Chapter 7: Repeated Games

Game Theory:

An Introduction with Step-by-Step Examples
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Introduction

 Situations in which players interact in one of the strategic setting and they play
the game for several rounds, which are known as “repeated games”

* Interested in identifying if the game’s repetition provides players with more
incentives to cooperate

Prisoner’s Dilemma
* We first study the finitely-repeated version of this game
* Extend players’ interaction to an infinitely repeated game

* We then apply the above tools to different settings, such as collusion in oligopoly
models, where every firm chooses its output level in each period of interaction,
and to stage games with more than one NE



Repeating the Game twice

Player 2
Confess Not Confess
Confess 2,2 8,0
Player 1
Not Confess 0,8 4,4

Matrix 7.1 The Prisoner’s Dilemma Game

* Let us repeat the game twice and find its SPE since players now interact in

a sequential-move game:
* In the first stage, every player i simultaneously and independently chooses whether
to Confess or Not Confess
* |In the second stage, observing the outcome of the first stage, every player i selects
again simultaneously and independently whether to Confess or Not Confess

* This sequential-game is depicted in Figure 7.1 (next slide).
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Figure 7.1. Twice-repeated prisoner’s dilemma game.
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Figure 7.1. Twice-repeated prisoner’s dilemma game.



Twice-repeated Prisoner’s Dilemma Game

* There are five subgames:

1.

W

5.

One initiated after players choose (C, C)
in the first stage.

Another initiated after (NC, C)
Another initiated after (C, NC)
Another initiated after (NC, NC)
And the game as a whole

* Operating by backward induction, we
solve each of these subgames, starting
with subgames 1-4.

 Since these subgames are simultaneous-
move games, we can solve each of them
by transforming each to its matrix form.
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Figure 7.1. Twice-repeated prisoner’s dilemma game.



Twice-repeated Prisoner’s Dilemma Game -
Subgames for Second Stage

Player 2 Player 2
Confess Not Confess Confess Not Confess
Confess 4,4 10,2 Confess 10,2 16,0
Player 1 Not Confess 2,10 6,6 Player 1 Not Confess 8,8 12,4
Matrix 7.2a Twice-repeated Prisoner’s Dilemma game — Subgame 1 Matrix 7.2b Twice-repeated Prisoner’s Dilemma game — Subgame 2
Player 2 Player 2
Confess Not Confess Confess Not Confess
Confess 2,10 8,8 Confess 6,6 12,4
Player 1 Not Confess 0,16 4,12 Player 1 Not Confess 4,12 8,8

Matrix 7.2c Twice-repeated Prisoner’s Dilemma game — Subgame 3 Matrix 7.2d Twice-repeated Prisoner’s Dilemma game — Subgame 4



Twice-repeated Prisoner’s Dilemma Game —
. _+ (4.9
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* Every playeri = {1,2} chooses \\ '
to play Confess in the first e | mATE
N
stage, and e
* Players Confess in the second N, (6.6)
stage regardless of the strategy
prOfile played in the fl rst Stage Figure 7.2. Twice-repeated prisoner’s dilemma gama - First stage.
Player 2
Confess Not Confess
Confess 4.4 10,2
Player 1
Not Confess 2,10 6,6

Matrix 7.2e Twice-repeated Prisoner’s Dilemma game — Game as whole



Summary

* Intuitively, players anticipate that they will both play Confess in the last
stage independently of how cooperative or uncooperative they were in
the previous stage

* Informally, every player thinks:
* “It does not matter what | do today, tomorrow we will all confess.

* | can then treat tomorrow’s game as independent from today’s play, as if | played
two separate Prisoner’s Dilemma games.”

* In summary, repeating the game twice did not help us sustain cooperation
in the SPE.

e Can cooperation emerge if we repeat the game for more periods, generally,
forT = 2 periods?



Repeating the game T

Confess

Player 1
Not Confess

Matrix 7.3. Finitely-repeated Prisoner’s Dilemma Game — Subgames at period T

(period T)
* Notation:

« PI~1ldenotes the discounted sum of all payoffs that player 1 earned in the previous T — 1 periods.

Confess

2 times

Player 2

Not Confess

2+ P12+ Pt

8+ P/ 1 0+pPI 1

0+pP/~1,8+pPI1

4+pr-1 4+ pl-1

« PI~1is asimilar expression for player 2.

* This presentation helps us describe the subgame that players face at period T for any

previous history of play.

Matrix 7.3 represents the game that players face when interacting in the last round

* That is, for any strategy profiles occurring in previous periods.
* Intuitively: regardless of how we played the game in previous periods.




Repeating the game T =

Confess

2 times

Player 2

Not Confess

Confess

2+ P12+ Pt

8+ P/ 1 0+pPI 1

Player 1
Not Confess

0+pP/~1,8+pPI1

4+pr-1 4+ pl-1

Matrix 7.3. Finitely-repeated Prisoner’s Dilemma Game — Subgames at period T

. To |IIustrate the generality of this matrix representation, evaluate terms Py~
PX~1in the special case where the game is only repeated T = 2 times.

* |n this context:
. pT—-1

1~ captures the payoff that player 1 earned in the first period of interaction.

* And similarly, with P~ for player 2.
 Forinstance, if (C, C) emerged in the first stage of the game,

« P{t=pP 7 =2

 While if (C,NC) occurred, then P{ ™1

=8andP] 1 =

0.

1 and



Repeating the game T = 2 times

* |f the Prisoner’s Dilemma can produce four different strategy profiles in each
period, there are 47~ nodes at the beginning of period T.

* |In the twice-repeated Prisoner’s Dilemmma game, for instance, there are
421 = 4 nodes at the beginning of the second period, as shown in the
previous tree.

* More generally, if the unrepeated version of the game has
« k > 2, different strategy profiles (cells) and
* the game is repeated T times,

* Then, there are:
* kT~1 nodes at the beginning of period T,
e only kT2 nodes at the beginning of period T — 1,
* and similarly in previous periods...
« with just kT~T = kY = 1 node at the beginning of the game (first period of interaction).



Iterative Method: Period T Player 2

Confess Not Confess

Confess 2+PT~124pl"1|8+pl10+pl-1

Player 1

Not Confess |0+ P71, 8+ Pt |4+ pPI"1 4+ pl-1t

Matrix 7.3. Finitely-repeated Prisoner’s Dilemma Game — Subgames at period T

Period T':

* Underlining best response payoffs, we can see that (C, C) is a NE in the T-period
subgame in Matrix 7.3.

e Player 1’s best response:

 When Player 2 chooses Confess, player 1’s best response is to Confess because 2 + P{ "1 >0+ P/
simplifiesto 2 > 0.

« When Player 2 selects Not Confess, player 1’s best response is Confess since 8 + P{ 1 > 4 + p/~1
simplifies to 8 > 4.



Iterative Method: Period T

Confess

Player 1
Not Confess

Player 2

Confess

Not Confess

2+ P72+ Pl

8+P/~1Lo+ P

0+P{1,8+P, !

4+ pI-1, 44+ pI1

Matrix 7.3. Finitely-repeated Prisoner’s Dilemma Game — Subgames at period T

Period T':
 Note that:

* Players’ best responses in period T don’t depend on players’ payoffs in previous periods, as captured

by P{tand PJ 1.

* As if they were sunk, or they couldn’t be changed at this point.
* In other words, player 1 treats P{ ~! as a constant; while player 2 treats P, ~! as a constant.

e This implies that every player finds:

* Confess to be a best response to her rival’s strategy regardless of the previous history of play.




Iterative Method: Period T — 1

Player 2

 Period T — 1.

Confess

Player 1
Not Confess

Matrix 7.4. Finitely-repeated Prisoner’s Dilemma Game — Subgames at period T — 1

* (C,C) is again the unique NE.

Confess

Not Confess

2+ Pl7%,2+pP]*

8+ P/ 72,0+ P]~°

0+ P/ 2,8+ Pl 2

4+P{7%4+P;?

* The intuition is identical to that in the twice-repeated game:

* Players anticipate that everyone will play Confess in the last round of interaction

(period T).

* Therefore, player have no incentives to cooperate today (in period T — 1) since

misbehavior will not be disciplined in the following period.




Iterative Method: Period T — 2

. Player 2
* Period T — 1.

Confess Not Confess

Confess 2+ P73 2+pI3|8+pl30+pl3

Player 1
4 Not Confess |0+ P/ 73,8+ P 3 |4+P 3 4+P]3

Matrix 7.4. Finitely-repeated Prisoner’s Dilemma Game — Subgames at period T — 1

* The same argument follows for period T — 2, as illustrated in the above
matrix.

* Same argument applies to period T — 3, and so on.

 Extending that reasoning to all previous periods, we find that (C, C) is the
unique NE:
* in every subgame and
* in every period.



Repeating the Game infinitely many times

* We could not support cooperation by repeating the game twiceor T =

2 times...
* But our above results point us to why uncooperative outcomes emerge:
* The presence of a terminal period when players know that the game ends
At that last stage, both players:
* Behave as in the unrepeated version of the game,
* Regardless of how the game was played in previous rounds.
* Using backward induction, they extend this behavior to all previous

interactions.



Repeating the Game infinitely many times

* Therefore, if we seek to sustain cooperation:
* Players cannot know with certainty when the game will end.
* They interact today, at time t, and will keep playing with each other tomorrow, at
time t+1, with a probability p, wherep € [0, 1].
* For instance, if p = 0.7, the chances of interacting for more than 20 rounds are less
than 1 percent.
* Probability of interacting converges fast to zero, but it is always strictly positive.



Uncooperative outcome

* We first show that (C,C) in every period can still be sustained as one
of the SPEs in the infinitely-repeated game.

* Note that if a player chooses C at every period t, anticipating that his
rival will choose C as well, he obtains a sequence of 2, with

discounted value

1
2+25+252+---:2[1+5+52+---]:zm

Recall that
1+85+8*+--=8"+8+6%+ -

I
‘T 8
o
>,
(".
I
p—
| | =
>,



Uncooperative outcome (C, C)

* If, instead, she unilaterally deviates to Not Confess for one period,
he earns

)
0 +26+252+'3:O+2—5
Not Confess Con}“ess B

Hence, this player earns a higher stream of payoffs choosing Confess
than Not Confess because

simplifies to 1 = § which holds given that § € (0,1) by assumption.



Cooperative Outcome: Grim-Trigger Strategy

* Can we sustain cooperation as the SPE of the infinitely-repeated game?

* For that, we need players to:
* Cooperate and keep cooperating as long as every player cooperated in previous
period, but...

e Otherwise, threat to move the game to a “grim” outcome where players earn lower
payoffs than by cooperating.

* The following Grim-Trigger Strategy (GTS) helps us achieve exactly that:
1. Inperiodt =1, choose Not Confess

2. Ineveryperiodt = 2,
a. Keep choosing Not Confess if every player chose Not Confess in all previous periods, or

b. Choose Confess thereafter for any other history of play (i.e., if either player chose Confess
in any period)



Cooperative Outcome: Grim-Trigger Strategy

* The name of the GTS strategy should be clear at this point:

* Any deviation triggers a grim punishment thereafter, where every player
reverts to the NE of the unrepeated version of the game (often known as
“Nash reversion”).

* To show that the GTS is a SPE of the infinitely-repeated game, we
need to demonstrate that it is an optimal strategy:

 for every player, and
 at every subgame where they are called to move.

* This means that players find the GTS to be optimal:

e at any point ¢, and
 after any previous history of play.

* A daunting task? No, we only need to examine two histories of play.



Case (1). No Cheating History

* At any period t (botht = 1and t = 2), if no previous history of
cheating occurs, the GTS prescribes that:

* Every player keeps cooperating, which yields a payoff of 4 for every player i,
entailing a payoff stream of

44485 + 462 4 -+ = 4——
+ 45 + 462 + —



Case (1). No Cheating History

* If, instead, player i chooses Confess today (which we interpret as her
deviating from the above GTS, or more informally as “cheating”), her
current payoff increases from 4 to 8.

* This is a unilateral deviation as only player i chooses Confess while her
opponent still plays according to the GTS.

* Therefore, player i’s discounted payoff stream from cheating is

)

8 + 254 28%+ - =8+2——
- S - 1-6

Deviation to Confess Punishment thereafter




Case (1). No Cheating History

 Comparison:

* Then, after a history with no previous cheating episodes, every player
chooses to cooperate (player Not Confess) if

1 )
=8+ 2——

41—5_ 1-6

* Multiplying both sides by 1 — ¢, yields
4>8(1—-6)+26

or 4 = 8 — 60, which solving for ¢ yields

5§>2
3



Case (2). Some Cheating History

* At period t, if one or both players cheated in previous periods, then the GTS
dictates that:

* Every player responds with Confess thereafter, earnin% a discounted stream of payoffs

2 + 25 + 252 —_ Zm
* Player i could, instead, unilaterally deviate to Not Confess, while his rival
plays Confess as part of the punishment in the GTS.

* You may suspect that such deviation is not profitable:

* Player i is the only one choosing Not Confess, decreasing his payoff in that period, rather than
increasing it.

* And his deviation does not change his rival’s behavior in subsequent stages.
e That suspicion is correct: Player i’s discounted stream of payoffs from this deviation is

0 +  26+26%+ -
- ~ y —
Deviation to Not Confess Punishment thereafter




Case (2). Some Cheating History

* In period t, ]players observe (NC,C) or (C,NC) being played, implying that
a deviation from the fully cooperative outcome (NC, NC) occurred,
triggering an infinite punishment of (C, C) thereafter, with a payoff of 2 to
every player. This payoff stream simplifies to

)
23 .=
26 +8%+ ) =2—

 Comparison: After a history of cheating, every player i prefers to
implement the punishment prescribed by the GTS if

2 ! > 2 0 2 =20
—_ — =
1-6 1-96 ~
which holds for § € (0,1)



Summary

* Combining our results from cases (1) and (2), we only found one
condition restricting the value of  for us to sustain the GTS as a SPE

of the infinitely-repeated Prisoner’s Dilemma game:

6>2
3

* Intuitively:
* When players assign a sufficiently high weight to future payoffs...

* They start cooperating in the first period and keep cooperating in all
subsequent periods, yielding outcome (C, C) in every round of interaction.



Summary

Payoff,

* Figure 7.3 illustrates the trade- |
off that every player experiences ; jflniﬂ;fﬁzguf;‘“
when deciding whether to i Payofton
cooperate, playing 4 B
Not C onf ess, after a history of Fote s
cooperation. fom cheaing

* If she sticks to the GTS, she ’ A S
earns a payoff of 4 thereafter, as totl sl . TimePeriod

depicted in the flat dashed-line
in the middle of the fi gure. Figure 7.3, Incentives from cheating in the infinitely-repeated prisoner’s dilemma game,



Summary

* If, instead, she cheats:

* Her current payoff increases from 4
to 8 during one period.

e But her rival detects her cheating,
triggering a punishment with (C, C)
thereafter, with associated payoff 2.

* Relative to what she earns by
cooperating (4), cheating provides:

* An instantaneous gain

e But a future loss due to the
punishment.

 Instantaneous gain
§ " from cheating
Vi Payoff from
cooperating
| -
Future payoft loss
2 ;
| -| i | R
O R Time Periods

Figure 7.3, Incentives from cheating in the infinitely-repeated prisoner's dilemma game.



Extensions: Temporary Punishments

* The GTS in the above example assumes an Payot
infinite reversion to the NE of the stage game it fad
(unrepeated version of the game) 8 P

|~

* BUt, what if: = Payoff from

. . .. cooperating
* players only revert to this NE during a finite e
number of periods, N,
Future payoff loss

* moving back to cooperation once every player e
observes that both players im}?lementeolothe S e
punishment during N periods: | |

* Graphically, the right rectangle in the figure 1 . ey TimePeriod
would be narrower.

* [n summary, shortening the punishment, Figure 7.4. Temporary punishments.
while keeping its severity, shrinks the
parameter values where we can sustain
cooperation.

Ll — R




Extensions: More Attractive Cheating

* If every player i earns 10 rather than 8
when she chooses Confess while her
opponent plays Not Confess...

* the height of the instantaneous gain from
cheating in Figure 7.5 increase, thus making
cheating more attractive.

* Formally, this increases the minimal
discount factor sustaining cooperation,

0,

 where the GTS can be sustained as a SPE if
6= 0.

Payoff 4

10

(]

o
g
.-

_ Instantaneous gain

from cheating

Payoff from
cooperating

e

-

Future payoff loss
from cheating

1 1 : o

1 1
11 t+2 Time Periods

Figure 7.5. More attractive cheating.



Extensions: More Attractive Cheating

* Because the range of s sustaining e

cooperation satisfy § € [6, 1), an . e

increase in cutoff § entails that 1

cooperation emerges in a more Payoft from

restricted range of §'s. . PoopaEg
* For compactness, the literature says e

that: ,

* anincrease in cutoff 6 “hinders S T

cooperation in equilibrium”,

* while a decrease in § facilitates such

. Figure 7.5. More attractive cheating.
cooperation.



Extensions: More Severe Punishments

* If every player earns 0 at the NE of the  Paoffy

game, rather than 2: | P o

* the right rectangle in Figure 7.3 becomes = o b
deeper, as depicted in Figure 7.6, cooperating

* indicating a more severe future payoff loss Cmma il
from cheating today. F“;;Iﬁf

* Intuitively: 2

* cheating becomes less attractive, e e s e NC

* which decreases the minimal discount
factor sustaining cooperation, 9,

* implying that the GTS can be sustained Figure 7.6. More severe punishment.

under a larger range of §'s, i.e., § € [Q, 1)



Extensions: Lag in Detecting Cheating

* However, in some real-life examples, Payoff
players may detect cheating k € Z,
periods after it happened.

e |f:

* k = 0, we would still have immediate
detection,

* while k > 0 entails a lag in detecting
cheating episodes.

[nstantaneous gain
from cheating

8

Payoff from
cooperating

Figure 7.7. Lag at detecting cheating.



Extensions: Lag in Detecting Cheating

* This lag widens the left square in Payoff,
Figure 7.7 representing the gain from 3 — Instantaneous gain
cheating. " from cheating
Payoff from
* It is not instantaneous in this setting. 4 cooperating

* Meaning that player i enjoys her cheating | ——
payoff during 1 + k periods. Future payoff loss
. . . from cheating
* This makes cheating more attractive

and: | |
* increases the minimal discount factor t (1
sustaining cooperation, 4,

* which hinders cooperation in equilibrium. Bt 0. Lt detecting disating.

I

i- >
Time Periods



Extensions: Lag in Starting Punishments

* A similar argument as in point (4) applies if players:
» Despite detecting cheating immediately after it occurs...
* Need k periods to revert to the NE of the stage game.

* This happens, for instance, when “cooperation” means producing few
units while “cheating” indicates producing a significantly larger number
of units.

* If the cheated firm needs several periods to expand its production
process, the beginning of the punishment phase is, essentially, delayed.

* This lag expand the payoff gain from cheating in the left square of
Figure 7.7 during 1 + k periods.



Folk Theorem

 Can we also support other, partially cooperative outcomes, where, for instance, players
choose Confess during only some periods?

* In particular, we seek to identify the per-period payoffs that players earn at different SPEs
of this game.

* Definition.
* Per-period palyoff. If player i’s present value from an infinite payoff stream is defined as
PV, =Y712,6 vf, her per-period payoff v; is the constant payoff that solves
v.
PV, = —

1-6

or, after solving v;, v; = (1 — §)PV;.

* Intuitively, when player i receives that constant sum v; in every period, she is indifferent
between that (flat) payoff stream and her (potentially variable) stream of payoffs, as they
both yield the same present value, PV/.



Feasible and Individually Rational Payoffs

We now seek to find all SPEs that can be sustained in the infinitely-repeated version
of the game

* and, as a consequence, predict which per-period payoffs players earn in each SPE.

Afterwards, we restrict this set of payoffs to those where every player earns a higher
payoff than at the NE of the stage game.

Definition.

Feasible Payoffs (FP). A feasible payoff vector v = (1{1, v

, ..., Uy ) can be achieved
by convex combinations of any two payoff vectors v ané v

I

Therefore, in payoffs vector v, where player i earns v;, is found by a convex ,
combination v; = av; + (1 — a)v;" wherea € [0,1] represents the weight on v;.

Intuitively, the FP set captures all possible payoff vectors that players can earn if they
play the game in different ways.



Example 7.1. Finding FP in the Prisoner’s

Dilemma Game

* First, each vertex depicts one of the payoff
pairs that players earn by playing one of the
pure strategy profiles every period.

e But as Figure 7.8 suggests, FP includes more
than just the four vertices.

* Convex combinations of these vertices can yield
other, still feasible, per-period payoffs.

e Examples next.

Player 1

Player 2
Confess Not Confess
Confess 2,2 8,0
Not Confess 0,8 4,4

Matrix 7.5. The Prisoner’s Dilemma Game

Y14 (0.8) from (NC.C)

O

v p

3 & e
et
I Ca
l S

, (4.4) ifrf:rm (NC.INC)

i

I

(8.0) from (C.NC)

f : Vo
| L

(2.2) from (C.C)

2 + 8

Figure 7.8. FP set in the prisoner’s dilemma game.



Example 7.1. Finding FP in the Prisoner’s

Dilemma Game

* For instance, if players alternate between (C,C)
and (NC,NC), the per-period payoff is
0.5*2+0.5*4=3 to each player.

* Graphically positioned in the diagonal connecting
(2,2) and (4,4).
* If, instead, players alternate between (C,C) and
(NC,C), the per-period payoff for:
 player 1is 0.5%2+0.5*0=1,
* while that of player 2 is 0.5*2+0.5*8=5.
* Similarly, for all payoff pairs inside the FP set.

Player 1

Player 2
Confess Not Confess
Confess 2,2 8,0
Not Confess 0,8 4,4

Matrix 7.5. The Prisoner’s Dilemma Game

Y14 (0.8) from (NC.C)

O

v p

3 & e
et
I Ca
l S

, (4.4) ifrf:rm (NC.INC)

i

(8.0) from (C.NC)

I

f : Vo
| L

(2.2) from (C.C)

2 + 8

Figure 7.8. FP set in the prisoner’s dilemma game.



Example 7.1. Finding FP in the Prisoner’s

~ VI=V2

Dilemma Game e
Confess Not Confess
* Recall that the FP set does not mean that Player 1 Confess 2,2 8,0
players earn any payoff pair in the FP every Not Confess 0,8 4,4
period. Matrix 7.5. The Prisoner’s Dilemma Game
* Instead, it means that players can play the game iy (08 e NE.O)

in such a way that, even if their payoffs vary
across time, their per-period payoff would lie
inside the FP.

| (4.4) from (NC.NC)

| e

I

. (8.0) from (C.NC)

[ ! 4
, ;
[ 2 4 8 vy

(2.2) from (C.C)

Figure 7.8. FP set in the prisoner’s dilemma game.



Individually Rational Payoffs (FIR)

e Definition.

* Individually Rational Payoffs (IR). An individually rational (IR) payoff
vector v = (v4, V5, ..., Uy ) satisfies

NE :
v; = v;  for every player |,

* where U{VE denotes her NE payoff in the unrepeated version of the
game.

* Combining FP and IR, we obtain FIR set (feasible individually
rational payoffs).

* Example next.



Individually Rational Payoffs (FIR)

* Example 7.2. Finding FIR payoffs.
* Consider the Prisoner’s Dilemma game of Example 7.1.

* A per-period payoff of player i is individually rational if v; = 2,
since every player earns 2 in the NE of the stage game.



Feasibly Individually Rational Payoffs (FIR)

* Figure 7.9 depicts:

 avertical line representing v; = 2 for
player 1, which holds for all payoffs to the
right-hand side of 2, and

* a horizontal line capturing v, = 2 for
player 2, which occurs for all payoffs
above 2.

* The FIR diamond is the shaded area of
the FP set, indicating that both players

Vi 4

earn a higher per-period payoff than at
the NE of the stage game.



Folk Theorem and Cooperation

e Definition. Folk Theorem.

* Every per-period payoff vector v = (v4, V5, ..., Uy) in the FIR set can be sustained

as the SPE of the infinitely-repeated game for a sufficiently high discount factor,
d, where 6 = 4.

e Graphically, the Folk theorem says that any point in the FIR diamond (on the
edges or strictly inside) can be supported as a SPE of the infinitely-repeated game
as long as players care enough about the future (high 6).

* Examples:

* The uncooperative outcome, where gC,(Cz)Ze)merges in every period, can be sustained for all
,2) as

values of 9, yielding per-period payoffs epicted on the southwest corner of the FIR
diamond.

e Similarly, the fully cooperative outcome, wherg (NC, NC) arises in every period, yielding per-
period payoffs (4,4), can be supported if § = e

* What about partial cooperation, with other per-period payoffs? Next slide.



Example 7.3. Supporting Partial Cooperation

* Consider the following modified GTS Outcome Payoffs
where players: Period1 | NC,C 0,8
 Alternate between (NC, C) and .
(C, NC) over time, Period 2 C,NC 8,0
* starting with (NC, C) in the first period. Period3 | NC,C 0,8
* If either or both players deviates, Period4 | C,NC 8,0
both players revert to the NE of the

stage game, (C, C), forever.

* To determine whether this modified
GTS can be sustained as a SPE, we
must show that no player benefits by
unilaterally deviating (cheating).

Table 7.1. Modified GTS inducing partial cooperation



Example 7.3. Supporting Partial Cooperation

* Odd-numbered periods. When player 1 cooperates in this GTS, her
stream of discounted payoffs starting at an odd-numbered period
(e.g. period 1) is

0+68+6°0+6°8+--=0(1+6%+-)+8(6+86°+-)
=86(1 +g2 + )

152

1

since Y¢200%F =6° + 6%+ 6%+ =—.




Example 7.3. Supporting Partial Cooperation

* If, instead, player 1 deviates to C in an odd-numbered period, her
current payoff increases from 0 to 2, yielding a stream of discounted
payoffs of

2
2 +§2+522+532+”>:2(”‘”52*”’)=ﬁ
Deviation Reversion to NE -

 Comparison: Comparing player 1’s payoff streams, we find that she

sticks to the GTS in every odd-gumbered period if
8 2

>
1—-62 " 1-96
and since 1 — §% = (1 — 6)(1 + §), we can rearrange the above
equality to obtain 86 > 2(1 + ), yielding & > =




Example 7.3. Supporting Partial Cooperation

* Even-numbered periods. When player 1 cooperates in this GTS, her stream of
discounted payoffs starting at an odd-numbered period (e.g. period 1) is

8

8+80+65°8+35°0+ - =8(1+68%+)+0(6+6°+) = —

* If, instead, player 1 unilaterally deviates from C to NC, in an even-numbered period,
her current payoff actually decreases (from 8 to 4), yielding a stream of discounted
payoffs

20

4 +§2+522+532+“L=4+25(1+5+52+“')=4+1T5

Deviation Reversion to NE




Example 7.3. Supporting Partial Cooperation

 Comparison: Therefore, player 1 sticks to the GTS instead of deviating at even-

numbered periods if

8 o4 20
1—-62" 1-6

and since 1 — 6% = (1 — 6)(1 + &), we can rearrange this equality to obtain
8> 4(1—68)(1+68)+28(1 +9),

which further simplifies to 26% — 26 + 4 > 0.



Example 7.3. Supporting Partial Cooperation

 Comparison:

* This inequality further simplifies to 26% — 26 + 4 > 0. —

* Plotted here for illustration purposes: 3
 Showing that 26% — 28 + 4 lies above the horizontal axis for all §.

* This inequality holds for all admissible values of § € [0,1]

* This means that player 1 sticks to the GTS in every even-numbered period regardless of
her discount factor.



Folk Theorem

* The Folk theorem provides us with a positive and a negative result.
* Positive result:

* We can sustain cooperation in games where such cooperation couldn’t be supported in their unrepeated
version or in their finitely-repeated versions.

* In other words, players can reach Pareto-improving outcomes.

* Negative result:
* We can reach any per-period payoff in the FIR diamond.
* That’s a large set of SPEs!
* Limited predictive power.



Application to Collusion in Oligopoly

* Consider the duopoly with two firms competing a la Cournot.
* Firms face the same marginal cost of production ¢, wherel >c¢c >0

* Inverse demand functionis p(Q) = 1 — Q, where Q = 0 denotes
aggregate output

e We know:

. 1-c 1-
 NEs (a0.0)) = (5557)
N2
° T[i = (1 9C)
* Asin the Prisoner’s Dilemma game, we study next if a GTS can be sustained

as a SPE of the infinitely-repeated version of this Cournot competition
game.




Application to Collusion in Oligopoly: Collusion

q%?z(on(ql' q2) = [(1—q1 — C{z)ch —cqi]+[(1—q1 — qZ)CIZ —cqz]
mTq U

Since Q = 1 + -
max 7(Q)=(1-0)Q —cq

0=0
which leads to

chl—c
c 2
c 0Q 1—c
c c 2 1iLc 1+4+c
2 £
C (1_C)

n; = (p¢ — C)qic = 3



GTS in Collusion

* We are now ready to specify the GTS in this game:
1. Inperiodt =1, every firm i chooses the collusive output ql-C = %.

: L, : 1-c,
2. Inall periodst > 1, every firm i chooses the collusive output ql-C = —if both
firms produced ql-C in every previous ple_rciod. Otherwise, every firm i reverts to the
NE of the stage game, choosing q; = — thereafter.

* To show that this GTS can be sustained in equilibrium, we need to show
that firms have no incentives to deviate from it:

e at every period t, and
 after any previous history of play.

* We separately analyse whether firms have incentives to deviate from the
GTS:

« after observing that firms cooperated in previous periods and
» after observing some uncooperative episodes.



GTS in Collusion

 After a history of cooperation. If both firms cooperated in all

previous periods, choosing ql-C, every firm i can collude in period t, as
specified by the GTS, or deviate from this collusive output.

c _ (1—6)2
S

* Profits from collusion. If firm i colludes, it earns

period, entailing a discounted present value of
(1-c)*

- 8(1-9)

In every

my + 6my + 8%my + -




Profits from Deviation

If, instead, firm i deviates from the collusive output ql-C, we must first determine firm i's
most profitable unilateral deviation, which means that firm j still produces the collusive

output, q; .

max 7 = (1-q—4qf)a —cq

which leads to , ,
cy_ +—¢ C
qi(q5) = > 24j

. C 1-c
SINce C[j = T

)

qiDev _ 3(18—0)
(This can be directly done by inserting qjC = % into firm i’s BRF.)
Therefore, equilibrium price is

. Dev  C 3+ 5¢c

—q; q; = 3

Dev _




Profits from Deviation

And the profits,
9(1 — ¢)?

" 64
Therefore, if firm i deviates at any period ¢, it earns deviation profits m;

period, but Cournot profits in every period afterward
P +6m + 8%+ =P + 5w (1+ 5+ 6%+ )
o
= TL'iDev + TT; m
_ =07 8(1-0)
- 64 9(1 — 6)

Dev

Dev — (pDev c)q

9(1—-c)? .
Dev — 91707 ot

Comparison: We can say that at anSperiod t after a history of collusion, firm i keeps colluding if

1 o) 9
nf<—1_6 _nlpev+nl<1_5>:6 S = 5

Therefore, collusion can be sustained if firms assign a sufficiently high value to future
profits. OtherW|se collusion cannot be sustained.



After a History of No Cooperation

: : : 1-c, : :
* If one firm deviated from collusive output ql-C = TC in any previous period, the GTS
prescribes that every firm i reverts to the NE of the stage game.

* To confirm that the GTS is a SPE of the infinitely-repeated game, we need to show that
every firm i has incentives to, essentially, implement this punishment.

* If, upon observing a deviation, firm i behaves as prescribed by the GTS, producing the
Cournot output, it earns a discounted profit stream of

2 It
7Tl'+57'[l'+6 T[l'+"’

T 1-6
1—c

* If, instead, firm i unilaterally deviates from the Cournot output, producing g; # —
while firm j behaves as prescribed by the GTS, its best response function prescribes firm

[ to choose:
1—c _1—c 11—c_1—c
Gh\"3 )72 "273 T~ 3

* In other words, even if firm i wanted to deviate from the GTS, its best response would be
to behave as prescribed by the GTS.




Minimal Discount Factor supporting collusion

* Our analysis above considered that firms compete a la Cournot, sell a
homogeneous good, and face the same marginal cost of production, ¢

* However, we could allow for firms to compete in prices, sell
differentiated products, and/or face different production costs.

* Here, we follow a more general approach.

* In particular, after a history of cooperation, every firm i’s present value

from cooperating in period t is

1
ny 4+ 6nf +8%nf + - =nf(1+65+6%2+-)=mnf (m)



Minimal Discount Factor supporting collusion

* If, instead, firm i deviates at period t, it earns nlpev during that period
but nlNE thereafter, yielding:

P + 6m)E + 8%+ =P + M E(1 4+ 5+ 6% + )

1
=P’ + )"k (—1 — 5)



Minimal Discount Factor supporting collusion

* Therefore, firm i cooperates if and only if

1 1
T[l-C (m) = Tt'lpev + TL'lNE (m)

which we can rearrange as my > (1 — 8¢V + 6m)'E.

* Solving for ¢, yields a minimal discount factor:

s> T
—n.pev_n.{VE —

l l



Minimal Discount Factor supporting collusion

il A
—n.pev_n.NE —

l l

Dev _ _C

* Minimal discount factor 0 increases in 7; Ty .

* As deviations become more attractive, cooperation can only be sustained for
higher discount factors.

lpev . T[NE.

* In contrast, 0 decreasesin i
* When profit loss from reverting to the NE of the stage game become more
severe, firms have less incentives to cheat, expanding the range of discount

factors sustaining cooperation.



Minimal Discount Factor supporting collusion

* The above ratio is convenient, as it can be readily applied to different market
structures:

* markets with two or more firms, selling homogeneous products, with symmetric or
asymmetric costs, etc.

* We only need to find:
* the NE in the stage game, and its associated profits, nlNE

 the collusive output (or prices) that maximize firms’ profits, yielding nl-c to firm i; and

« firm i’s optimal deviation, fixing firm j's collusive behaviour, so firm i’s profits are "

* Inserting profits ;' =, ", and ¢V in the above expression for &, we obtain

the minimal discount factor sustaining collusion.



Other Collusive GTS

* We said that the above GTS with perfect collusion, where firms
maximize their joint profits, can be sustained:
 “asaSPE/
* rather than saying “as the unique SPE,” of the infinitely repeated game.

* From the Folk theorem, we know that the other per-period payoffs can
be supported as SPEs too.



Other Collusive GTS

* The above GTS can be interpreted as the most northwest payoff pair in the FIR set

* since firms earn the highest symmetric payoff relative to what they earn in the NE of the Cournot
model.

* More generally, we can characterize the line connecting profits in the above GTS and
profits in the NE of the stage game as follows:

m; = any + (1 —a)nNE
where weight a € [0,1] can be understood as how close firms are to the perfect collusion.

* In particular, firm i produces
1—c 1—c 1—c¢c)4—«a
TR Eel G o [y
4 3 12

Implying that this firm’s output coincides with the collusive output when a = 1, but
becomes the NE output when a = 0.

g = aqf +(1—a)q}'* =«



Other Collusive GTS

* Consider then, the following GTS
1. Inperiodt =1, every firm i chooses the output g; = aqic + (1 — a)qlNE

2. Inall periodst > 1:
* Every firm i chooses output g; if both firms produced g; in every previous period.

* Otherwise, every firm i reverts to the NE of the stage game, choosing q; = %, thereafter.



What if the stage game has more than one NE?

* So far, we considered games with a unique NE in its unrepeated
version.
 Examples: the Prisoner’s Dilemma game, Cournot quantity competition, or
Bertrand price competition.
* The NE in these games was rather uncooperative.
* Yet, we showed that cooperation can be supported as a SPE of the infinitely-
repeated game.

* A natural question is whether cooperation can be sustained in games
with more than one NE in its unrepeated version as in Matrix 7.6.



What if the stage game has more than one NE?

Player 2
A B C
A 8,8 -2,10 2,3
Player 1
10,-2 2,2 1,1
C 1,1 1,1 6,6

Matrix 7.6. A game with two NEs

 The game has two psNEs:
1. A “bad” NE, (B,B), where every player earns a payoff of 2.
2. A “good” NE, (C,C), where every player earns a payoff of 6.
e Formally, we say that (C,C) Pareto dominates (B,B).
3. Yet, there is an even better outcome, where every player earns higher payoffs:

* At (A,A) every player earns 8.
* How can we sustain the cooperative outcome (A,A) being played?



What if the stage game has more than one NE?

Player 2
A B C
A 8,8 -2,10 2,3
Player 1
10,-2 2,2 1,1
C 1,1 1,1 6,6

Matrix 7.6. A game with two NEs

* Consider the following GTS:

1. Inthe first period, every player chooses A.
2. Inthe second period:

* Every player chooses C if (4, A) was played in the first period.
e Otherwise, every player chooses B.



Stick-and-carrot

* Informally, this is known as a “stick-and-carrot” strategy, because in the
second period:

* |t prescribes the Pareto dominant NE, (C, C), if players cooperated in the first period.
* But prescribes the Pareto dominated NE, (B, B), if either player was uncooperative.

* Important lesson:

* While a GTS can specify an outcome that is not a NE of the stage game during the
first period, such as (4, 4),...

* It cannot prescribe an outcome that is not a NE in the last period.
e Otherwise, if the GTS specified outcome (4, 4) in both periods, every player would
have incentives to deviate from A in the second (last) period.
* [n summary, when designing GTSs in finitely-repeated games, we can:
e “Shoot for the stars” during T-1 periods, but...
* must settle for a NE in the last round of interaction.



Stick-and-carrot, Solution

Second period:
* Technically, there are 9 outcomes in each stage, for a total of 92 = 81 terminal nodes

* Out of the 9 second-period subgames, there is only one initiated after outcome
(4, A) was played in the first period.
* The remaining 8 second-period subgames emerge because one or both players did not select
A in the first period.

* Non-cooperative history. Upon observing any outcome different from (4, A4) in the
first period:
* Player i anticipates that player j will play B in the second period.
* Player i does not have incentives to deviate from the GTS in the second period, since B is a
best response to B (see middle column, for instance).
» Cooperative history. If, instead, player i observes that outcome (4, A) was played in
the first period:
* She expects that player j will choose C in the second period.

* Therefore, player i does not want to deviate from the GTS in the second period, since C is a
best response to C (see right column, for instance).




Stick-and-carrot, Solution

* First period:
 If player i chooses A, as prescribed by the GTS, her payoff stream is
8 + 66,

since he anticipates that (C, C) will be played in the second period (the Pareto
dominant NE, or “carrot”)

* If, instead, player i unilaterally deviates:
* Her best deviation is to B, which yields a payoff of 10 today,
* but that triggers outcome (B, B), the Pareto dominated NE or “stick,” in the second period,
» Payoff stream from deviation is, then:

10 + 42.

* Comparison: player i behaves as prescribed by the C15TS in the first period if
8+066 =2104+62 = 6 ZE



Stick-and-carrot, Solution

* Cooperation can, then, be sustained if players assign a sufficiently
high weight to future payoffs.

* Players condition last-period play
* Choosing the good or bad NE.

* on whether players were cooperative or uncooperative in previous
interactions.

* In stage games with a unigue NE, we couldn’t condition last-period
play.
 Players will just behave according to the unique NE.

* This inability to condition future play lead to the “unraveling” result, where
players behave as in the stage game during every period of interaction.



Modified GTSs: An eye for an eye

 We now consider modified GTSs.

* “An eye for an eye”:
* Code of Hammurabi, written around 1750 BC.

* |t prescribes that individuals start cooperating, as in standard GTSs.

 However, if an individual is uncooperative:
* the victim can be uncooperative, inflicting the same damage to the cheater,
e and then players return to cooperation.

* |[n an infinitely-repeated game context, this adage means that, if a player cheats:

* the cheater player gets to cheat during one period while the cheating player cooperates in
that same period (so punishment phase only lasts one period),

* afterwards players return to cooperation



Modified GTSs: An eye for an eye

* To implement this cheating sequence in a GTS, consider the game in

Matrix 7.7:

1. Inthe first period, every player i chooses C
2. Insubsequent periods:

1. Every player i chooses C if (C, C) was played in all previous periods.
2. Otherwise, every player reverts to the NE of the stage game, (B, B).

. . . 2 .
* This GTS can be sustained if 6 > 3 (see Exercise 7.17). Player 2
A B C
A 0,0 4,2 5,-2
Player 1
24 8,38 14,3
C -2,5 3,14 10,10

Matrix 7.7. An eye for an eye




Modified GTSs: An eye for an eye

e But what about using a GTS that follows the “an eye for an eye” adage?

* The punishment phase now prescribes that the victim gets to cheat her opponent
for a period.

* Then they return to the cooperative outcome (C, C) thereafter.

* As an illustration, if player 1 cheats, deviating to B while player 2 still
cooperates choosing C, table 7.2 summarizes the sequence of outcomes.

Periodt — 1 Period t Period t + 1
Outcome B,C C,B C,C
Payoffs 14,3 3,14 10,10
Who cheats? Player 1 Player 2 No one

Table 7.2. Timing for an eye-for-an-eye GTS



After a History of Cooperation

If no player has cheated on previous periods, player i’s payoff steam from

cooperating is
10 + 106 + 1062 +

If, instead, player 1 deviates, we first find that, conditional on player 2
cooperatmg, player 1’s BR is to play B, earning a payoff of 14.

Therefore, player 1’s deviation:
* Increases her current payoff from 10 to 14,
* But then triggers a punishment, which reduces her payoff to 3 during one period.
» Afterwards, players return to cooperation.

In summary, the stream of payoffs that player 1 earns when deviating is
14 + 38 + 106%+106° +

Cheat Cheated Back to cooperatlon

Therefore, player cooperates if and only if
10 + 106 + 106% + --- = 14 4+ 36 + 106% + 106° +

which simplifies to 10 + 106 = 14 4+ 36,0r 6 = %.

-




After a History of Cheating

* When one player cheats, the GTS prescribes that the cheating player
cooperates for one period, playing C, while her opponent cheats in that
period, choosing B.

* If player 1 cheats in period t — 1, the GTS prescribes that (C, B) is played in
period t, and (C, C) occurs in all subsequent perlods y|elding

3+ 108 + 106° + 1052 +

Cheated Back to cooperatlon

* |f player 1 does not choose C in period t, being cheated, her best deviation
is to B since, conditional on player 2 choosing B in period t (see Table 7.2),
player 1’s best response is B, leading to a payoff stream

8 + 35 + 106% 4+ 1067 +

Cheat Cheated Back to cooperatlon

-

-




After a History of Cheating

* Intuitively, if the cheating player does not follow the GTS, not allowing
the victim to cheat during one period, he only postpones the return
to cooperation.

* Therefore, player 1 allows player 2 to cheat her after player 1 cheated
in the first place, if and only if

341086 + 1052 +1083+--->8+36+106%+ 1063+ -

which coincide after the third term, 1052, and for all subsequent
periods. We can then rewrite this inequality as

5
3+10528+36=>527



Summary

* Comparing this condition on 6 with that found after a history of
. 4 L 5 :
cooperation, § = ~, We see that condition 6 > ~ is more demanding

4 5 _ 4
than 0 = = since = = -.
7 7 = 7

. . 5 . 4
* In other words, if condition 6 > - holds, condition 6 > - must also

be satisfied, so 6 = —is a sufficient condition for cooperation.



Comparing different GTS:
An-eye-for-an-eye GTS vs Standard GTS

* Equity of payoffs:
* We find that the punishment phase is more equitable in the former than the latter since the
cheater party is compensated in the following period, when she cheats.

* Under the standard GTS, however, the cheated party sees its payoff decrease during the
cheating period, and then both players revert to the NE of the stage game, yielding a lower
per-period payoff than the cheater’s.

* Minimal discount factors:
* An-eye-for-an-eye GTS can be sustained if § >

 Standard GTS can be sustained if § > %,

. e . . 5_ 2
* Cooperation is, then, more difficult to arise in the former than the latter since - > 3

* Intuition: The punishment phase in this GTS requires the cheatinF party to be
cheated during one period, which is not very attractive for this player, generating
strong incentives to deviate from the GTS at precisely that moment.

)

N v



Short and Nasty Punishments

* Consider the same payoff matrix as before.

* The punishment is now (4, A), yielding the lowest symmetric payoff
in the matrix, (0,0), and players return to cooperation immediately
after.

* Consider the GTS as follows:
1. Inthe first period, every player i chooses C

2. Insubsequent periods:
a. Every playeri chooses C if (C,C) was played in all previous periods

b. Otherwise, every player chooses A during one period. If (4, A) was played in the last
period, every player selects C thereafter



Short and Nasty Punishments

* If player 1 cheats, deviating to B while player 2 still cooperates
choosing C

* Table 7.3 summarizes the sequence of outcomes if players behave
according to this GTS

Period t — 1 Period t Period t + 1
Outcome B,C AA C,C
Payoffs 14,3 0,0 10,10

Table 7.3. Timing of the short-and-nasty punishments GTS



Short and Nasty Punishments

* Cooperation can be sustained with this GTS if 6 = g

e (Exercise 7.1, as a practice)

* Table 7.4 reports the minimal discount factor 6 under different GTS in
the game in Matrix 7.7, where; > % > g

Minimal discount factor, §

Standard GTS, section 7.4.2 5 = z

— 3

An-eye-for-an-eye GTS, section 7.8.1 5= E
-~ 7

Short-and-nasty-punishments GTS, 5 = z
section 7.8.2 - 5

Table 7.4. Minimal Discount Factors sustaining cooperation in the game in Matrix 7.7 when using different GTS



Imperfect Monitoring

* Players may imperfectly monitor her rival’s actions, observing which
action she chose with a certain probability.

* Consider Matrix 7.8:
e (C,C) isthe NE of the stage game,
* but (NC, NC) would increase both players’ payoffs from 2 to 4.

Player 2
Confess Not Confess
Confess 2,2 8,0
Player 1
Not Confess 0,8 4.4

Matrix 7.8. The Prisoner’s Dilemma Game



Imperfect Monitoring

Player 2
Confess Not Confess
Confess 2,2 8,0
Player 1
Not Confess 0,8 4.4

Matrix 7.8. The Prisoner’s Dilemma Game

* Under imperfect monitoring, is player j chooses to cooperate, NC, we assume
that, for simplicity, player i cannot perfectly detect deviation to C.

* If, instead, player j chooses C, the probability that player i observes a
deviation from NC is p € [0,1].

* Intuitively:
* when probability p — 0, deviations are rarely observed,

* while when p — 1, deviations are almost always observed, as in a context with perfect
monitoring.



Imperfect Monitoring

e Consider the standard GTS in this context:

1. Inthe first period, every player chooses NC.

2. In every subsequent period, every player chooses NC if (NC, NC) was observed in
all previous periods. Otherwise, revert to the NE of the stage game, (C, C),
thereafter.

* That is, the cooperative outcome (NC, NC) is now observed but it may not
have been played.

* This suggests that outcome (NC, NC) may not have been played, because at least
one person deviated, but cooperation continues if such outcome is observed.
* The opposite also applies:

* Qutcome (NC, NC) may have been played, but cooperation stops if one of both
players did not observe such outcome in a previous period.




After a history of observed cooperation

* If both players observe outcome (NC, NC) in all previous periods, player i’s
payoff stream from cooperating is A

4 + 485 + 46% + - =m
* If, instead player i unilaterally deviates to C, her payoff increases to 8 in the
current period, but in the next period:

* Player j detects her deviation with probability p, reverting to the NE of the stage
game with a payoff of 2 forever, or...

* Player j doesn’t detect this deviation with probability (1 — p), which lets player i
return to cooperation (choosing NC tomorrow) as if no deviation ever happened.

* In summary, player i’s payoff stream fromzunilaterally deviatirf toCis

8 +5'p—_5 + (1 —p) T—3

N—— N———
Current gain from dev.to C

Detected Undetected-



After a history of observed cooperation

* For player i to cooperate after a history
of cooperation, we need that

Y oss4sp—r1—p)—
1-6° P15 P15

And solving for 0, yields
2
6 =2 5——=06(p)

24+
* Figure 7.9 depicts the minimal discount
factor §(p).



After a history of observed cooperation

2
5>86>—=9§
=5 6(p)

* As deviations are more likely detected
(higher p):
* the expected punishment increase,

« expanding the range of §'s sustaining
cooperation.

* In contrast, when deviation cannot be
detected (p = 0):
* the minimal discount factor becomes §(0) = 1,

* implying that collusion cannot be supported in
equilibrium.

1.0 fj



After a history of observed deviation

* If player observes that (NC, NC) was not played in a previous period,
this means that player j did not cooperate.

* If player i behaves as prescribed by the GTS, she should revert to the
NE of the stage game, (C, C), thereafter, earning a payoff stream
2

2 4 = —
2426+ 287+ = -



After a history of observed deviation

* If, instead, player i deviates, choosing NC while player j chooses C (recall that
this is a unilateral deviation from the GTS, upon observing no cooperation in
previous periods) player i earns 0 in this period.

* Players then play (C, C) in all subsequent periods yielding

20
0+26+26%+--=26(1+6+6%+-) =T
* Therefore, upon observing a deviation, player i prefers to behave as prescribed

by the GTS than deviating from it since
:5 > 12_65 = & < 1, which holds by assumption since § € [0,1).
* Overall, the only condition that we need to support this GTS as SPE is § = &(p),
as found above.
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