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Introduction

• Situations in which players interact in one of the strategic setting and they play 
the game for several rounds, which are known as “repeated games” 

• Interested in identifying if the game’s repetition provides players with more 
incentives to cooperate

Prisoner’s Dilemma
• We first study the finitely-repeated version of this game
• Extend players’ interaction to an infinitely repeated game
• We then apply the above tools to different settings, such as collusion in oligopoly 

models, where every firm chooses its output level in each period of interaction, 
and to stage games with more than one NE



Repeating the Game twice

• Let us repeat the game twice and find its SPE since players now interact in 
a sequential-move game:

• In the first stage, every player 𝑖𝑖 simultaneously and independently chooses whether 
to Confess or Not Confess

• In the second stage, observing the outcome of the first stage, every player 𝑖𝑖 selects 
again simultaneously and independently whether to Confess or Not Confess

• This sequential-game is depicted in Figure 7.1 (next slide).

Player 2

Confess Not Confess

Player 1
Confess 2,2 8,0

Not Confess 0,8 4,4
Matrix 7.1 The Prisoner’s Dilemma Game



Twice-repeated Prisoner’s Dilemma Game
• The game tree includes information sets 

in the first and second stage.
• At the beginning of second stage, 

however, players perfectly observe the 
strategy profile played in the first stage 
(no information sets there).



Twice-repeated Prisoner’s Dilemma Game
• Payoff pairs in the terminal nodes are 

just a sum of payoffs in the first and 
second stage, assuming no discounting.

• For instance, if 𝐶𝐶,𝐶𝐶 is played in the 
first stage, but 𝑁𝑁𝐶𝐶,𝐶𝐶 occurs in the 
second stage: 

• Player 1 earns 2 + 0 = 2, while 
• Player 2 earns 2 + 8 = 10.

• A similar argument applies to other 
payoffs at the bottom of the tree. 
(Practice!)



Twice-repeated Prisoner’s Dilemma Game
• There are five subgames:

1. One initiated after players choose 𝐶𝐶,𝐶𝐶
in the first stage.

2. Another initiated after 𝑁𝑁𝑁𝑁,𝐶𝐶
3. Another initiated after 𝐶𝐶,𝑁𝑁𝑁𝑁
4. Another initiated after 𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁
5. And the game as a whole

• Operating by backward induction, we 
solve each of these subgames, starting 
with subgames 1-4.

• Since these subgames are simultaneous-
move games, we can solve each of them 
by transforming each to its matrix form.



Twice-repeated Prisoner’s Dilemma Game -
Subgames for Second Stage

Player 2

Confess Not Confess

Player 1
Confess 4,4 10,2

Not Confess 2,10 6,6

Matrix 7.2a Twice-repeated Prisoner’s Dilemma game – Subgame 1

Player 2

Confess Not Confess

Player 1
Confess 10,2 16,0

Not Confess 8,8 12,4
Matrix 7.2b Twice-repeated Prisoner’s Dilemma game – Subgame 2

Player 2

Confess Not Confess

Player 1
Confess 2,10 8,8

Not Confess 0,16 4,12

Matrix 7.2c Twice-repeated Prisoner’s Dilemma game – Subgame 3

Player 2

Confess Not Confess

Player 1
Confess 6,6 12,4

Not Confess 4,12 8,8

Matrix 7.2d Twice-repeated Prisoner’s Dilemma game – Subgame 4



Twice-repeated Prisoner’s Dilemma Game –
First Stage
• Summary

• Every player 𝑖𝑖 = 1,2 chooses 
to play 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 in the first 
stage, and

• Players 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 in the second 
stage regardless of the strategy 
profile played in the first stage

Player 2

Confess Not Confess

Player 1
Confess 4,4 10,2

Not Confess 2,10 6,6

Matrix 7.2e Twice-repeated Prisoner’s Dilemma game – Game as whole



Summary

• Intuitively, players anticipate that they will both play 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 in the last 
stage independently of how cooperative or uncooperative they were in 
the previous stage

• Informally, every player thinks: 
• “It does not matter what I do today, tomorrow we will all confess.
• I can then treat tomorrow’s game as independent from today’s play, as if I played

two separate Prisoner’s Dilemma games.”
• In summary, repeating the game twice did not help us sustain cooperation

in the SPE.
• Can cooperation emerge if we repeat the game for more periods, generally,

for 𝑇𝑇 ≥ 2 periods?



Repeating the game 𝑇𝑇 ≥ 2 times
Player 2

Confess Not Confess

Player 1
Confess 2 + 𝑃𝑃1𝑇𝑇−1, 2 + 𝑃𝑃2𝑇𝑇−1 8 + 𝑃𝑃1𝑇𝑇−1, 0 + 𝑃𝑃2𝑇𝑇−1

Not Confess 0 + 𝑃𝑃1𝑇𝑇−1, 8 + 𝑃𝑃2𝑇𝑇−1 4 + 𝑃𝑃1𝑇𝑇−1, 4 + 𝑃𝑃2𝑇𝑇−1

Matrix 7.3. Finitely-repeated Prisoner’s Dilemma Game – Subgames at period 𝑇𝑇

• Matrix 7.3 represents the game that players face when interacting in the last round 
(period 𝑇𝑇)

• Notation: 
• 𝑃𝑃1𝑇𝑇−1denotes the discounted sum of all payoffs that player 1 earned in the previous 𝑇𝑇 − 1 periods. 
• 𝑃𝑃2𝑇𝑇−1 is a similar expression for player 2.

• This presentation helps us describe the subgame that players face at period 𝑇𝑇 for any
previous history of play.

• That is, for any strategy profiles occurring in previous periods.
• Intuitively: regardless of how we played the game in previous periods.



Repeating the game 𝑇𝑇 ≥ 2 times

• To illustrate the generality of this matrix representation, evaluate terms 𝑃𝑃1𝑇𝑇−1 and 
𝑃𝑃2𝑇𝑇−1 in the special case where the game is only repeated 𝑇𝑇 = 2 times.

• In this context:
• 𝑃𝑃1𝑇𝑇−1 captures the payoff that player 1 earned in the first period of interaction.
• And similarly, with 𝑃𝑃2𝑇𝑇−1 for player 2.

• For instance, if 𝐶𝐶,𝐶𝐶 emerged in the first stage of the game, 
• 𝑃𝑃1𝑇𝑇−1 = 𝑃𝑃2𝑇𝑇−1 = 2.
• While if 𝐶𝐶,𝑁𝑁𝐶𝐶 occurred, then 𝑃𝑃1𝑇𝑇−1 = 8 and 𝑃𝑃2𝑇𝑇−1 = 0.

Player 2

Confess Not Confess

Player 1
Confess 2 + 𝑃𝑃1𝑇𝑇−1, 2 + 𝑃𝑃2𝑇𝑇−1 8 + 𝑃𝑃1𝑇𝑇−1, 0 + 𝑃𝑃2𝑇𝑇−1

Not Confess 0 + 𝑃𝑃1𝑇𝑇−1, 8 + 𝑃𝑃2𝑇𝑇−1 4 + 𝑃𝑃1𝑇𝑇−1, 4 + 𝑃𝑃2𝑇𝑇−1

Matrix 7.3. Finitely-repeated Prisoner’s Dilemma Game – Subgames at period 𝑇𝑇



Repeating the game 𝑇𝑇 ≥ 2 times

• If the Prisoner’s Dilemma can produce four different strategy profiles in each 
period, there are 4𝑇𝑇−1 nodes at the beginning of period 𝑇𝑇.

• In the twice-repeated Prisoner’s Dilemma game, for instance, there are 
42−1 = 4 nodes at the beginning of the second period, as shown in the 
previous tree. 

• More generally, if the unrepeated version of the game has
• 𝑘𝑘 > 2, different strategy profiles (cells) and 
• the game is repeated 𝑇𝑇 times, 

• Then, there are:
• 𝑘𝑘𝑇𝑇−1 nodes at the beginning of period 𝑇𝑇, 
• only 𝑘𝑘𝑇𝑇−2 nodes at the beginning of period 𝑇𝑇 − 1, 
• and similarly in previous periods…
• with just 𝑘𝑘𝑇𝑇−𝑇𝑇 = 𝑘𝑘0 = 1 node at the beginning of the game (first period of interaction).



Iterative Method: Period 𝑇𝑇

Period 𝑻𝑻:
• Underlining best response payoffs, we can see that 𝐶𝐶,𝐶𝐶 is a NE in the 𝑇𝑇-period 

subgame in Matrix 7.3.
• Player 1’s best response: 

• When Player 2 chooses Confess, player 1’s best response is to Confess because 2 + 𝑃𝑃1𝑇𝑇−1 > 0 + 𝑃𝑃1𝑇𝑇−1
simplifies to 2 > 0.

• When Player 2 selects 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠, player 1’s best response is Confess since 8 + 𝑃𝑃1𝑇𝑇−1 > 4 + 𝑃𝑃1𝑇𝑇−1
simplifies to 8 > 4.

Player 2

Confess Not Confess

Player 1
Confess 2 + 𝑃𝑃1𝑇𝑇−1, 2 + 𝑃𝑃2𝑇𝑇−1 8 + 𝑃𝑃1𝑇𝑇−1, 0 + 𝑃𝑃2𝑇𝑇−1

Not Confess 0 + 𝑃𝑃1𝑇𝑇−1, 8 + 𝑃𝑃2𝑇𝑇−1 4 + 𝑃𝑃1𝑇𝑇−1, 4 + 𝑃𝑃2𝑇𝑇−1

Matrix 7.3. Finitely-repeated Prisoner’s Dilemma Game – Subgames at period 𝑇𝑇



Iterative Method: Period 𝑇𝑇

Period 𝑻𝑻:
• Note that:

• Players’ best responses in period T don’t depend on players’ payoffs in previous periods, as captured 
by 𝑃𝑃1𝑇𝑇−1 and 𝑃𝑃2𝑇𝑇−1.

• As if they were sunk, or they couldn’t be changed at this point.
• In other words, player 1 treats 𝑃𝑃1𝑇𝑇−1 as a constant; while player 2 treats 𝑃𝑃2𝑇𝑇−1 as a constant.
• This implies that every player finds:

• Confess to be a best response to her rival’s strategy regardless of the previous history of play.

Player 2

Confess Not Confess

Player 1
Confess 2 + 𝑃𝑃1𝑇𝑇−1, 2 + 𝑃𝑃2𝑇𝑇−1 8 + 𝑃𝑃1𝑇𝑇−1, 0 + 𝑃𝑃2𝑇𝑇−1

Not Confess 0 + 𝑃𝑃1𝑇𝑇−1, 8 + 𝑃𝑃2𝑇𝑇−1 4 + 𝑃𝑃1𝑇𝑇−1, 4 + 𝑃𝑃2𝑇𝑇−1

Matrix 7.3. Finitely-repeated Prisoner’s Dilemma Game – Subgames at period 𝑇𝑇



Iterative Method: Period 𝑇𝑇 − 1

• Period 𝑻𝑻 − 𝟏𝟏.

• 𝐶𝐶,𝐶𝐶 is again the unique NE.
• The intuition is identical to that in the twice-repeated game: 

• Players anticipate that everyone will play Confess in the last round of interaction 
(period 𝑇𝑇).

• Therefore, player have no incentives to cooperate today (in period 𝑇𝑇 − 1) since 
misbehavior will not be disciplined in the following period.

Player 2

Confess Not Confess

Player 1
Confess 2 + 𝑃𝑃1𝑇𝑇−2, 2 + 𝑃𝑃2𝑇𝑇−2 8 + 𝑃𝑃1𝑇𝑇−2, 0 + 𝑃𝑃2𝑇𝑇−2

Not Confess 0 + 𝑃𝑃1𝑇𝑇−2, 8 + 𝑃𝑃2𝑇𝑇−2 4 + 𝑃𝑃1𝑇𝑇−2, 4 + 𝑃𝑃2𝑇𝑇−2

Matrix 7.4. Finitely-repeated Prisoner’s Dilemma Game – Subgames at period 𝑇𝑇 − 1



Iterative Method: Period 𝑇𝑇 − 2
• Period 𝑻𝑻 − 𝟏𝟏.

• The same argument follows for period 𝑇𝑇 − 2, as illustrated in the above 
matrix.

• Same argument applies to period 𝑇𝑇 − 3, and so on.
• Extending that reasoning to all previous periods, we find that 𝐶𝐶,𝐶𝐶 is the 

unique NE: 
• in every subgame and 
• in every period.

Player 2

Confess Not Confess

Player 1
Confess 2 + 𝑃𝑃1𝑇𝑇−3, 2 + 𝑃𝑃2𝑇𝑇−3 8 + 𝑃𝑃1𝑇𝑇−3, 0 + 𝑃𝑃2𝑇𝑇−3

Not Confess 0 + 𝑃𝑃1𝑇𝑇−3, 8 + 𝑃𝑃2𝑇𝑇−3 4 + 𝑃𝑃1𝑇𝑇−3, 4 + 𝑃𝑃2𝑇𝑇−3

Matrix 7.4. Finitely-repeated Prisoner’s Dilemma Game – Subgames at period 𝑇𝑇 − 1



Repeating the Game infinitely many times

• We could not support cooperation by repeating the game twice or 𝑇𝑇 ≥
2 times…

• But our above results point us to why uncooperative outcomes emerge:
• The presence of a terminal period when players know that the game ends

• At that last stage, both players:
• Behave as in the unrepeated version of the game,
• Regardless of how the game was played in previous rounds.

• Using backward induction, they extend this behavior to all previous
interactions.



Repeating the Game infinitely many times

• Therefore, if we seek to sustain cooperation:
• Players cannot know with certainty when the game will end. 
• They interact today, at time t, and will keep playing with each other tomorrow, at 

time t+1, with a probability 𝑝𝑝, where 𝑝𝑝 ∈ [0, 1].
• For instance, if 𝑝𝑝 = 0.7, the chances of interacting for more than 20 rounds are less 

than 1 percent.
• Probability of interacting converges fast to zero, but it is always strictly positive.



Uncooperative outcome

• We first show that (C,C) in every period can still be sustained as one 
of the SPEs in the infinitely-repeated game.

• Note that if a player chooses 𝐶𝐶 at every period 𝑡𝑡, anticipating that his 
rival will choose 𝐶𝐶 as well, he obtains a sequence of 2, with 
discounted value

2 + 2𝛿𝛿 + 2𝛿𝛿2 + ⋯ = 2 1 + 𝛿𝛿 + 𝛿𝛿2 + ⋯ = 2
1

1 − 𝛿𝛿
Recall that

1 + 𝛿𝛿 + 𝛿𝛿2 + ⋯ = 𝛿𝛿0 + 𝛿𝛿1 + 𝛿𝛿2 + ⋯ = �
𝑡𝑡=0

∞
𝛿𝛿𝑡𝑡 =

1
1 − 𝛿𝛿



Uncooperative outcome 𝐶𝐶,𝐶𝐶

• If, instead, she unilaterally deviates to 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 for one period, 
he earns

⏟0
𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

+ 2𝛿𝛿 + 2𝛿𝛿2 + ⋯
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

= 0 + 2
𝛿𝛿

1 − 𝛿𝛿

Hence, this player earns a higher stream of payoffs choosing 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
than 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 because

2
1

1 − 𝛿𝛿
≥ 2

𝛿𝛿
1 − 𝛿𝛿

simplifies to 1 ≥ 𝛿𝛿 which holds given that 𝛿𝛿 ∈ 0,1 by assumption.



Cooperative Outcome: Grim-Trigger Strategy

• Can we sustain cooperation as the SPE of the infinitely-repeated game?
• For that, we need players to:

• Cooperate and keep cooperating as long as every player cooperated in previous 
period, but…

• Otherwise, threat to move the game to a “grim” outcome where players earn lower 
payoffs than by cooperating.

• The following Grim-Trigger Strategy (GTS) helps us achieve exactly that:
1. In period 𝑡𝑡 = 1, choose 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
2. In every period 𝑡𝑡 ≥ 2,

a. Keep choosing 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 if every player chose 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 in all previous periods, or
b. Choose 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 thereafter for any other history of play (i.e., if either player chose Confess 

in any period)



Cooperative Outcome: Grim-Trigger Strategy

• The name of the GTS strategy should be clear at this point: 
• Any deviation triggers a grim punishment thereafter, where every player 

reverts to the NE of the unrepeated version of the game (often known as 
“Nash reversion”).

• To show that the GTS is a SPE of the infinitely-repeated game, we 
need to demonstrate that it is an optimal strategy:

• for every player, and
• at every subgame where they are called to move.

• This means that players find the GTS to be optimal:
• at any point 𝑡𝑡, and 
• after any previous history of play.

• A daunting task? No, we only need to examine two histories of play.



Case (1). No Cheating History

• At any period 𝑡𝑡 both 𝑡𝑡 = 1 and 𝑡𝑡 ≥ 2 , if no previous history of 
cheating occurs, the GTS prescribes that:

• Every player keeps cooperating, which yields a payoff of 4 for every player 𝑖𝑖, 
entailing a payoff stream of

4 + 4𝛿𝛿 + 4𝛿𝛿2 + ⋯ = 4
1

1 − 𝛿𝛿



Case (1). No Cheating History
• If, instead, player 𝑖𝑖 chooses 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 today (which we interpret as her 

deviating from the above GTS, or more informally as “cheating”), her 
current payoff increases from 4 to 8.

• This is a unilateral deviation as only player 𝑖𝑖 chooses 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 while her 
opponent still plays according to the GTS.

• Therefore, player 𝑖𝑖’s discounted payoff stream from cheating is

⏟8
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

+ 2𝛿𝛿 + 2𝛿𝛿2 + ⋯
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

= 8 + 2
𝛿𝛿

1 − 𝛿𝛿



Case (1). No Cheating History
• Comparison: 
• Then, after a history with no previous cheating episodes, every player 

chooses to cooperate (player 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) if

4
1

1 − 𝛿𝛿
≥ 8 + 2

𝛿𝛿
1 − 𝛿𝛿

• Multiplying both sides by 1 − 𝛿𝛿, yields 
4 ≥ 8 1 − 𝛿𝛿 + 2𝛿𝛿

or 4 ≥ 8 − 6𝛿𝛿, which solving for 𝛿𝛿 yields
𝛿𝛿 ≥ 2

3



Case (2). Some Cheating History

• At period 𝑡𝑡, if one or both players cheated in previous periods, then the GTS
dictates that:

• Every player responds with 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 thereafter, earning a discounted stream of payoffs

2 + 2𝛿𝛿 + 2𝛿𝛿2 = 2
1

1 − 𝛿𝛿
• Player 𝑖𝑖 could, instead, unilaterally deviate to 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, while his rival 

plays 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 as part of the punishment in the GTS.
• You may suspect that such deviation is not profitable:

• Player 𝑖𝑖 is the only one choosing 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, decreasing his payoff in that period, rather than 
increasing it.

• And his deviation does not change his rival’s behavior in subsequent stages.
• That suspicion is correct: Player 𝑖𝑖’s discounted stream of payoffs from this deviation is

⏟0
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑡𝑡𝑡𝑡 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

+ 2𝛿𝛿 + 2𝛿𝛿2 + ⋯
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡



Case (2). Some Cheating History

• In period 𝑡𝑡, players observe 𝑁𝑁𝑁𝑁,𝐶𝐶 or 𝐶𝐶,𝑁𝑁𝐶𝐶 being played, implying that 
a deviation from the fully cooperative outcome 𝑁𝑁𝐶𝐶,𝑁𝑁𝑁𝑁 occurred, 
triggering an infinite punishment of 𝐶𝐶,𝐶𝐶 thereafter, with a payoff of 2 to 
every player. This payoff stream simplifies to

2 𝛿𝛿 + 𝛿𝛿2 + ⋯ = 2
𝛿𝛿

1 − 𝛿𝛿

• Comparison: After a history of cheating, every player 𝑖𝑖 prefers to 
implement the punishment prescribed by the GTS if

2
1

1 − 𝛿𝛿
≥ 2

𝛿𝛿
1 − 𝛿𝛿

⇒ 2 ≥ 2𝛿𝛿
which holds for 𝛿𝛿 ∈ 0,1



Summary

• Combining our results from cases (1) and (2), we only found one 
condition restricting the value of 𝛿𝛿 for us to sustain the GTS as a SPE 
of the infinitely-repeated Prisoner’s Dilemma game:

𝛿𝛿 ≥
2
3

• Intuitively:
• When players assign a sufficiently high weight to future payoffs…
• They start cooperating in the first period and keep cooperating in all 

subsequent periods, yielding outcome 𝐶𝐶,𝐶𝐶 in every round of interaction.



Summary

• Figure 7.3 illustrates the trade-
off that every player experiences 
when deciding whether to 
cooperate, playing 
𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, after a history of 
cooperation.

• If she sticks to the GTS, she 
earns a payoff of 4 thereafter, as 
depicted in the flat dashed-line 
in the middle of the figure.



Summary

• If, instead, she cheats:
• Her current payoff increases from 4 

to 8 during one period.
• But her rival detects her cheating, 

triggering a punishment with 𝐶𝐶,𝐶𝐶
thereafter, with associated payoff 2.

• Relative to what she earns by 
cooperating (4), cheating provides:

• An instantaneous gain
• But a future loss due to the 

punishment.



Extensions: Temporary Punishments

• The GTS in the above example assumes an 
infinite reversion to the NE of the stage game 
(unrepeated version of the game)

• But, what if:
• players only revert to this NE during a finite 

number of periods, 𝑁𝑁, 
• moving back to cooperation once every player 

observes that both players implemented the 
punishment during 𝑁𝑁 periods?

• Graphically, the right rectangle in the figure 
would be narrower.

• In summary, shortening the punishment, 
while keeping its severity, shrinks the 
parameter values where we can sustain 
cooperation.



Extensions: More Attractive Cheating

• If every player 𝑖𝑖 earns 10 rather than 8 
when she chooses 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 while her 
opponent plays 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶…

• the height of the instantaneous gain from 
cheating in Figure 7.5 increase, thus making 
cheating more attractive.

• Formally, this increases the minimal 
discount factor sustaining cooperation, 
𝛿𝛿,

• where the GTS can be sustained as a SPE if 
𝛿𝛿 ≥ 𝛿𝛿.



Extensions: More Attractive Cheating

• Because the range of 𝛿𝛿′𝑠𝑠 sustaining 
cooperation satisfy 𝛿𝛿 ∈ �𝛿𝛿, )1 , an 
increase in cutoff 𝛿𝛿 entails that 
cooperation emerges in a more 
restricted range of 𝛿𝛿′𝑠𝑠.

• For compactness, the literature says 
that:

• an increase in cutoff  𝛿𝛿 “hinders 
cooperation in equilibrium”, 

• while a decrease in 𝛿𝛿 facilitates such 
cooperation.



Extensions: More Severe Punishments

• If every player earns 0 at the NE of the 
game, rather than 2:

• the right rectangle in Figure 7.3 becomes 
deeper, as depicted in Figure 7.6, 

• indicating a more severe future payoff loss 
from cheating today.

• Intuitively: 
• cheating becomes less attractive, 
• which decreases the minimal discount 

factor sustaining cooperation, 𝛿𝛿,
• implying that the GTS can be sustained 

under a larger range of 𝛿𝛿′𝑠𝑠, i.e., 𝛿𝛿 ∈ � �𝛿𝛿, 1



Extensions: Lag in Detecting Cheating

• However, in some real-life examples, 
players may detect cheating 𝑘𝑘 ∈ 𝑍𝑍+
periods after it happened.

• If:
• 𝑘𝑘 = 0, we would still have immediate 

detection, 
• while 𝑘𝑘 > 0 entails a lag in detecting 

cheating episodes.



Extensions: Lag in Detecting Cheating

• This lag widens the left square in 
Figure 7.7 representing the gain from 
cheating. 

• It is not instantaneous in this setting.
• Meaning that player 𝑖𝑖 enjoys her cheating 

payoff during 1 + 𝑘𝑘 periods. 

• This makes cheating more attractive 
and:

• increases the minimal discount factor 
sustaining cooperation, 𝛿𝛿,

• which hinders cooperation in equilibrium.



Extensions: Lag in Starting Punishments

• A similar argument as in point (4) applies if players:
• Despite detecting cheating immediately after it occurs…
• Need 𝑘𝑘 periods to revert to the NE of the stage game.

• This happens, for instance, when “cooperation” means producing few 
units while “cheating” indicates producing a significantly larger number 
of units.

• If the cheated firm needs several periods to expand its production 
process, the beginning of the punishment phase is, essentially, delayed.

• This lag expand the payoff gain from cheating in the left square of 
Figure 7.7 during 1 + 𝑘𝑘 periods.



Folk Theorem

• Can we also support other, partially cooperative outcomes, where, for instance, players 
choose 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 during only some periods?

• In particular, we seek to identify the per-period payoffs that players earn at different SPEs 
of this game.

• Definition. 
• Per-period payoff. If player 𝑖𝑖’s present value from an infinite payoff stream is defined as 
𝑃𝑃𝑃𝑃𝑖𝑖 = ∑𝑡𝑡=0∞ 𝛿𝛿𝑡𝑡𝑣𝑣𝑖𝑖𝑡𝑡 , her per-period payoff 𝑣𝑣𝑖𝑖 is the constant payoff that solves

𝑃𝑃𝑃𝑃𝑖𝑖 =
𝑣𝑣𝑖𝑖

1 − 𝛿𝛿
or, after solving 𝑣𝑣𝑖𝑖, 𝑣𝑣𝑖𝑖 = 1 − 𝛿𝛿 𝑃𝑃𝑃𝑃𝑖𝑖.
• Intuitively, when player 𝑖𝑖 receives that constant sum 𝑣𝑣𝑖𝑖 in every period, she is indifferent 

between that (flat) payoff stream and her (potentially variable) stream of payoffs, as they 
both yield the same present value, 𝑃𝑃𝑃𝑃𝑖𝑖 .



Feasible and Individually Rational Payoffs

• We now seek to find all SPEs that can be sustained in the infinitely-repeated version 
of the game 

• and, as a consequence, predict which per-period payoffs players earn in each SPE.
• Afterwards, we restrict this set of payoffs to those where every player earns a higher 

payoff than at the NE of the stage game.

• Definition. 
• Feasible Payoffs (FP). A feasible payoff vector 𝑣𝑣 = 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑁𝑁 can be achieved 

by convex combinations of any two  payoff vectors 𝑣𝑣′ and 𝑣𝑣′′.

• Therefore, in payoffs vector 𝑣𝑣, where player 𝑖𝑖 earns 𝑣𝑣𝑖𝑖, is found by a convex 
combination 𝑣𝑣𝑖𝑖 = 𝛼𝛼𝑣𝑣𝑖𝑖′ + 1 − 𝛼𝛼 𝑣𝑣𝑖𝑖′′ where 𝛼𝛼 ∈ 0,1 represents the weight on 𝑣𝑣𝑖𝑖′.

• Intuitively, the FP set captures all possible payoff vectors that players can earn if they 
play the game in different ways.



Example 7.1. Finding FP in the Prisoner’s 
Dilemma Game

• First, each vertex depicts one of the payoff 
pairs that players earn by playing one of the 
pure strategy profiles every period.

• But as Figure 7.8 suggests, FP includes more 
than just the four vertices.

• Convex combinations of these vertices can yield
other, still feasible, per-period payoffs.

• Examples next.

Player 2

Confess Not Confess

Player 1
Confess 2,2 8,0

Not Confess 0,8 4,4

Matrix 7.5. The Prisoner’s Dilemma Game



Example 7.1. Finding FP in the Prisoner’s 
Dilemma Game

• For instance, if players alternate between (C,C) 
and (NC,NC), the per-period payoff is 
0.5*2+0.5*4=3 to each player. 

• Graphically positioned in the diagonal connecting 
(2,2) and (4,4).

• If, instead, players alternate between (C,C) and 
(NC,C), the per-period payoff for:

• player 1 is 0.5*2+0.5*0=1, 
• while that of player 2 is 0.5*2+0.5*8=5.

• Similarly, for all payoff pairs inside the FP set.

Player 2

Confess Not Confess

Player 1
Confess 2,2 8,0

Not Confess 0,8 4,4

Matrix 7.5. The Prisoner’s Dilemma Game



Example 7.1. Finding FP in the Prisoner’s 
Dilemma Game

• Recall that the FP set does not mean that
players earn any payoff pair in the FP every
period.

• Instead, it means that players can play the game
in such a way that, even if their payoffs vary
across time, their per-period payoff would lie
inside the FP.

Player 2

Confess Not Confess

Player 1
Confess 2,2 8,0

Not Confess 0,8 4,4

Matrix 7.5. The Prisoner’s Dilemma Game



Individually Rational Payoffs (FIR)

• Definition. 
• Individually Rational Payoffs (IR). An individually rational (IR) payoff 

vector 𝑣𝑣 = 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑁𝑁 satisfies 
𝑣𝑣𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖𝑁𝑁𝑁𝑁 for every player i, 

• where 𝑣𝑣𝑖𝑖𝑁𝑁𝑁𝑁 denotes her NE payoff in the unrepeated version of the 
game.

• Combining FP and IR, we obtain FIR set (feasible individually 
rational payoffs).

• Example next.



Individually Rational Payoffs (FIR)

• Example 7.2. Finding FIR payoffs. 
• Consider the Prisoner’s Dilemma game of Example 7.1. 
• A per-period payoff of player 𝑖𝑖 is individually rational if 𝑣𝑣𝑖𝑖 ≥ 2,

since every player earns 2 in the NE of the stage game.



Feasibly Individually Rational Payoffs (FIR)

• Figure 7.9 depicts:
• a vertical line representing 𝑣𝑣1 ≥ 2 for 

player 1, which holds for all payoffs to the 
right-hand side of 2, and 

• a horizontal line capturing 𝑣𝑣2 ≥ 2 for 
player 2, which occurs for all payoffs 
above 2.

• The FIR diamond is the shaded area of 
the FP set, indicating that both players 
earn a higher per-period payoff than at 
the NE of the stage game.



Folk Theorem and Cooperation

• Definition. Folk Theorem. 
• Every per-period payoff vector 𝑣𝑣 = 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑁𝑁 in the FIR set can be sustained 

as the SPE of the infinitely-repeated game for a sufficiently high discount factor, 
𝛿𝛿, where 𝛿𝛿 ≥ 𝛿𝛿.

• Graphically, the Folk theorem says that any point in the FIR diamond (on the 
edges or strictly inside) can be supported as a SPE of the infinitely-repeated game 
as long as players care enough about the future (high 𝛿𝛿).

• Examples:
• The uncooperative outcome, where 𝐶𝐶,𝐶𝐶 emerges in every period, can be sustained for all 

values of 𝛿𝛿, yielding per-period payoffs 2,2 as depicted on the southwest corner of the FIR 
diamond.

• Similarly, the fully cooperative outcome, where 𝑁𝑁𝐶𝐶,𝑁𝑁𝐶𝐶 arises in every period, yielding per-
period payoffs 4,4 , can be supported if 𝛿𝛿 ≥ 2

3
.

• What about partial cooperation, with other per-period payoffs? Next slide.



Example 7.3. Supporting Partial Cooperation

• Consider the following modified GTS 
where players:

• Alternate between 𝑁𝑁𝑁𝑁,𝐶𝐶 and 
𝐶𝐶,𝑁𝑁𝐶𝐶 over time, 

• starting with 𝑁𝑁𝑁𝑁,𝐶𝐶 in the first period.
• If either or both players deviates, 

both players revert to the NE of the 
stage game, 𝐶𝐶,𝐶𝐶 , forever.

• To determine whether this modified 
GTS can be sustained as a SPE, we 
must show that no player benefits by 
unilaterally deviating (cheating).

Outcome Payoffs

Period 1 𝑁𝑁𝑁𝑁,𝐶𝐶 0,8

Period 2 𝐶𝐶,𝑁𝑁𝑁𝑁 8,0

Period 3 𝑁𝑁𝑁𝑁,𝐶𝐶 0,8

Period 4 𝐶𝐶,𝑁𝑁𝑁𝑁 8,0

…

Table 7.1. Modified GTS inducing partial cooperation



Example 7.3. Supporting Partial Cooperation

• Odd-numbered periods. When player 1 cooperates in this GTS, her 
stream of discounted payoffs starting at an odd-numbered period 
(e.g. period 1) is

0 + 𝛿𝛿8 + 𝛿𝛿20 + 𝛿𝛿38 + ⋯ = 0 1 + 𝛿𝛿2 + ⋯ + 8 𝛿𝛿 + 𝛿𝛿3 + ⋯
= 8𝛿𝛿 1 + 𝛿𝛿2 + ⋯

=
8

1 − 𝛿𝛿2

since  ∑𝑡𝑡=0∞ 𝛿𝛿2𝑡𝑡 = 𝛿𝛿0 + 𝛿𝛿2 + 𝛿𝛿4 + ⋯ = 1
1−𝛿𝛿2

.



Example 7.3. Supporting Partial Cooperation

• If, instead, player 1 deviates to 𝐶𝐶 in an odd-numbered period, her 
current payoff increases from 0 to 2, yielding a stream of discounted 
payoffs of

⏟2
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

+ 𝛿𝛿𝛿 + 𝛿𝛿22 + 𝛿𝛿32 + ⋯
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑡𝑡𝑡𝑡 𝑁𝑁𝑁𝑁

= 2 1 + 𝛿𝛿 + 𝛿𝛿2 + ⋯ =
2

1 − 𝛿𝛿
• Comparison: Comparing player 1’s payoff streams, we find that she 

sticks to the GTS in every odd-numbered period if
8𝛿𝛿

1 − 𝛿𝛿2
≥

2
1 − 𝛿𝛿

and since 1 − 𝛿𝛿2 = 1 − 𝛿𝛿 1 + 𝛿𝛿 , we can rearrange the above 
equality to obtain 8𝛿𝛿 ≥ 2 1 + 𝛿𝛿 , yielding  𝛿𝛿 ≥ 1

3
.



Example 7.3. Supporting Partial Cooperation
• Even-numbered periods. When player 1 cooperates in this GTS, her stream of 

discounted payoffs starting at an odd-numbered period (e.g. period 1) is

8 + 𝛿𝛿0 + 𝛿𝛿28 + 𝛿𝛿30 + ⋯ = 8 1 + 𝛿𝛿2 + ⋯ + 0 𝛿𝛿 + 𝛿𝛿3 + ⋯ =
8

1 − 𝛿𝛿2

• If, instead, player 1 unilaterally deviates from 𝐶𝐶 to 𝑁𝑁𝐶𝐶, in an even-numbered period, 
her current payoff actually decreases (from 8 to 4), yielding a stream of discounted 
payoffs

⏟4
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

+ 𝛿𝛿𝛿 + 𝛿𝛿22 + 𝛿𝛿32 + ⋯
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑡𝑡𝑡𝑡 𝑁𝑁𝑁𝑁

= 4 + 2𝛿𝛿 1 + 𝛿𝛿 + 𝛿𝛿2 + ⋯ = 4 +
2𝛿𝛿

1 − 𝛿𝛿



Example 7.3. Supporting Partial Cooperation
• Comparison: Therefore, player 1 sticks to the GTS instead of deviating at even-

numbered periods if
8

1 − 𝛿𝛿2
≥ 4 +

2𝛿𝛿
1 − 𝛿𝛿

and since 1 − 𝛿𝛿2 = 1 − 𝛿𝛿 1 + 𝛿𝛿 , we can rearrange this equality to obtain 
8 ≥ 4 1 − 𝛿𝛿 1 + 𝛿𝛿 + 2𝛿𝛿 1 + 𝛿𝛿 , 

which further simplifies to 2𝛿𝛿2 − 2𝛿𝛿 + 4 ≥ 0. 



Example 7.3. Supporting Partial Cooperation
• Comparison:

• This inequality further simplifies to 2𝛿𝛿2 − 2𝛿𝛿 + 4 ≥ 0.
• Plotted here for illustration purposes:

• Showing that 2𝛿𝛿2 − 2𝛿𝛿 + 4 lies above the horizontal axis for all 𝛿𝛿.

• This inequality holds for all admissible values of 𝛿𝛿 ∈ [0,1]
• This means that player 1 sticks to the GTS in every even-numbered period regardless of 

her discount factor.

0.0 0.2 0.4 0.6 0.8 1.0
Delta

1

2

3

4



Folk Theorem
• The Folk theorem provides us with a positive and a negative result. 
• Positive result: 

• We can sustain cooperation in games where such cooperation couldn’t be supported in their unrepeated 
version or in their finitely-repeated versions.

• In other words, players can reach Pareto-improving outcomes.

• Negative result:
• We can reach any per-period payoff in the FIR diamond.
• That’s a large set of SPEs!
• Limited predictive power.



Application to Collusion in Oligopoly

• Consider the duopoly with two firms competing à la Cournot.
• Firms face the same marginal cost of production 𝑐𝑐, where 1 > 𝑐𝑐 ≥ 0
• Inverse demand function is 𝑝𝑝 𝑄𝑄 = 1 − 𝑄𝑄, where 𝑄𝑄 ≥ 0 denotes 

aggregate output
• We know:

• 𝑁𝑁𝑁𝑁 is 𝑞𝑞𝑖𝑖 ,𝑞𝑞𝑗𝑗 = 1−𝑐𝑐
3

, 1−𝑐𝑐
3

• 𝜋𝜋𝑖𝑖 = 1−𝑐𝑐 2

9

• As in the Prisoner’s Dilemma game, we study next if a GTS can be sustained 
as a SPE of the infinitely-repeated version of this Cournot competition 
game.



Application to Collusion in Oligopoly: Collusion

max
𝑞𝑞1,𝑞𝑞2≥0

𝜋𝜋 𝑞𝑞1,𝑞𝑞2 = 1 − 𝑞𝑞1 − 𝑞𝑞2 𝑞𝑞1 − 𝑐𝑐𝑞𝑞1
𝜋𝜋1

+ 1 − 𝑞𝑞1 − 𝑞𝑞2 𝑞𝑞2 − 𝑐𝑐𝑞𝑞2
𝜋𝜋2

Since 𝑄𝑄 = 𝑞𝑞1 + 𝑞𝑞2
max
𝑄𝑄≥0

𝜋𝜋 𝑄𝑄 = 1 − 𝑄𝑄 𝑄𝑄 − 𝑐𝑐𝑐𝑐

which leads to

𝑄𝑄𝐶𝐶 =
1 − 𝑐𝑐

2
𝑞𝑞𝑖𝑖𝐶𝐶 =

𝑄𝑄𝐶𝐶

2
=

1 − 𝑐𝑐
4

𝑝𝑝𝐶𝐶 = 1 − 𝑄𝑄𝐶𝐶 = 1 −
1 − 𝑐𝑐

2
=

1 + 𝑐𝑐
2

𝜋𝜋𝑖𝑖𝐶𝐶 = 𝑝𝑝𝐶𝐶 − 𝑐𝑐 𝑞𝑞𝑖𝑖𝐶𝐶 =
1 − 𝑐𝑐 2

8



GTS in Collusion

• We are now ready to specify the GTS in this game:
1. In period 𝑡𝑡 = 1, every firm 𝑖𝑖 chooses the collusive output 𝑞𝑞𝑖𝑖𝐶𝐶 = 1−𝑐𝑐

4
.

2. In all periods 𝑡𝑡 > 1, every firm 𝑖𝑖 chooses the collusive output 𝑞𝑞𝑖𝑖𝐶𝐶 = 1−𝑐𝑐
4

if both 
firms produced 𝑞𝑞𝑖𝑖𝐶𝐶 in every previous period. Otherwise, every firm 𝑖𝑖 reverts to the 
NE of the stage game, choosing 𝑞𝑞𝑖𝑖 = 1−𝑐𝑐

3
, thereafter.

• To show that this GTS can be sustained in equilibrium, we need to show 
that firms have no incentives to deviate from it:

• at every period 𝑡𝑡, and 
• after any previous history of play.

• We separately analyse whether firms have incentives to deviate from the 
GTS:

• after observing that firms cooperated in previous periods and 
• after observing some uncooperative episodes.



GTS in Collusion

• After a history of cooperation. If both firms cooperated in all 
previous periods, choosing 𝑞𝑞𝑖𝑖𝐶𝐶 , every firm 𝑖𝑖 can collude in period 𝑡𝑡, as 
specified by the GTS, or deviate from this collusive output.

• Profits from collusion. If firm 𝑖𝑖 colludes, it earns 𝜋𝜋𝑖𝑖𝐶𝐶 = 1−𝑐𝑐 2

8
in every 

period, entailing a discounted present value of

𝜋𝜋𝑖𝑖𝐶𝐶 + 𝛿𝛿𝜋𝜋𝑖𝑖𝐶𝐶 + 𝛿𝛿2𝜋𝜋𝑖𝑖𝐶𝐶 + ⋯ =
1 − 𝑐𝑐 2

8 1 − 𝛿𝛿



Profits from Deviation

If, instead, firm 𝑖𝑖 deviates from the collusive output 𝑞𝑞𝑖𝑖𝐶𝐶 , we must first determine firm 𝑖𝑖′𝑠𝑠
most profitable unilateral deviation, which means that firm 𝑗𝑗 still produces the collusive 
output, 𝑞𝑞𝑗𝑗𝐶𝐶 .

max
𝑞𝑞𝑖𝑖≥0

𝜋𝜋 = 1 − 𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑗𝑗𝐶𝐶 𝑞𝑞𝑖𝑖 − 𝑐𝑐𝑞𝑞𝑖𝑖
which leads to

𝑞𝑞𝑖𝑖 𝑞𝑞𝑗𝑗𝐶𝐶 =
1 − 𝑐𝑐

2 −
1
2 𝑞𝑞𝑗𝑗

𝐶𝐶

since 𝑞𝑞𝑗𝑗𝐶𝐶 = 1−𝑐𝑐
4

,

𝑞𝑞𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 = 3 1−𝑐𝑐
8

(This can be directly done by inserting 𝑞𝑞𝑗𝑗𝐶𝐶 = 1−𝑐𝑐
4

into firm i’s BRF.)
Therefore, equilibrium price is

𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷 = 1 − 𝑞𝑞𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑞𝑞𝑗𝑗𝐶𝐶 =
3 + 5𝑐𝑐

8



Profits from Deviation

And the profits,

𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑐𝑐 𝑞𝑞𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 =
9 1 − 𝑐𝑐 2

64
Therefore, if firm 𝑖𝑖 deviates at any period 𝑡𝑡, it earns deviation profits 𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 = 9 1−𝑐𝑐 2

64
in that 

period, but Cournot profits in every period afterward
𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 + 𝛿𝛿𝜋𝜋𝑖𝑖 + 𝛿𝛿2𝜋𝜋𝑖𝑖 + ⋯ = 𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 + 𝛿𝛿𝜋𝜋𝑖𝑖 1 + 𝛿𝛿 + 𝛿𝛿2 + ⋯

= 𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 + 𝜋𝜋𝑖𝑖
𝛿𝛿

1 − 𝛿𝛿

=
9 1 − 𝑐𝑐 2

64
+
𝛿𝛿 1 − 𝑐𝑐 2

9 1 − 𝛿𝛿

Comparison: We can say that at any period 𝑡𝑡 after a history of collusion, firm 𝑖𝑖 keeps colluding if

𝜋𝜋𝑖𝑖𝐶𝐶
1

1 − 𝛿𝛿
≥ 𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 + 𝜋𝜋𝑖𝑖

𝛿𝛿
1 − 𝛿𝛿

⇒ 𝛿𝛿 ≥ 𝛿𝛿 ≡
9

17
Therefore, collusion can be sustained if firms assign a sufficiently high value to future 
profits. Otherwise, collusion cannot be sustained.



After a History of No Cooperation

• If one firm deviated from collusive output 𝑞𝑞𝑖𝑖𝐶𝐶 = 1−𝑐𝑐
4

in any previous period, the GTS 
prescribes that every firm 𝑖𝑖 reverts to the NE of the stage game.

• To confirm that the GTS is a SPE of the infinitely-repeated game, we need to show that 
every firm 𝑖𝑖 has incentives to, essentially, implement this punishment.

• If, upon observing a deviation, firm 𝑖𝑖 behaves as prescribed by the GTS, producing the 
Cournot output, it earns a discounted profit stream of

𝜋𝜋𝑖𝑖 + 𝛿𝛿𝜋𝜋𝑖𝑖 + 𝛿𝛿2𝜋𝜋𝑖𝑖 + ⋯ =
𝜋𝜋𝑖𝑖

1 − 𝛿𝛿
• If, instead, firm 𝑖𝑖 unilaterally deviates from the Cournot output, producing 𝑞𝑞𝑖𝑖 ≠

1−𝑐𝑐
3

, 
while firm 𝑗𝑗 behaves as prescribed by the GTS, its best response function prescribes firm 
𝑖𝑖 to choose:

𝑞𝑞𝑖𝑖
1 − 𝑐𝑐

3
=

1 − 𝑐𝑐
2

−
1
2

1 − 𝑐𝑐
3

=
1 − 𝑐𝑐

3
• In other words, even if firm 𝑖𝑖 wanted to deviate from the GTS, its best response would be 

to behave as prescribed by the GTS.



Minimal Discount Factor supporting collusion

• Our analysis above considered that firms compete à la Cournot, sell a 
homogeneous good, and face the same marginal cost of production, 𝑐𝑐

• However, we could allow for firms to compete in prices, sell 
differentiated products, and/or face different production costs.

• Here, we follow a more general approach.
• In particular, after a history of cooperation, every firm 𝑖𝑖’s present value 

from cooperating in period t is

𝜋𝜋𝑖𝑖𝐶𝐶 + 𝛿𝛿𝜋𝜋𝑖𝑖𝐶𝐶 + 𝛿𝛿2𝜋𝜋𝑖𝑖𝐶𝐶 + ⋯ = 𝜋𝜋𝑖𝑖𝐶𝐶 1 + 𝛿𝛿 + 𝛿𝛿2 + ⋯ = 𝜋𝜋𝑖𝑖𝐶𝐶
1

1 − 𝛿𝛿



Minimal Discount Factor supporting collusion

• If, instead, firm 𝑖𝑖 deviates at period t, it earns 𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 during that period 
but 𝜋𝜋𝑖𝑖𝑁𝑁𝑁𝑁 thereafter, yielding:

𝜋𝜋𝑖𝑖𝐷𝐷𝑒𝑒𝑒𝑒 + 𝛿𝛿𝜋𝜋𝑖𝑖𝑁𝑁𝑁𝑁 + 𝛿𝛿2𝜋𝜋𝑖𝑖𝑁𝑁𝑁𝑁 + ⋯ = 𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 + 𝜋𝜋𝑖𝑖𝑁𝑁𝑁𝑁 1 + 𝛿𝛿 + 𝛿𝛿2 + ⋯

= 𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 + 𝜋𝜋𝑖𝑖𝑁𝑁𝑁𝑁
1

1 − 𝛿𝛿



Minimal Discount Factor supporting collusion

• Therefore, firm 𝑖𝑖 cooperates if and only if

𝜋𝜋𝑖𝑖𝐶𝐶
1

1 − 𝛿𝛿
≥ 𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 + 𝜋𝜋𝑖𝑖𝑁𝑁𝑁𝑁

1
1 − 𝛿𝛿

which we can rearrange as 𝜋𝜋𝑖𝑖𝐶𝐶 ≥ 1 − 𝛿𝛿 𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 + 𝛿𝛿𝜋𝜋𝑖𝑖𝑁𝑁𝑁𝑁. 
• Solving for 𝛿𝛿, yields a minimal discount factor:

𝛿𝛿 ≥
𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 − 𝜋𝜋𝑖𝑖𝐶𝐶

𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 − 𝜋𝜋𝑖𝑖𝑁𝑁𝑁𝑁
≡ 𝛿𝛿



Minimal Discount Factor supporting collusion

𝛿𝛿 ≥
𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 − 𝜋𝜋𝑖𝑖𝐶𝐶

𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 − 𝜋𝜋𝑖𝑖𝑁𝑁𝑁𝑁
≡ 𝛿𝛿

• Minimal discount factor 𝛿𝛿 increases in 𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 − 𝜋𝜋𝑖𝑖𝐶𝐶 .
• As deviations become more attractive, cooperation can only be sustained for 

higher discount factors.

• In contrast, 𝛿𝛿 decreases in 𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 − 𝜋𝜋𝑖𝑖𝑁𝑁𝑁𝑁. 
• When profit loss from reverting to the NE of the stage game become more 

severe, firms have less incentives to cheat, expanding the range of discount 
factors sustaining cooperation.



Minimal Discount Factor supporting collusion

• The above ratio is convenient, as it can be readily applied to different market 
structures:

• markets with two or more firms, selling homogeneous products, with symmetric or 
asymmetric costs, etc.

• We only need to find:
• the NE in the stage game, and its associated profits, 𝜋𝜋𝑖𝑖𝑁𝑁𝑁𝑁

• the collusive output (or prices) that maximize firms’ profits, yielding 𝜋𝜋𝑖𝑖𝐶𝐶 to firm 𝑖𝑖; and
• firm 𝑖𝑖’s optimal deviation, fixing firm 𝑗𝑗′𝑠𝑠 collusive behaviour, so firm 𝑖𝑖’s profits are 𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷

• Inserting profits 𝜋𝜋𝑖𝑖𝑁𝑁𝑁𝑁, 𝜋𝜋𝑖𝑖𝐶𝐶 , and 𝜋𝜋𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 in the above expression for 𝛿𝛿, we obtain 
the minimal discount factor sustaining collusion.



Other Collusive GTS
• We said that the above GTS with perfect collusion, where firms 

maximize their joint profits, can be sustained:
• “as a SPE,” 
• rather than saying “as the unique SPE,” of the infinitely repeated game.

• From the Folk theorem, we know that the other per-period payoffs can 
be supported as SPEs too.



Other Collusive GTS
• The above GTS can be interpreted as the most northwest payoff pair in the FIR set

• since firms earn the highest symmetric payoff relative to what they earn in the NE of the Cournot 
model.

• More generally, we can characterize the line connecting profits in the above GTS and 
profits in the NE of the stage game as follows:

𝜋𝜋𝑖𝑖 = 𝛼𝛼𝜋𝜋𝑖𝑖𝐶𝐶 + 1 − 𝛼𝛼 𝜋𝜋𝑖𝑖𝑁𝑁𝑁𝑁

where weight 𝛼𝛼 ∈ 0,1 can be understood as how close firms are to the perfect collusion. 
• In particular, firm 𝑖𝑖 produces

𝑞𝑞𝑖𝑖 = 𝛼𝛼𝑞𝑞𝑖𝑖𝐶𝐶 + 1 − 𝛼𝛼 𝑞𝑞𝑖𝑖𝑁𝑁𝑁𝑁 = 𝛼𝛼
1 − 𝑐𝑐

4
+ 1 − 𝛼𝛼

1 − 𝑐𝑐
3

=
1 − 𝑐𝑐 4 − 𝛼𝛼

12
Implying that this firm’s output coincides with the collusive output when 𝛼𝛼 = 1, but 
becomes the NE output when 𝛼𝛼 = 0.



Other Collusive GTS

• Consider then, the following GTS
1. In period 𝑡𝑡 = 1, every firm 𝑖𝑖 chooses the output 𝑞𝑞𝑖𝑖 = 𝛼𝛼𝑞𝑞𝑖𝑖𝐶𝐶 + 1 − 𝛼𝛼 𝑞𝑞𝑖𝑖𝑁𝑁𝑁𝑁

2. In all periods 𝑡𝑡 > 1:
• Every firm 𝑖𝑖 chooses output 𝑞𝑞𝑖𝑖 if both firms produced 𝑞𝑞𝑖𝑖 in every previous period. 
• Otherwise, every firm 𝑖𝑖 reverts to the NE of the stage game, choosing 𝑞𝑞𝑖𝑖 = 1−𝑐𝑐

3
, thereafter.



What if the stage game has more than one NE?

• So far, we considered games with a unique NE in its unrepeated 
version. 

• Examples: the Prisoner’s Dilemma game, Cournot quantity competition, or 
Bertrand price competition.

• The NE in these games was rather uncooperative. 
• Yet, we showed that cooperation can be supported as a SPE of the infinitely-

repeated game.

• A natural question is whether cooperation can be sustained in games 
with more than one NE in its unrepeated version as in Matrix 7.6.



What if the stage game has more than one NE?

• The game has two psNEs:
1. A “bad” NE, (B,B), where every player earns a payoff of 2.
2. A “good” NE, (C,C), where every player earns a payoff of 6. 

• Formally, we say that (C,C) Pareto dominates (B,B).
3. Yet, there is an even better outcome, where every player earns higher payoffs: 

• At (A,A) every player earns 8. 
• How can we sustain the cooperative outcome (A,A) being played?

Player 2

A B C

Player 1
A 8,8 -2,10 2,3

B 10,-2 2,2 1,1

C 1,1 1,1 6,6

Matrix 7.6. A game with two NEs



What if the stage game has more than one NE?

• Consider the following GTS:
1. In the first period, every player chooses 𝐴𝐴.
2. In the second period:

• Every player chooses 𝐶𝐶 if 𝐴𝐴,𝐴𝐴 was played in the first period. 
• Otherwise, every player chooses 𝐵𝐵.

Player 2

A B C

Player 1
A 8,8 -2,10 2,3

B 10,-2 2,2 1,1

C 1,1 1,1 6,6

Matrix 7.6. A game with two NEs



Stick-and-carrot

• Informally, this is known as a “stick-and-carrot” strategy, because in the 
second period:

• It prescribes the Pareto dominant NE, 𝐶𝐶,𝐶𝐶 , if players cooperated in the first period.
• But prescribes the Pareto dominated NE, 𝐵𝐵,𝐵𝐵 , if either player was uncooperative.

• Important lesson: 
• While a GTS can specify an outcome that is not a NE of the stage game during the 

first period, such as 𝐴𝐴,𝐴𝐴 ,…
• It cannot prescribe an outcome that is not a NE in the last period.
• Otherwise, if the GTS specified outcome 𝐴𝐴,𝐴𝐴 in both periods, every player would 

have incentives to deviate from 𝐴𝐴 in the second (last) period.
• In summary, when designing GTSs in finitely-repeated games, we can:

• “Shoot for the stars” during T-1 periods, but…
• must settle for a NE in the last round of interaction.



Stick-and-carrot, Solution

Second period:
• Technically, there are 9 outcomes in each stage, for a total of 92 = 81 terminal nodes
• Out of the 9 second-period subgames, there is only one initiated after outcome 
𝐴𝐴,𝐴𝐴 was played in the first period. 
• The remaining 8 second-period subgames emerge because one or both players did not select 
𝐴𝐴 in the first period.

• Non-cooperative history. Upon observing any outcome different from 𝐴𝐴,𝐴𝐴 in the 
first period:

• Player 𝑖𝑖 anticipates that player 𝑗𝑗 will play 𝐵𝐵 in the second period. 
• Player 𝑖𝑖 does not have incentives to deviate from the GTS in the second period, since 𝐵𝐵 is a 

best response to 𝐵𝐵 (see middle column, for instance).
• Cooperative history. If, instead, player 𝑖𝑖 observes that outcome 𝐴𝐴,𝐴𝐴 was played in 

the first period:
• She expects that player 𝑗𝑗 will choose 𝐶𝐶 in the second period. 
• Therefore, player 𝑖𝑖 does not want to deviate from the GTS in the second period, since 𝐶𝐶 is a 

best response to 𝐶𝐶 (see right column, for instance).



Stick-and-carrot, Solution

• First period:
• If player 𝑖𝑖 chooses 𝐴𝐴, as prescribed by the GTS, her payoff stream is 

8 + 𝛿𝛿𝛿, 
since he anticipates that 𝐶𝐶,𝐶𝐶 will be played in the second period (the Pareto 
dominant NE, or “carrot”)

• If, instead, player 𝑖𝑖 unilaterally deviates:
• Her best deviation is to 𝐵𝐵, which yields a payoff of 10 today, 
• but that triggers outcome 𝐵𝐵,𝐵𝐵 , the Pareto dominated NE or “stick,” in the second period, 
• Payoff stream from deviation is, then:

10 + 𝛿𝛿𝛿.

• Comparison: player 𝑖𝑖 behaves as prescribed by the GTS in the first period if

8 + 𝛿𝛿𝛿 ≥ 10 + 𝛿𝛿𝛿 ⇒ 𝛿𝛿 ≥
1
2



Stick-and-carrot, Solution

• Cooperation can, then, be sustained if players assign a sufficiently 
high weight to future payoffs.

• Players condition last-period play
• Choosing the good or bad NE.
• on whether players were cooperative or uncooperative in previous 

interactions. 

• In stage games with a unique NE, we couldn’t condition last-period 
play. 

• Players will just behave according to the unique NE.
• This inability to condition future play lead to the “unraveling” result, where 

players behave as in the stage game during every period of interaction.



Modified GTSs: An eye for an eye

• We now consider modified GTSs.
• “An eye for an eye”:

• Code of Hammurabi, written around 1750 BC.
• It prescribes that individuals start cooperating, as in standard GTSs.
• However, if an individual is uncooperative: 

• the victim can be uncooperative, inflicting the same damage to the cheater,
• and then players return to cooperation.

• In an infinitely-repeated game context, this adage means that, if a player cheats:
• the cheater player gets to cheat during one period while the cheating player cooperates in 

that same period (so punishment phase only lasts one period), 
• afterwards players return to cooperation



Modified GTSs: An eye for an eye

• To implement this cheating sequence in a GTS, consider the game in 
Matrix 7.7:

1. In the first period, every player 𝑖𝑖 chooses C
2. In subsequent periods:

1. Every player 𝑖𝑖 chooses 𝐶𝐶 if (𝐶𝐶,𝐶𝐶) was played in all previous periods. 
2. Otherwise, every player reverts to the NE of the stage game, (𝐵𝐵,𝐵𝐵).

• This GTS can be sustained if 𝛿𝛿 ≥ 2
3

(see Exercise 7.17). Player 2

A B C

Player 1
A 0,0 4,2 5,-2

B 2,4 8,8 14,3

C -2,5 3,14 10,10

Matrix 7.7. An eye for an eye



Modified GTSs: An eye for an eye
• But what about using a GTS that follows the “an eye for an eye” adage?

• The punishment phase now prescribes that the victim gets to cheat her opponent 
for a period.

• Then they return to the cooperative outcome (𝐶𝐶,𝐶𝐶) thereafter. 
• As an illustration, if player 1 cheats, deviating to 𝐵𝐵 while player 2 still 

cooperates choosing 𝐶𝐶, table 7.2 summarizes the sequence of outcomes.

Period 𝑡𝑡 − 1 Period 𝑡𝑡 Period 𝑡𝑡 + 1

Outcome 𝐵𝐵,𝐶𝐶 𝐶𝐶,𝐵𝐵 𝐶𝐶,𝐶𝐶

Payoffs 14,3 3,14 10,10

Who cheats? 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 2 No one

Table 7.2. Timing for an eye-for-an-eye GTS



After a History of Cooperation

• If no player has cheated on previous periods, player 𝑖𝑖’s payoff steam from 
cooperating is

10 + 10𝛿𝛿 + 10𝛿𝛿2 + ⋯
• If, instead, player 1 deviates, we first find that, conditional on player 2 

cooperating, player 1’s BR is to play 𝐵𝐵, earning a payoff of 14.
• Therefore, player 1’s deviation:

• Increases her current payoff from 10 to 14, 
• But then triggers a punishment, which reduces her payoff to 3 during one period. 
• Afterwards, players return to cooperation.

• In summary, the stream of payoffs that player 1 earns when deviating is
�14

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
+ �3𝛿𝛿

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
+ 10𝛿𝛿2 + 10𝛿𝛿3 + ⋯

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
Therefore, player cooperates if and only if

10 + 10𝛿𝛿 + 10𝛿𝛿2 + ⋯ ≥ 14 + 3𝛿𝛿 + 10𝛿𝛿2 + 10𝛿𝛿3 + ⋯
which simplifies to 10 + 10𝛿𝛿 ≥ 14 + 3𝛿𝛿, or 𝛿𝛿 ≥ 4

7
.



After a History of Cheating

• When one player cheats, the GTS prescribes that the cheating player 
cooperates for one period, playing 𝐶𝐶, while her opponent cheats in that 
period, choosing 𝐵𝐵.

• If player 1 cheats in period 𝑡𝑡 − 1, the GTS prescribes that 𝐶𝐶,𝐵𝐵 is played in 
period 𝑡𝑡, and 𝐶𝐶,𝐶𝐶 occurs in all subsequent periods, yielding

⏟3 +
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

10𝛿𝛿 + 10𝛿𝛿2 + 10𝛿𝛿3 + ⋯
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

• If player 1 does not choose 𝐶𝐶 in period 𝑡𝑡, being cheated, her best deviation 
is to 𝐵𝐵 since, conditional on player 2 choosing 𝐵𝐵 in period 𝑡𝑡 (see Table 7.2), 
player 1’s best response is 𝐵𝐵, leading to a payoff stream

⏟8
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

+ �3𝛿𝛿
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

+ 10𝛿𝛿2 + 10𝛿𝛿3 + ⋯
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐



After a History of Cheating

• Intuitively, if the cheating player does not follow the GTS, not allowing 
the victim to cheat during one period, he only postpones the return 
to cooperation.

• Therefore, player 1 allows player 2 to cheat her after player 1 cheated 
in the first place, if and only if

3 + 10𝛿𝛿 + 10𝛿𝛿2 + 10𝛿𝛿3 + ⋯ ≥ 8 + 3𝛿𝛿 + 10𝛿𝛿2 + 10𝛿𝛿3 + ⋯
which coincide after the third term, 10𝛿𝛿2, and for all subsequent 
periods. We can then rewrite this inequality as

3 + 10𝛿𝛿 ≥ 8 + 3𝛿𝛿 ⇒ 𝛿𝛿 ≥
5
7



Summary

• Comparing this condition on 𝛿𝛿 with that found after a history of 
cooperation, 𝛿𝛿 ≥ 4

7
, we see that condition 𝛿𝛿 ≥ 5

7
is more demanding 

than 𝛿𝛿 ≥ 4
7

since  5
7
≥ 4

7
. 

• In other words, if condition 𝛿𝛿 ≥ 5
7

holds, condition 𝛿𝛿 ≥ 4
7

must also 
be satisfied, so 𝛿𝛿 ≥ 5

7
is a sufficient condition for cooperation.



Comparing different GTS: 
An-eye-for-an-eye GTS vs Standard GTS
• Equity of payoffs:

• We find that the punishment phase is more equitable in the former than the latter since the 
cheater party is compensated in the following period, when she cheats.

• Under the standard GTS, however, the cheated party sees its payoff decrease during the 
cheating period, and then both players revert to the NE of the stage game,  yielding a lower 
per-period payoff than the cheater’s.

• Minimal discount factors: 
• An-eye-for-an-eye GTS can be sustained if 𝛿𝛿 ≥ 5

7
,

• Standard GTS can be sustained if 𝛿𝛿 ≥ 2
3
, 

• Cooperation is, then, more difficult to arise in the former than the latter since  5
7
≥ 2

3
.

• Intuition: The punishment phase in this GTS requires the cheating party to be 
cheated during one period, which is not very attractive for this player, generating 
strong incentives to deviate from the GTS at precisely that moment.



Short and Nasty Punishments

• Consider the same payoff matrix as before.
• The punishment is now 𝐴𝐴,𝐴𝐴 , yielding the lowest symmetric payoff 

in the matrix, 0,0 , and players return to cooperation immediately 
after.

• Consider the GTS as follows:
1. In the first period, every player 𝑖𝑖 chooses 𝐶𝐶
2. In subsequent periods:

a. Every player 𝑖𝑖 chooses 𝐶𝐶 if 𝐶𝐶,𝐶𝐶 was played in all previous periods
b. Otherwise, every player chooses 𝐴𝐴 during one period. If 𝐴𝐴,𝐴𝐴 was played in the last 

period, every player selects 𝐶𝐶 thereafter



Short and Nasty Punishments

• If player 1 cheats, deviating to 𝐵𝐵 while player 2 still cooperates 
choosing 𝐶𝐶

• Table 7.3 summarizes the sequence of outcomes if players behave 
according to this GTS

Period 𝑡𝑡 − 1 Period 𝑡𝑡 Period 𝑡𝑡 + 1

Outcome 𝐵𝐵,𝐶𝐶 𝐴𝐴,𝐴𝐴 𝐶𝐶,𝐶𝐶

Payoffs 14,3 0,0 10,10

Table 7.3. Timing of the short-and-nasty punishments GTS



Short and Nasty Punishments
• Cooperation can be sustained with this GTS if 𝛿𝛿 ≥ 2

5
.

• (Exercise 7.1, as a practice)

• Table 7.4 reports the minimal discount factor 𝛿𝛿 under different GTS in 
the game in Matrix 7.7, where 5

7
> 2

3
> 2

5
.

Minimal discount factor, 𝛿𝛿

Standard GTS, section 7.4.2 𝛿𝛿 =
2
3

An-eye-for-an-eye GTS, section 7.8.1 𝛿𝛿 =
5
7

Short-and-nasty-punishments GTS, 
section 7.8.2 𝛿𝛿 =

2
5

Table 7.4. Minimal Discount Factors sustaining cooperation in the game in Matrix 7.7 when using different GTS



Imperfect Monitoring

• Players may imperfectly monitor her rival’s actions, observing which 
action she chose with a certain probability.

• Consider Matrix 7.8:
• 𝐶𝐶,𝐶𝐶 is the NE of the stage game, 
• but 𝑁𝑁𝐶𝐶,𝑁𝑁𝐶𝐶 would increase both players’ payoffs from 2 to 4.

Player 2

Confess Not Confess

Player 1
Confess 2,2 8,0

Not Confess 0,8 4,4

Matrix 7.8. The Prisoner’s Dilemma Game



Imperfect Monitoring

• Under imperfect monitoring, is player 𝑗𝑗 chooses to cooperate, 𝑁𝑁𝑁𝑁, we assume 
that, for simplicity, player 𝑖𝑖 cannot perfectly detect deviation to 𝐶𝐶.

• If, instead, player 𝑗𝑗 chooses 𝐶𝐶, the probability that player 𝑖𝑖 observes a 
deviation from 𝑁𝑁𝑁𝑁 is 𝑝𝑝 ∈ 0,1 .

• Intuitively:
• when probability 𝑝𝑝 → 0, deviations are rarely observed, 
• while when 𝑝𝑝 → 1, deviations are almost always observed, as in a context with perfect 

monitoring.

Player 2

Confess Not Confess

Player 1
Confess 2,2 8,0

Not Confess 0,8 4,4

Matrix 7.8. The Prisoner’s Dilemma Game



Imperfect Monitoring

• Consider the standard GTS in this context:
1. In the first period, every player chooses 𝑁𝑁𝑁𝑁.
2. In every subsequent period, every player chooses 𝑁𝑁𝑁𝑁 if 𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 was observed in 

all previous periods. Otherwise, revert to the NE of the stage game, 𝐶𝐶,𝐶𝐶 ,
thereafter.

• That is, the cooperative outcome 𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 is now observed but it may not 
have been played. 

• This suggests that outcome 𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 may not have been played, because at least 
one person deviated, but cooperation continues if such outcome is observed.

• The opposite also applies: 
• Outcome 𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 may have been played, but cooperation stops if one of both 

players did not observe such outcome in a previous period.



After a history of observed cooperation

• If both players observe outcome 𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 in all previous periods, player 𝑖𝑖’s 
payoff stream from cooperating is

4 + 4𝛿𝛿 + 4𝛿𝛿2 + ⋯ =
4

1 − 𝛿𝛿
• If, instead player 𝑖𝑖 unilaterally deviates to 𝐶𝐶, her payoff increases to 8 in the 

current period, but in the next period:
• Player 𝑗𝑗 detects her deviation with probability 𝑝𝑝, reverting to the NE of the stage 

game with a payoff of 2 forever, or…
• Player 𝑗𝑗 doesn’t detect this deviation with probability 1 − 𝑝𝑝 , which lets player 𝑖𝑖

return to cooperation (choosing 𝑁𝑁𝑁𝑁 tomorrow) as if no deviation ever happened. 
• In summary, player 𝑖𝑖’s payoff stream from unilaterally deviating to 𝐶𝐶 is

⏟8

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑.𝑡𝑡𝑡𝑡 𝐶𝐶

+ 𝛿𝛿 𝑝𝑝
2

1 − 𝛿𝛿

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

+ 1 − 𝑝𝑝
4

1 − 𝛿𝛿

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈



After a history of observed cooperation

• For player 𝑖𝑖 to cooperate after a history 
of cooperation, we need that
4

1 − 𝛿𝛿
≥ 8 + 𝛿𝛿 𝑝𝑝

2
1 − 𝛿𝛿

+ 1 − 𝑝𝑝
4

1 − 𝛿𝛿

And solving for 𝛿𝛿, yields

𝛿𝛿 ≥
2

2 + 𝑝𝑝
≡ 𝛿𝛿 𝑝𝑝

• Figure 7.9 depicts the minimal discount 
factor 𝛿𝛿 𝑝𝑝 .



After a history of observed cooperation

⇒ 𝛿𝛿 ≥
2

2 + 𝑝𝑝
≡ 𝛿𝛿 𝑝𝑝

• As deviations are more likely detected 
(higher 𝑝𝑝): 

• the expected punishment increase, 
• expanding the range of 𝛿𝛿′𝑠𝑠 sustaining 

cooperation.

• In contrast, when deviation cannot be 
detected 𝑝𝑝 = 0 :

• the minimal discount factor becomes 𝛿𝛿 0 = 1,
• implying that collusion cannot be supported in 

equilibrium.



After a history of observed deviation

• If player observes that 𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 was not played in a previous period, 
this means that player 𝑗𝑗 did not cooperate.

• If player 𝑖𝑖 behaves as prescribed by the GTS, she should revert to the 
NE of the stage game, 𝐶𝐶,𝐶𝐶 , thereafter, earning a payoff stream

2 + 2𝛿𝛿 + 2𝛿𝛿2 + ⋯ =
2

1 − 𝛿𝛿



After a history of observed deviation

• If, instead, player 𝑖𝑖 deviates, choosing 𝑁𝑁𝑁𝑁 while player 𝑗𝑗 chooses 𝐶𝐶 (recall that 
this is a unilateral deviation from the GTS, upon observing no cooperation in 
previous periods) player 𝑖𝑖 earns 0 in this period. 

• Players then play 𝐶𝐶,𝐶𝐶 in all subsequent periods yielding

0 + 2𝛿𝛿 + 2𝛿𝛿2 + ⋯ = 2𝛿𝛿 1 + 𝛿𝛿 + 𝛿𝛿2 + ⋯ =
2𝛿𝛿

1 − 𝛿𝛿
• Therefore, upon observing a deviation, player 𝑖𝑖 prefers to behave as prescribed 

by the GTS than deviating from it since
2

1−𝛿𝛿
≥ 2𝛿𝛿

1−𝛿𝛿
⇒ 𝛿𝛿 ≤ 1, which holds by assumption since 𝛿𝛿 ∈ [ )0,1 .

• Overall, the only condition that we need to support this GTS as SPE is 𝛿𝛿 ≥ 𝛿𝛿 𝑝𝑝 , 
as found above.
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