bp(vi)

ba(v))




Efficiency in auctions

* Two typical features that “break” efficiency in auctions:
* Budget constraints, either symmetric or asymmetric.
 Asymmetric risk averse bidders.



Budget constraints

* When bidder i faces a budget constraint w;,
* her bidding function is increasing in v; for all b; < w; (affordable bids).

* But becomes flat at the height of w; for all valuations for which b;> w;
(unaffordable bids)

bl A

bA:WA ___________

ba(vy)

<V

i



Budget constraints

e Budget constraints imply that bidding functions are weakly increasing
in v;, not strictly increasing,
* so we cannot guarantee that the auction is efficient.

* Recall that we need bidders to use “symmetric, strictly increasing, bidding
functions in equilibrium”

* Figure to illustrate this point (next slide).



Budget constraints

* Bidder A values the object more than B does...
* yet he may submit a lower bid, losing the object.

bi‘
bp(vi)
] bp /
ST IS ——— ~
K:};L(W)

Vv B VA 3 i



Budget constraints

e Budget constraints imply that bidding functions are weakly increasing
in v;, not strictly increasing,
* so we cannot guarantee that the auction is efficient.

* Recall that we need bidders to use “symmetric, strictly increasing, bidding
functions in equilibrium”

* This occurs even if:
* only one individual suffers from budget constraints,
 or if all bidders face the same budget constraint w; = w,
* making their bidding functions symmetric (but not strictly increasing).



Asymmetric risk averse bidders

* Another context where efficiency is not satisfied is that where players
exhibit different degrees of risk aversion.

e Bidders competing in a FPA submit more aggressive bids when they
become more risk-averse.

* If both bidders are symmetric in their risk aversion, the above condition hold
(i.e. bidders use a symmetric, strictly increasing, bidding function).

* When bidders are asymmetric in their risk preferences, however, the
FPA is not efficient.



Asymmetric risk averse bidders

* Consider FPA with two bidders, A and B, where bidder A exhibits more (less) risk
aversion.

* Scenarios:
* Bidder A can be risk averse, while bidder B is risk neutral or risk-loving,
* both bidders can be risk-averse but A is more risk averse than B,
* or both are risk lovers but 4 is less so than B.

* |In any of these settings, bidder A submits a more aggressive bid than B does,
b,y > bg, implying that A wins the auction.

* If bidder A values the object more than B does, v, > vp, the outcome of the
auction is still efficient; but otherwise the outcome is inefficient.

* Generally, then, we cannot guarantee that the object goes to the individual who
values the object the most, especially if bidders are relatively asymmetric in their
risk aversion, entailing that the FPA is not efficient when players are risk averse.



Seller’s expected revenue: Expected revenue
in the FPA

Step 1. Finding each bidder’s payment

* The seller receives a payment from bidder i if she wins the auction. In other
words, bidder i’s payment is
m(v;) = Pr(win) X b; (v;)
« We know that Pr(win) = [F(v;)]V ™1, so

m(v;) = [Fw)]" ™' x bj(v;) = G(v;) x b;(v;), where G(v;) = [F(vy)]V !

* Recall that the equilibrium bidding function in the FPA is |
Jy F N dx fy 60 dx  Gw)vi = [ G(x) da

b;(v;) = v; — Flw)N-1 Vi G(v;)) G(v;)




Seller’s expected revenue: Expected revenue
in the FPA

Step 1. Finding each bidder’s payment

* Applying integration by parts in the numerator, we obtain
Vi Vi
G(v;)v; —f G(x)dx =f xg(x)dx
0 0
* So we can rewrite the equilibrium bidding function:

fovi xg(x) dx

b:(v:) =
l(vl) G(vl’)
* |Inserting this equilibrium bidding function in bidder i’s expected payment,
yields _
Bid, b;(v;)
—_— ~
[Tixg(x)dx
D) =G(v) x| =2 = j d
m(vl) (vl) < G(Ul‘) xg(x) X

0



Seller’s expected revenue: Expected revenue
in the FPA

Step 2. Finding the expected payment.

* Since the seller cannot observe bidder i’s value for the object, she needs to take
expectations over all possible values to find the expected payment from this bidder,
E[m(v;)], as follows:

Em@)] = [y mG)fdx = [ [y xg(0)dx] f (x)dx

m(v;)
Step 3. Sum across all bidders.

* The seller sums across all N bidders participating in the auction, which yields the

expression of her revenue in the FPA.
[ Vg

1
RFPA = ZE [r;(v;)] = N x E[m(v;)] Nj jxg(x)dx f(x)dx
0 _

0




Example 9.2. Expected Revenue in FPA with
Uniformly Distributed Valuations

* When valuations are uniformly distributed, F (v;) = v;, we obtain that:
c flv)=F'(v) =1
« G(v) = [F(w)IV~1 = v~ which implies that:
c g(w) = G'(v) = (N =D ?,
* vigw) =v; (N =Dv~? =N - D},
* Therefore, bidder i’s equilibrium bid is
b, (v;) = N -1
l vl o Ul N
* Step 1. The expected payment from bidder i is:

m(v;) = J xg(x)dx = f (N — 1')xN‘i dx =
0 0

xg(x)

N—-1 N

. N
Mg =

-1 —1
(v - 0) =l




Example 9.2. Expected Revenue in FPA with
Uniformly Distributed Valuations

 Step 2. Therefore, bidder i’s expected payment is:

1 1

N-—1 N-—1 N—-1[v¥1T" N-1
E[m(v;)] jm(vl)f(vl)dvl = J N ULN }_, dv; = N UlNdvi — N [Nl-l- 1] — N(N + 1)
0 ) 0 ’

m(v;)

 Step 3. Finally, the seller sums across all N bidders to obtain the expected
revenue from}\;che FPA, RFPA as follows,

RFPA = Elm(n)] = N x Elm(r)] = Noo e =
=1

N =
N(N+1) N+1




Example 9.2. Expected Revenue in FPA with
Uniformly Distributed Valuations

* Therefore,
RFPA _ N-1
N+1
* The expected revenue is:
* increasing in the number of bidders, N,
* but at a decreasing rate.

* Approaches 1 when N — oo,

* This result goes in line with that in Example 9.1:

* as more bidders compete in the auction, they submit more aggressive bids, i.e.,
b;(v;) increases in N,
* increasing as a result the expected winning bid that the seller earns.



Expected Revenue in the SPA

* In this auction format, the seller anticipates that every bidder i
submits a bid b; (v;) = v;.

* The winning bidder pays the second-highest bid.

* The second-highest bid coincides with the second-highest valuation

for the object, vl[z]. That is,

1
RPA = F [vl[z]] = fxf[z](x)dx
0



Expected Revenue in the SPA

e We flrst identify the cumulative distribution function F?(x) =
Pr(v? < x) which happens when two events occur:

1. The valuations of all N bidders are below x, or formally, v; < x for every
bidder i. This event happens with probablllt

Priv, < x} X .. X Pr{vN<x}—f'(x)>< v X F(x)—[F(x)]

N times
2. The valuations of N — 1 bidders are below x, v; < x, but that of only one

bidder j is above x, v; > x. This even can occur in N different ways:
* v; > x for bidder 1 but v; < x for every bidder i # 1;
* v, > x for bidder 2 but v; < x for every bidder i # 2;

* vy > x for bidder N but v; < x for every bidderi # N.



Expected Revenue in the SPA

* Each of these N cases happens with probability
[1-F)]x [F)I" !

vi>x fori vj<x forevery j#i

where [1 — F(x)] denotes the probability that v; > x for a given bidder i, while
[F(x)]"~" represents the probability that v; < x for all other bidders j # i .

 Summing over the above N cases, we find that event (2) happens with probability
N 1= FOIF@IN! = N(1 = F(x)) [F(x)]¥ 1

 Summarizing, the cumulative distribution function of the second-highest

valuation F21(x), is
FIZl(x) = [F)IN + N(1 = F))[F ()N !



Expected Revenue in the SPA

* Rearranging,

FE(x) = N[F)IV "t = (N = D[F )"

 Differentiating with respect to x:

fRIx) =NW = DF)N2[1 - Fx)]f (x)

* Inserting density function into seller’s expected revenue

R°PA = fxf[z](x)dx = jxy(N — 1)F(x)N_'2[1 — F(0)]f (x) dx
fL21(x)



Example 9.3. Expected Revenue in SPA with
uniformly distributed valuations

* When valuations are uniformly distributed, F(x) = x and f(x) = 1, the seller’s
expected revenue becomes

1
RSP4 = j xN(N — 1)xN=2[1 — x]dx

10 1
=(N—1)j NxN‘ldx—N(N—l)j xNdx
0 0

1
N(N — 1N+
N+ 1
N(N — 1)
= (N-1) -
VN1

N+1

1
= (N — 1)x”|0 —
0

which coincides with that in the FPA, R°P4, found in Example 9.2., thus being increasing
and concave in the number of bidders, N.



Revenue Equivalence Principle

» When bidders’ valuations are uniformly distributed, RFP4 = R5P4 implying
that the seller can expect to earn the same revenue from both auction

formats.

* This “revenue equivalence” result extends to several other auction formats:

* vielding the same expected revenue as the FPA and SPA,
e and to settings where bidders’ valuations are non-uniformly distributed.

* We can identify the two main requirements that two auction formats must
satisfy to yield the same expected revenue for the seller:

1. Same allocation rule in both auction formats, e.g., the bidder submitting the
highest bid receives the object, as in the FPA and SPA.

2. Same expected utility of the bidder who has the lowest valuation for the object,
e.g., zero in most auction formats since this bidder loses the auction, not receiving

the object.



Revenue Equivalence Principle

* |t is straightforward to note that the comparison of FPA and SPA satisfies
conditions (1) and (2), thus generating the same expected revenue.

* But the comparison of FPA and APA does not satisfy condition (2):
* because the bidder with the lowest valuations earns a zero payoff in the FPA but a
negative payoff in the APA after paying here bid.

* Therefore, the FPA and APA do not necessarily generate the same expected
revenue.

* Similarly, the comparison of the FPA and the lottery auction does not
satisfy condition (1),

* since the lottery auction does not necessarily assign the object to the individual
submitting the highest bid in the FPA.

* As a consequence, the FPA and the lottery auction do not yield the same
expected revenue for the seller.



Common value auctions and the winner’s curse

* Every bidder i shares a common value for the object, v, but privately
observes a noisy signal s; about the object’s value drawn from F(s;),
where s; € [0,1].

* Based on this signal, every bidder i submits her bid, b;.
* This setting is known as “common value” auctions

 Bidders participate in a first-price, sealed-bid auction:
* if bidder i wins, her realized payoff becomes v — b;,
* and if she loses her payoff is zero.

* Experimentally tested with a jar of nickels (Explain).

* For simplicity, we consider a setting with only two bidders, and that the
. . P Si+S;j
true value is equal to the average of bidders' signals, so that v = -




Bid shading is a must!

* Note that bidder i falls prey of the winner’s curse if her bid exceeds the
object’s true value (which no bidder observes), b; > v,

* thus earning a negative payoff, v — b; < 0, from winning the auction.
* In particular, this occurs if
Si + Sj

2

* When bidder i's bid is a function of her privately observed signal, b; =
as;, where a € [0,1], this inequality becomes

Si+Sj Sj

2a—1

* When bidder i submits a bid equal to the signal she received, the
winner’s curse occurs if s; > s;.

b; >

C(Si> =>Si>



Bid shading is a must!

* Intuition:

* If every bidder submits a bid that coincides with her privately observed signal, the
bidder who received the highest signal ends up submitting the highest bid,

* She wins the auction
e But suffers form the winner’s curse.

* In other words, the fact that she won the auction means that she received an
overestimated signal of the object.

W

* |f instead, bidder i submits a bid equal to Z of the signal she received, a = -,

the winner’s curse only emerges if s; > 2s;;
* thatis, when bidder i’s signal is larger than the double of bidder j’s.

* More generally, as bidder i shades her bid more severely (decreasing «),
5.
J
2a—1
* and the winner’s curse is less likely to occur.

* Ratio increases,



Equilibrium Bidding in Common Value Auctions

Step 1. Finding the expected utility.
» Bidder i's expected payoff from participating in the auction is
Pr(b; > b;) x {E|vl|s; b; > b;| — b;}
where E[v|sl, b; > b; ] is bidder i’s expected valuation, conditional on her
signal s;, and on knowmg that she submitted the highest bid, i.e., b; > b;.

* Since bidder j uses bidding function b; = as;, as this expression becomes
Pr(b; > as;) X {E[v|sl,b > as;| — b;}

* Solving for s; in the probability (first term) and in the inequality inside the
expectation operator (second term), we obtain that
b;
Prl=>s;| x {E vS-,—>S- — b;




Equilibrium Bidding in Common Value Auctions

» Step 1. Finding the expected utility.
+
* Next, inserting v = 2V in the expectation operator, yields

2 <b > { [Sl+sj b;
Pr —>S] X E
a 2

a bl}

 Recall that bidder i observes her signal, s;, so that E[s;] = s;, but does not know her rival’s, S,

entailing that
bi Si 1 bi
Pr E>Sf X E+§E Sj|;>8j — b;
* Using the uniform distribution on s;, we have
b; .
Pr( > S]) ~ and E[SJ| >SJ] —

because s;, which i Ii:’ a uniformly distributed random variable, falls into the range [ —] yielding an
expected value of—

* Inserting these results into bidder i’s expected payoff, we obtain that

bSl+1 bi b
al2  2\2a "

> s;




Equilibrium Bidding in Common Value Auctions

Step 2. Taking first-order conditions.

* Every bidder i chooses her bid b; to maximize her expected utility, solving the
following problem

bi Si+1 bi b
rbrl}géi al2 2\2«a i

Taking the first-order conditions with respect to b;, we obtain

1Si+1 bi b +bl 1 1) =0
al2 2\2«a i a \4a B

Simplifying, yields
1—-4«a b S; . a

= — — -

22 2a y




Equilibrium Bidding in Common Value Auctions

Step 3. Finding the equilibrium bidding function.
* Recall that we considered a symmetric bidding function b; = as; for a generic

value of a.
* The above expression, b; = 4;_1 S;, iIsindeed linear in signal s;, so we can write
as; = - S; Or
4a—1
! 4 1=1= L
a = > 4a—1= a ==
4a — 1 2
* In summary, a symmetric BNE has every bidder i using the bidding function
1
bi(si) = 7

That is, she submits a bid equal to half of her privately observed signal, s;.



Equilibrium Bidding in Common Value Auctions

e Extension to N bidders:

2)(N -1
b;(s;) = I+ 2)1\52 )Si

where (N + 2)(N — 1) < 2N? simplifiesto N2 — N + 2 > 0, which holds since

N = 2 by definition.

Obi(si) _ (4=N)
on 2N3

* |n addition,
otherwise.

s;, Which is positive for all n < 4, but negative



Equilibrium Bidding in Common Value Auctions

* A natural question at this point is whether this bidding function helps
bidders avoid the winner’s curse.
* Exercise 9.16 helps you confirm that it does.

* Hint: We only need to evaluate the winning bidder’s utility at her equilibrium bid.
No need to compute expected utility (we know she won).
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