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Introduction

* We have considered games that had at least one NE
* Prisoner’s Dilemma, Battle of the Sexes, and Chicken games
e But do all games have at least one NE?

* |f we restrict players to choose a specific strategy with certainty,
some games may not have a NE.

* This occurs when players do not want to be predictable —playing in the
same way every time they face the game —such as in board games and
professional sports.



Introduction

* Example: Penalty kicks in Soccer

Kicker
Aim left Aim Right
_ Dive Left 0,0 -10,16
Goalie _
Dive Right -10,16 0,0

Matrix 5.1a. Anticoordination Game
* BR;(L) =L, BR:(R) = R for the Goalie, and
* BRy(L) = R; BR¢(R) =L

* Intuitively, the goalie tries to move in the same direction as the kicker, so she
prevents the latter from scoring.

. Meanlwhile, the kicker seeks to aim to the opposite location of the goalie to score
a goal.



Pure Strategy Nash Equilibrium (psNE)

* Definition. Strategy profiles where players use a specific strategy with 100
percent probability are referred to as “pure-strategy NE”

Kicker
Aim left Aim Right
Dive Left 0,0 -10,16
Goalie
Dive Right -10,16 0,0

Matrix 5.1b. Anticoordination Game underlining best response payoffs

* In the above game, if we restrict players to use a specific strategy, there will be no
mutual best response, and this game will have no NE, i.e., psNE = {©

 However, if we allow players to randomize, such as playing left with probability =
1/., and right with the remaining probability = 2/5, we can find the NE of the
game.

* (These strategies are called Mixed Strategy NE (msNE), which we discuss in later slides.)



Another Example

Consider a game where police department chooses where to locate most of its police
patrols and, simultaneously, a criminal organization decides where to run its business

Matrix 5.2 shows that the police seeks to choose the same action as the criminal, while
the latter seeks to miscoordinate by selecting the opposite location as the police patrol to
avoid being caught.

Criminal
Street A Street B
Street A 10,0 -1,6
Police
Street B 0,8 7,-1

Matrix 5.2. Police and Criminal Game

A similar argument applies to firm monitoring, such as a polluting firm choosing how
many emissions to abate and an environmental protection agency deciding the frequency
of its inspections.



Mixed Strategy

* Consider an individual i with a binary strategy set S; = {H, L}
representing, for instance, a firm choosing between high and low
prices.

* Define a player i’s mixed strategy (or randomization) as a probability

distribution over her pure strategies ( H and L), as follows g; =
to;(H), 0;(L)}, where

oi(H)=p and g;(L)=1-p

indicating the probability assignhed to each strategy s;.
* We require that g;(H),0;(L) = 0 and g;(H) + o0;(L) = 1.



Mixed Strategy

* Definition. Mixed Strategy. Consider a discrete strategy set S; = {s{, Sy, ..., S, }
where m = 2 denotes number of pure strategies. The mixed strategy

0; = {0i(51),0(s2), .., 0;(Sm)}
is a probability distribution over the pure strategies in S;, with the property that:
1. o0;(s;) = 0forevery pure strategy sy, and

2’ Zf{nzl Gl(Sk) — 1

* When mixed strategy concentrates all probability weight on a pure strategy
ai(sj) = 1 while o;(s;) = 0forallj # k,

it is commonly called a “degenerated mixed strategy” because, graphically, it
collapses to a pure strategy.



Mixed Strategy

 However, to avoid unnecessary complications, we only use the term “mixed
strategy” to probability distributions over at least two pure strategies.

* As a remark, the above definition can be applied to games where players
choose their strategies from a continuous strategy space, e.g., an output
level so that s; > 0.

* In this context, player i’'s probability distribution over her pure strategies in
S; can be represented with a cumulative distribution function

Fi: Si — [0,1]
mapping every strategy s; € S; into cumulative probability.

* For instance, if s; denotes firm i’s output level, the probability that this firm
produces an output level equal or lower than 5 is F;(5) and, because F;(5)
is a probability, it must satisfy F;(5) € [0,1].



Best Response with Mixed Strategies

* Definition. Best response with Mixed Strategies. Player i’s mixed strategy
0; is a best response to her opponents’ mixed strategy o_; if and only if her
expected utility from g; satisfies

EU;(0;,0_;) = EU;(ag{,0_;) forallg] # o;

* Mixed strategy o; is player i's best response to her opponents’ mixed
strategy o_; If no other randomization o; (potentially including the use of
pure strategies) yields a higher expectedl utility than o; does.

* We use expected utility because Flayer i needs to compute her expected
payoff from randomizing over at least two of her pure strategies and,
potentially, her rivals also randomize.



Mixed Strategy Nash Equilibrium (msNE)

* Definition. Mixed Strategy Nash Equilibrium (msNE). A strategy
profile (g;', ;) is a mixed strategy Nash equilibrium if and only if
og; = BR;(0>;) for every player i.

* Therefore, when player i chooses her equilibrium strategy g;’, she is optimally
responding to her opponents’ strategies, 7 ;,

* implying that players are choosing mutual best responses and, thus, have
no incentives to unilaterally deviate.

* This definition is, then, analogous to that of the pure strategy NE in Chapter 3,
but using mixed strategy o; rather than pure strategy s;.



Goalie Example Revisited

Kicker
Prob. q Prob. 1-q
Aim left Aim Right
Prob. p Dive Left 0,0 -10,16
Goalie Prob.1-p  Dive Right -10,16 0,0

Matrix 5.3. Anticoordination Game —including probabilities

For mixed strategy

* The goalie must be indifferent between diving left and right. Her expected utility from diving
left must coincide with that of diving right

EUGoalLe (Left) — EUGoalLe (Right)

* Let p and (1 — p) denote the Erobablllty with which the goalie randomizes, and g and
(1 —q) bethe probablllty with which the kicker randomizes

* Intuitively,

* p = 1 means that the goalie dives left with 100 percent probability, whereas p = 0 indicates the
opposite

* 0 < p <1 means the goalie randomizes her diving decision
* Similar argument applies to Kicker’s probability, g



Tool 5.1. How to Find msNEs in a two-player
game

1. Focus on player 1. Find her expected utility of choosing one pure
strategy. Repeat for each pure strategy.

2. Set these expected utilities equal to each other.

3. Solve for player 2’s equilibrium mixed strategy, o,.

a. If players have two pure strategies, step 2 just entails an equality. Solving for g, in
this context yields a probability, o, which should satisfy 0 < g, < 1.

b. If players have three pure strategies, step 2 entails several equalities, which gives
rise to a system of two equations and two unknowns. The solution to this system
of equation is, nonetheless, a player 2’s equilibrium mixed strategy, g, .

4. Focus now on player 2. Repeat steps 1-3, to obtain player 1’s equilibrium
mixed strategy, o; .



Example 5.1. Finding msNE: Goalie

Kicker
Prob. q Prob. 1-q
Aim left Aim Right
Prob. p Dive Left 0,0 -10,16
Goalie p oy 1.p DiveRight | -10,16 0,0

Matrix 5.3. Anticoordination Game —including probabilities

* Goalie’s expected utility from diving left:

EUgoaiie(Left) = q x 0 + (1—q)x (-10) =10q — 10

kicker aims kicker aims
left right

* Goalie’s expected utility from diving right:
EUgoqiie(Right) = q X (Y_lO) + (1—q) XYO = —10q

kicker aims kicker aims
left right

* EUgoalie (Left) = EUgoaiie (Right)
10g — 10 =-10q = q = 1/2



Example 5.1. Finding msNE: Kicker

Following the same steps we have,

* Kicker’s expected utility from aiming left:
EUgicker(Left) = px0 + (1—p)X 16 =16 — 16p

goalie dives goalie dives
left right

» Kicker’s expected utility from aiming right:
EUgicker(Right) = p X 16 + (1 —p)Xx 0=16p

goalie dives goalie dives
left right

* EUkicker (Left) = EUkicker (Right)
16 —16p = 16p =>p = 1/,

+ msNE = ((3 Dive Left,5 Dive Right); (5 Aim Left,5 Aim Right)

Goalie Kicker
« Remember that players do not need to randomize with the same probability. They only did in this case because payoffs
are symmetric in Matrix 5.3.



Graphical Visualization: msNE

* How to graphically represent the best response of each player?

e Let’s start with the Goalie

* Goalie chooses to dive left if:
EUGoalie (Left) > EUGoalie (Right)

10g —10 > —-10q =q > 1/,
« Mathematically, this means that, for all ¢ > 1/,, the goalie chooses to dive
left (i.e., p = 1).
* In contrast, for all g < 1/,, the goalie responds by diving right (i.e., p = 0).




Graphical Visualization: msNE

We can summarize the BRF of Goalie as: (Kicken) g
1|
:
( 1 ' Left (p=1) for
Leftif q > 2 ¢ allg>12
1 =1 ,., BRGM:‘:@(Q} [
BRgoaiie(q) § {Left,Right} ifq = E, and q= "éi- ----------------- :
1 |
Right ifq < = !
2 Right (p=0) for 4
all g<1/2
!
0 1 -(Goalie)p

Figure 5.1 depicts this best response
function

Figure 5.1. The goalie’s best responses.



Graphical Visualization: msNE

* For Kicker

e Kicker aims left if:

EUKicker (Left) > EUKicker (Right)
16 —16p > 16 =p< 1/,

« Mathematically, this means that, for all p < 1/,, the kicker chooses to aim
left (i.e., g = 1).
* In contrast, for all p > 1/,, the kicker aims right (i.e., g = 0).




Graphical Visualization: msNE

(Kicker) ¢ Left (¢g=1) for

. . all p<1/2
We can summarize the BRF of Kicker as: | St -
1
- :BRﬁicaﬂ?a{p)
| 1 -
Leftifp< = .
2 [ |
BRgoaiie(q) { {Left,Right}ifp = %,and :
]
Right ifp > 1 :
2 ]
|
: Right (¢=0) for
i : . ' all p>1/2
Figure 5.2 depicts this best response 0 — T (Goalie) p
function

Figure 5.2. Kicker’s best responses.



Graphical Visualization: msNE

* Putting together their
response

* Figure 5.3 superimposes the
goalie’s and the kicker’s best
response functions

* The player’s best responses
only cross each other at one
point, wherep = q = 1/,

(Kicker) g
[ I —————— .
[ §
B ]
'BRK::J@'(P) :
- :
BRoouidd) ¢ ;
Goalie\q b
=] 2boconcscsncegescccsss s
q 5 -: RS _
: N
B msNE
-
[ ]
1]
[
s oeoeseeeses—>
0 p=1/12 1 (Goalie) p

Figure 5.3. Both players’ best responses.



Some Lessons

* Indifference.
* Ifitis optimal to randomize over a collection offpure strategies, then a player
receives the same expected payoff from each of those pure strategies.
* When analyzing player i, ignore her probability to randomize
* We make player i indifferent between two (or more) of her pure strategies, we write
layer i’s expected utility from choosing pure strategy, s;, EU;(s;) as a function of
er rival’s randomization
* Never use strictly dominated strategies
* If a pure strategy is strictly dominated, then such a pure strategy cannot be part of
PSNE or a msNE.
* Odd number of equilibria

* In almost all finite games (games with a finite set of players and available actions),
there is a finite and odd number of equilibria



Extensions: Mixed Strategy Equilibria in
Games with k = 3 pure strategies

* Example: Rock-Paper-Scissors game

Player 2 Player 2
R P S R P S
R 0,0 -1,1 1,-1 R 0,0 -1,1 1,-1
Player1 P 1-1 0,0 -1,1 Player1 P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0 S -1,1 1,-1 0,0

Matrix 5.4a. Rock-Paper-Scissors Game —
Underlining best response payoffs

Matrix 5.4. Rock-Paper-Scissors Game
* No psNE exists in this game

* Player’s payoffs are symmetric entailing that they randomize with the same
probabilities: r,p, and 1 — r — p, where r denotes the probability that every
player i chooses Rock, p represents the probability she selects Paper, and

1 —r — p is the probability she plays Scissors



Example 5.2. Finding msNE when players have
three pure strategies

* If player i randomizes, she must be indifferent between all her three pure strategies
EU;(R) = EU;(P) = EU;(S)

* We separately find player 1’s expected utility from each pure strategy

* To compute EU;(R), focus at the top row of Matrix 5.4a where:
* |f player 2 chooses Rock, which happens with probability r, player 1 earns a payoff of zero,
* If player 2 chooses Paper, which happens with probability p, player 1 earns a payoff of -1, and
* If player 2 chooses Scissors, which happens with probability 1 — r — p, player 1 earns a payoff of 1
* In summary, player 1’s expected utility from Rock is:

EU;(R)=r0+p(-D+ (1 —-7r—p)1l=1—1r—-2p

* Working in a similar way:
EU,(P)=r1+p0+ (1 —-7r—p)(—-1)=2r+p-—-1

EU;S)=r(-1)+p1+(1—-r—p)0=p—r



Example 5.2. Finding msNE when players have
three pure strategies

 We can now set the expected utilities from Rock, Paper, and Scissors equal to each other.
First, from EU;(R) = EU,(S) we find that:

l—-r—2p=p—r >p=
Second, EU{(P) = EU,(S) we find that: .
2r+p—1l=p—r=r= 3

3

1
Therefore 1 —r—p = >
We can then summarize the msNE of this game as that, every player i, randomizes
according to the mixed strategy

111

msNE(,p',1—p =) ={(5,5.5)]
which means that every player assigns the same probability weight to each of her pure strategies.



Finding Mixed Strategy Equilibria in games
with N = 2 players

“Snob Effect” game

e Consider that every player i independently and simultaneously chooses
between alternatives X and Y, where X can be interpreted as the snob
option, while Y is the conforming option.

* If she is the only player choosing X, she earns a payoff of a (she is the “cool
girl” in the group), but a payoff of b otherwise (if anyone else chooses X too)

* When she chooses Y, she earns a payoff of ¢ regardless of how many other
players choose X.

 Payoffs satisfya > ¢ > b.



Finding Mixed Strategy Equilibria in games
with N = 2 players

“Snob Effect” game
* Before extending the game to N players, let us consider the two-player version.

Player 2
Prob. p Prob. 1-p
X Y
Prob. p X b, b ac
Player
1 Prob.1-p Y c a C,C

e Two pure strategy NEs: (X,Y) and (Y,X), as in anticoordination games.

 What about msNE?
* Player 1 is indifferent between X and Y if and only if pb + (1 — p)a = pc + (1 — p)c, which
yields p* = a— (Same probability for player 2, since payoffs are symmetric.)
* Probability p |s positive and smaller than one since a > ¢ > b. Check!
* p* isincreasingin a — ¢, but decreasing in a — b. Intuition.



Finding Mixed Strategy Equilibria in games
with N = 2 players

“Snob Effect” game
* We can now extend the game to N players.

* |n this setting, we seek to identify a symmetric msNE where every player i
chooses X with probability p.

* Therefore, we need to:

1. Find the expected utility from X and from Y, and
2. Set these expected utilities equal to each other to obtain the equilibrium probability

*

p



Game continued

* Expected Utility from X. When player i chooses X, his expected utility is

EU(0 = (1-p)" ™" a+ [1-(1-p)" b

No other player At least someone else
chooses X chooses X

To understand the probabilities of each event, recall that the probability with
which every player chooses X is p, so the probability with which she plays Y
is 1 — p, implying that all other N — 1 players (everyone but player i) choose
alternative Y with probability

gl—p) X (1—p)x...x(1_p2:(1_p)N_1

N-—1 times



Game continued

* Expected Utility from Y. When player i chooses Y, she earns a payoff
of ¢ with certainty, entailing that EU;(Y) = c.

* Indifference condition. If player i randomizes between X and Y, she
must be indifferent, thus earning the same expected payoff from each
pure strategy, EU;(X) = EU;(Y), which means:

A-p"ta+[1- A-p)"b=c

Rearranging, yields




Comparative Statics

* Forinstance, whena = 2,b = 0,and c =
1, the probability simplifies to

=1 - (1)

which decreases in the number of players, N.

* Intuitively, as the population grows, the
probability that someone selects
alternative X increases, driving each player
to individually decrease their probability of
choosing the snob option X, opting instead
for conforming option Y, with probability

1—p* = (1/,)N-1, which increase in N

Figure 5.4. Equilibrium probability p*.



1

Comparative Statics p*:1_<c—b>m

a—b>b

* We can also examine how the above expression p™ changes when:

* Players are more attracted to the snob option, a — b, which captures the
payoff gain of snob option relative to the conforming option.

* Anincrease in a — b increases the probability of choosing X.

* In contrast, an increase in ¢ — b, which measures the payoff loss of
not being the only individual choosing X, decreases the probability of
choosing X.




Strictly Competitive Games

* Definition. Strictly Competitive Games. A two-player game is strictly
competitive if, for every two strategy profiles s and s’,
e ifu(s) > uy(s’) thenu,(s) < u,(s’); and
o ifu(s) = uy(s’), thenu,(s) = u,(s").

* Intuitively:
* |f player 1 prefers strategy profile s to s’, then player 2 has the opposite preference

order: preferring s’ over s; and
* if player 1 is indifferent between s and s’, player 2 must also be indifferent between

these two strategy profiles.

* Example: The penalty kicks game is an example of a strictly competitive
game where we can test the above definition (next slide).



Strictly Competitive Games

Kicker
Aim left (I)  Aim Right (1)
Dive Left (L) 0,0 -10,16
Goalie
Dive Right (R) -10,16 0,0

. Comparinﬁ (L,1) and (L, r), we see that the goalie prefers the former, since 0 > —10,
while the kicker prefers the latter because 0 < 16.

. Comparinﬁ (L,1) and (R, 1), we find that the goalie prefers the former, since 0 > —10,
while the kicker prefers the latter because 0 < 16.

« Comparing (L,1) and (R, ), we see that the goalie is indifferent, and so is the kicker,
both players earning a payoff of zero in both strategy profiles.

e Comparing (fR, ) and (L, r), we find that the goalie is indifferent between these two
strategy profiles, earning —10 in both of them. A similar argument applies to the kicker,
who earns a payoff of 16 in both strategy profiles.

* We can confirm the definition of strictly competitive games (i.e., opposite preferences of
players 1 and 2) holds for every two strategy profiles, s and s’.



Games that are not strictly competitive

* A two-player game is not strictly competitive if, for at least two strategy
profiles, s and s’, every player i’s utility satisfies u;(s) > u;(s’).

Criminal
e Exam p | e Street A Street B
Street A 10,0 -1,6
Police
Street B 0,8 7,-1

Matrix 5.6. Police and Criminal Game

« Comparing strategy profiles (4, A) and (B, B), along the main diagonal, we can see
that the police prefers (4, A) to (B, B), since her payoff satisfies 10 > 7.

e Similar argument applies for the criminal, as her payoff satisfies 0 > —1.
* Because we found that players’ preferences over strategy profiles are aligned, rather

than misaligned, we can already claim that the game is not strictly competitive
without having to compare other pairs of strategy profiles.



Constant-sum Games

* Definition. Constant-sum games. A two-player game is a constant-
sum game if, for every strategy profile s, player’s payoffs satisfy

u.(s) + u,(s) = K, where K > 0is a constant.

* Then, players’ payoffs must add up to the same constant across all
cells in the matrix.

* If, instead, players’ payoffs add up to a different number in at least
one of the cells, then we can claim that the game is not constant sum.

* |t can still be strictly competitive, but not constant sum.



Constant-sum Games

Counterexample:

Player 2
[ r
U 10,0 9,3
Player 1
D 9,3 10,0

Matrix 5.7. A strictly competitive game that is non constant-sum

* The game is strictly competitive (check as practice).

* It is not a constant-sum game since players payoff in strategy profiles
like (U, 1) and (D, r) add up to 10, while those strategy profiles (U, 1)
and (D, 1) add up to 12.




Constant-sum Games

e Constant-sum games are always strictly competitive:
 Condition u;(s) + u,(s) = K can be rewritten as u;(s) = K — u,(s).

* Then, if player 1’s payoff increases when moving from s to s’, then player 2’s
payoff must decrease.

* We now introduce a special class of constant-sum games, those in
which K=0, called zero-sum games.



/ero-sum Games

* Definition. Zero-sum games. A two-player game is a zero-sum game if, for every
strategy profile s, player’s payoffs satisfy

u(s) + u,(s) =0.
* Alternatively, condition u;(s) + u,(s) = 0 can be expressed as u;(s) = —u,(s).

* Intuitively, every dollar that player 1 earns comes from the same dollar that player 2 loses
and vice versa.

Player 2
Heads Tails
Heads 1,-1 -1,1
Player 1
Tails -1,1 1-1

Matrix 5.8. Matching Pennies Game

* Matching pennies game is zero-sum game. Rock-paper-scissors is another example.
* Specifically, in Matrix 5.8, we have that either1 4+ (—=1) =0or—1+4+1 = 0.



Security Strategies

* Definition. Security Strategies. In a two-player game, playeri’s
security strategy, i, solves
max min ui(ai, aj)
O 0 j
Consider the “worst-case scenario” w;(og;) = rr;i.n u; (o, aj)
* Player i anticipates that player j chooses her stra’éegy gj to maximize her own

payoff, which entails minimizing i’s payoff, ui(al-, aj).
* This is because players interact in a strictly competitive game.

Player i then chooses her strategy g; to maximize the payoff across all worst-
case scenarios.

Intuitively, player i seeks to find the strategy g; that provides her with the
“best of the worst” payoffs, as represented with the max-min problem.

* This explains why security strategies are sometimes known as max-min strategies.



Tool 5.2. How to find security strategies in a
two-player game

1.

Find the expected utility of player 1’s randomization, fixing player 2’s
strategy.

Repeat step 1 until you considered all strategies of player 2, fixing one at
a time.

“Min” part. Find the lower envelope of player 1’s expected utility. That is,
for each strategy oy, find the lowest expected utility that player 1 earns.

“Max” part. Find the highest expected utility of the lower envelope
identified in step 3, and the corresponding strategy o;. This is player 1’s

security strategy, a;°¢.

To find the security strategy for player 2, follow a similar process in steps
1-4 above.



Example 5.3. Finding Security Strategies

Example
Player 2
[ T
U 10,0 9,3
Player 1
9,3 10,0

Matrix 5.9. A Strictly Competitive Game that is non constant-sum

To find the security strategy for player 1, we follow the next steps:

1. We find player 1’s expected utility of randomizing between U and
D, with associated probabilities p and 1 — p, respectively. First, we

fix player 2’s strategy at column [, which yields:
EU(p|)=p X 10+ (1—p) X 9=9+p



Example 5.3. Finding Security Strategies

2. We now find her expected utility of
randomizing, but fixing player 2’s strategy
at column r, as follows:

EU;(pIr) =p X 9+(1—-p) X 10=10—p

EUL,

3. To find the lower envelope of the previous
two expected utilities, we can depict each
line as a function of p, as we do in Figure
5.5. The lower envelope is the segment 9 +

p forallp < -, butsegment 10 —p

I
Lower envelope |
i n L i

EUp|D=9+p

EUy(p|r)=10 - p

otherwise.

" 1 i 1 L " A 1
W 0.6 0.3

n—12

JZ

Figure 5.5. Lower envelope and security strategies.



Example 5.3. Finding Security Strategies

4. Among all pomts in the lower envelope, player 1 enjoys the highest
ut|I|ty atp = - whlch yields an expected payoff EU,(p|l) = 9 +

- =95, as |IIustrated in Figure 5.5 by the height of the crossing
pomt between EU1 (p|l) and EU,(p|r). This is player 1’s security

strategy, p°¢¢ = E'

5. Following the same steps for player 2, we find that, since payoffs

. . . 1
are symmetric, her security strategy is g°¢¢ = .



Security Strategies and NE

At this point, you may be wondering about the relationship between
security strategies and msNE.

* We obtain the same equilibrium result from both solution concepts,
but only for two-player strictly competitive games.

* Consider the previous example from Matrix 5.9:

(psec qseC) — 1 1
’ 2°2

Let us now confirm that the msNE produces the same result.



Example 5.4. Solved by msNE

* Assuming that player 1 randomizes between U and D with
probabilities p and 1 — p, respectively, and player 2 mixes [ and r
with probabilities g and 1 — g, respectively,

* We find that player 1’s expected utility from choosing U is:
EU;(U)=q%x10+ (1—q) X 9=9+¢g
* Similarly, player 1’s expected utility from choosing D is:
EU;(D)=g%x9+ (1—-q) X 10=10—g
* Therefore, player 1 randomizes between U and D when she is indifferent
between these two pure strategies EU; (U) = 1EU1 (D), which entails

9+q=10-q =q=7



Example 5.4. Solved by msNE

* Player 2’s expected utilities
e EU,()=p X 0+ (1 —p) x 3=3—-3p,and
s EU,(r)=p X 3+(1—p) X 0=3p

+ EU,(I) =EU,(r) >3 -3p=3p=p=~

* Summarizing, we can claim that the msNE of this game is (p, q) =

1 1 . . . . . .
(E’E)’ which coincides with the security strategies we found in
example 5.3.



Example 5.5. Security strategies and msNE
vield different equilibrium outcomes

Player 2
[ T
U 3,5 -1,1
Player 1
D 2,6 1,2

Matrix 5.10. A Game that is not strictly competitive

* The above game is not strictly competitive. We can find strategy
profile where players’ interests are aligned; both players prefer, for

instance, (U, 1) to (D, ).

 Since the game is not strictly competitive, we can expect that security
strategies may produce a different equilibrium prediction than msNE.



Example 5.5. Security strategies and msNE
vield different equilibrium outcomes

* For player 1:

 When player 2 chooses [, player 1’s expected payoff from randomizing
between U and D with probabilities p and 1 — p respectively,
EUi(p|lD=p xX3+(1—-—p) X2=2+p
 When player 2 chooses 7, player 1’s expected utility is
EU;(plr) =p x (-1)+(1—p) x 1=1-2p



Example 5.5. Security strategies and msNE
vield different equilibrium outcomes

* EU{(p]|l) lies above EU;(p|r) for all
p € [0,1]. £

* This means that the lower envelope
coincides with EU; (p|r) = 1 — 2p for
all values of p.

EU@ID=2+p

* The highest point of this lower envelope 1
occurs at p = 0, so player 1 assigns no
probability weight to U or, alternatively,
that she plays D in pure strategies.

* This means that D is player 1's security | | | |
strate gy. Figure 5.6. Lower envelope and security strategies - Corner solution.



Security strategies and msNE yield different
equilibrium outcomes

Similarly, for player 2

« FU,(qlU)=q x5+(1—q) Xx 1=1+4q, and
* FU,(q|ID)=q x 6+ (1—q) X 2=2+4q.
* Since EU,(q|U) < EU,(q|D) for all values of g,we can claim that U is the
lower envelope.

* We can, then, notice that the highest point of 1 + 4q occursatqg =1,
meaning that player 1 puts full probability weight on [, which becomes his
security strategy.

In summary, the security strategy profile in this game is (D, [).



Example contd. & solving by msNE

* For msNE

* We can facilitate our analysis by noticing that strategy [ strictly dominates r since it
vields a strictly higher payoff than r regardless of the row that player 1 chooses
(5>1and6 > 2).

* We know players put no probability weight in strictly dominated strategies, so we can
delete column r from the matrix and obtain:

Player 2

[
3,5
D 2,6
Matrix 5.10. A Game that is not strictly competitive — After deleting column r

* Turning now to player 1, we do not need to consider his randomization since, at this
point, he has a clear best response to [, U. Therefore, the psNE (no msNE) is (U, 1).

* This equilibrium outcome does not coincide with the security strategy profile (D, [).

Player 1




Correlated Equilibrium

Player 2
« Example Swerve Stay
Swerve 6,6 2,7
Player 1
Stay 7,2 0,0

Matrix 5.11. Modified Chicken game

. z underlining best response payoffs, we can find two psNEs: (Swerve, Stay) and
(Stay, Swerve).

 The game also has msNE, where plgyer 1 chooses Swerve with probability p = %, and the same
probability applies to player 2, g= - (since payoffs are symmetric).

* In this msNE 2Ple%yer 1’s expected utl|lt¥ in equmbrlum |528 »
EU,(c*) = —(—6+ 2)+ —(—7+ o) =242 = 2 =467

Player 1 chooses Swerve Player 1 chooses Stay
And a similar expected payoff accrues to player 2.



Correlated Equilibrium

* Natural question: Can players reach a higher expected payoff if, instead,
they rely on a probability distribution, such as a coin toss, that each player
privately observes before playing the game, and that informs the player
about which action to choose?

* Intuitively, the probability distribution can be interpreted as an external
“recommender” who:
* First, draws one strategy profile, s = (s;,5_;), such as one cell in Matrix 5.11.

* Second, the recommender makes recommendation s; to player i, without informing
her of the recommendation s_; that her rivals receive.

* Definition. Correlated Equilibrium. A probability distribution over strategy
profiles is a correlated equilibrium if every player i follows his
recommendation, s;.

* Intuitively, a probability distribution over strategy profiles is stable in the sense that
every player i has no incentives to unilaterally deviate from the recommendation, s;.

* For silmplicity, we first examine public signals, then privately observed
signals.



Example 5.6. Correlated Equilibrium with Public Signals

* Consider the game in Matrix 5.11 and assume that players observe a public signal
that assigns probability:

* «a to one of the psNEs in this game, (Stay, Swerve), and
* 1 — a to the other psnE, (Swerve, Stay).

* A public signal could be:
* A traffic light,
* Coin toss,
* Dice toss,

or any other stochastic mechanism that players agree on before starting the game,
that yields this probability distribution (summarized in Matrix 5.12).

Player 2 Player 2
Swerve Stay Swerve Stay
Swerve 6,6 2,7 Swerve 0 11—«
Player 1 Player 1
Stay 7,2 0,0 Stay a 0

_ . _ Matrix 5.12. Correlated equilibrium with public signals —



Example 5.6. Correlated Equilibrium with Public Signals

Player 2 Player 2
Swerve Stay Swerve Stay
Swerve 6,6 2,7 —
Player 1 Player 1 Swerve 0 l1—«a
Stay 72 0,0 Stay a 0
Matrix 5.11. Modified Chicken game Matrix 5.12. Correlated equilibrium with public signals —

Probability of each strategy profile
* In this context, player 1 does not have incentives to deviate.

* Upon observing (Stay, Swerve), payoff from following the recommendation is 7, and
that of unilaterally deviating to Swerve decreases to 6.

* Similarly, upon observing (Swerve, Stay), payoff is 2, but decreases to 0 if she
unilaterally deviates.

* By symmetry, the same argument applies to player 2.

e As a conseguence, a continuum of correlated equilibria can be sustained, where players
alternate between the two psNEs of the game with probabilities @ and 1 — «,
respectively.



Example 5.7. Correlated Equilibrium with Private Signals

* Consider the game in Matrix 5.11 again, where the recommendations assign the same probability
weight to (Swerve, Swerve), (Swerve, Stay), and (Stay, Swerve), as summarized in Matrix 5.13:

Player 2
Swerve Stay
Swerve 1 /4 1 /3
Player 1
Stay 1 /3 0

Matrix 5.13. Correlated equilibrium with private signals — Probability of each strategy profile

* Bottom row. Intuitively, if player 1 receives the recommendation of Stay, she knows that the only
strategy profile recommended by the public signal is (Stay, Swerve).

* Top row. However, if she receives the recommendation of Swerve, she knows that player 2 may
have received:

1
« The same recommendation, Swerve, with probability 5 =1/,, or
_+_
3.3
1

* The opposite recommendation, Stay, with probability 1%1 =1/,.

3 3

* Asimilar interpretation applies to the recommendations that player 2 receives.



Example 5.7. Correlated Equilibrium with Private Signals

We can now show that player 1 does not have incentives to deviate from this
recommendation profile:

* If he receives the recommendation of Stay, his payoff is 7 at (Stay, Swerve), which
she cannot improve by unilaterally deviating to Swerve (earning only 6).

* If instead, she receives the recommendation of Swerve, her expected payoff is
1 1
E 6 + 52 = 4,
which he cannot improve by unilaterally deviating to Stay, as that only yields
~7+-0=35.
» Since payoffs are symmetric, a similar argument applies to player 2, making the above
recommendation stable.
* We can then say that the recommendation profile can be sustained as a correlated
equilibrium, with expected payoff:
26+32+27=5
which exceeds that in the msNE of the game, 4.67.



Existence of Correlated equilibrium

* Finally, note that every psNE, s* = (s;, s”;) can be defined as a (trivial) correlated
equilibrium:
* where the probability distribution recommends player i to choose s; with probability 1.
* That is, every player is recommended to play as she would under the psNE.

* A similar argument applies to msNE o* = (g;’, 0”;), where the probability
distribution recommends:
* Player i to randomize according to the same mixed strategy that she uses in the msNE of the
game.

* In other words, if 0™ is a NE, it must also be a correlated equilibrium, but the
converse is not necessarily true.

o*isaNE = o" is a correlated equilibrium
&

* Examples in the Chicken game:
* (Stay, Swerve) is a NE, and it can be a correlated equilibrium.

* Any of the public or private randomizations we saw before are correlated equilibria, but they
aren’t NE.



Equilibrium Refinements in Strategic-form games
(Technical)

* Mixed strategies can help us discard NEs which seem fragile to small
strategic mistakes, as if a player’s hands could “tremble” when choosing
her strategy. Player 2

l

ﬁ

u 1,
D 0,

Player 1

o |Io
o | ©

I |-

 The above game has two psNE: (U,l) and (D,r).

* The second one seems more fragile to trembles:

e if player 1 deviates from D to U, even if U only occurs with a small probability, player
2’s BR would change from r to .

* A similar argument applies if player 2 deviates from r to |, by a small prob.

* The issue, of course, is that in (D,r) players use weakly dominated
strategies.

* We next seek to rule out psNEs that aren’t robust to trembles.



Equilibrium Refinements in Strategic-form games
(Technical)

* Definition. Totally mixed strategy.

* Player i's mixed strategy, oj, is “totally mixed” if it assigns a strictly
positive probability weight on every pure strategy, that is g;(s;) > 0
for all s;.

* Therefore, all pure strategies happen, even with small probability.

* This allows for trembles, where D could occur with 0.001 probability
or less.



Equilibrium Refinements in Strategic-form games
(Technical)

* Definition. Trembling-Hand Perfect equilibrium.

* A mixed strategy profile o; = (0}, 0_;) is a Trembling-Hand Perfect Equilibrium
(THPE) if:
1. There exists a sequence of totally mixed strategies for each player i,
{aik}kzl, that converges to o;, and

2. forwhichog; € BRi(afi) for every k.

* Informally, these two requirements say that:

1. Evc(ejry player /’s totally mixed strategy (which allows for trembles) must converge to o;;
an

2. Strategy o; is player i’s BR to her rivals’ strategy profile afi at every point of the
sequence ti.e., for all k).

e Second requirement is a bit trickier to show. (Example in a moment.)



Properties of THPE

1. Every THPE must be a NE.

2. E\Iqery strategic-form game with finite strategies for each player has a
THPE.

3. Every THPE assigns zero probability weight on weakly dominated
strategies.

Intuitively, points #1) and (2) show that THPEs are a subset of the set of all
NEs in a strategic-form game.

oisa THPE = ogis a NE
&

And point (3) helps us rule out strategies D for player 1 and r for player 2 in
the 2x2 game we used as a motivation. Therefore, (D,r) is a NE but cannot be

supported as a THPE.



Example 5.9. Trembling-hand Perfect Equilibrium

Player 2
[ T
U l}l QJO
Player 1
0,0 0,0

Matrix 5.14. A Game with two psNEs, but only (U, 1) is THPE

Consider the following sequence of totally mixed strategies

k £k Sk) . 1
g’ = — —,— | for every player i, where g, = —..
L ( 2’2 y play k™ gk
* Example:
1 3 1\ . . .. . : L, 1
* Whenk=1,¢& = E,and al-k becomes al-l = (Z’Z)’ indicating that every player i makes mistakes with "
probability.

1 7 1 . . .
* Whenk = 2,¢, = Z,and aik becomes al-z = (—,—), representing that mistakes are now less likely.

8°8
In the limit, we find that (see figure in next slide)

1
kl_l)I_POO 0' = (1,0) since kllm Ep = kl_lglooz—k =0

whllglh ||81 Ii()es that player 1 (2) chooses U (I, respectively) in pure strategies, yielding strategy

profile



Properties

* Generally, as k increase, mistakes become less likely, and the above
totally mixed strategy converges to the psNE (U, 1).

* This leads to the following figure:
Prob.

__________________________________




Example 5.9. Trembling-hand Perfect
Equilibrium

* Therefore, the NE (U, 1) can be supported as a THPE because:
1. The totally mixed strategy o; (02") converges to U ([) ; and

2 U (l) is the best response of player 1 (2) to her rival’s totally mixed strategy,
op) (01 ,respectwely) for all k.

* To see point (2) note that:

* When k=1, 02 becomes 01 = (E 1) where U is pIayer 1’s best response because

EUl(U|021)——1+ O——and EUl(D|021)——0 —0=0

 When k=2, 02 becomes 02 = (Z 1) and U is still pIayer 1’s best response because

EUl(U|022)——1+ 0—§and EU1(D|021)——0 —o_o

* Same argument applles to every k since EUl(U|02) ( — ?) 1+ 82—""0 =1- Z—k > (0 and
EUy(Dlof) = (1-2%)0+ %0 =0.

 Same ar%ument applles to player 2’s best response to 01 being | for every k. (Check as a
practice

,[;



Example 5.9. Trembling-hand Perfect
Equilibrium

* In contrast, (D,r) cannot be sustained as THPE.

* While we can find converging sequences of totally mixed strategies (first
requirement)...

* Choosing D (r) is not player 1’s (2’s) best response to her rival’s totally mixed
strategy for every k (second requirement).

* To see this point, consider this totally mixed strategy:

k _ (&k €k ' ==
o = (?, 1-— 7) for every player i, where g, = 7K

* which assigns the opposite probability weights than that converging
to (U,1).

* It converges to psNE (D,r). Check!



Example 5.9. Trembling-hand Perfect
Equilibrium

* However, U is player 1’s BR to azk for every k.

* To see this point, consider that:

* When k=1, 02 becomes o) = G Z) and U is player 1’s best response.

* When k=2, 02 becomes g% = (% g) and U is still player 1’s best response.

* Same argument applies for every k.

* Recall that finding that U is player 1’s BR, instead of D, for at least one value of
k and for at least one player would have been enough to show that (D,r)
cannot be sustained as THPE.



¢ —Proper Equilibrium

* THPE helps us rule out NEs that aren’t robust to trembles.
e But, which trembles do we allow?

* Myerson (1978) suggested that a rational player, while making
mistakes, should put:
* Higher probability weight on strategies yielding higher payoffs.
* Lower probability weight on strategies yielding lower payoffs.

 Alternatively, players are less likely to make costly mistakes.



¢ —Proper Equilibrium

* Definition. € — proper equilibrium. For any € > 0, a totally mixed strategy
profile 0 = (o3, 0_;) is the € — proper equilibrium if, for every player i, and
for every two pure strategies s;,and s; # s; such that

u; (s, 0-;) > u;(s;,0-)),
 we must have that probabilities of playing s; and s;, 0;(s;) and g;(s;) satisfy
e X 0;(s;) = 0y(s{)

* Intuitively, if player i’'s expected payoff from choosing s; is higher than that
from s;, then...

* The probability of playing s; must be at least “c times higher” than the probability of
playing s;.



Example 5.10. € —Proper Equilibrium

Player 2
[ r
U 11 0,0
Player 1
D 0,0 0,0
Matrix 5.14. A Game with two psNEs, but only (U, 1) is THPE

)for every player i, wherea = 2and 0 < ¢ < 1.

* This mixed strategy is an € — proper equilibrium because: ‘1) itisa totaIIy
mixed strategy, assigning a positive probability weight to all players’
strategies; and (2) for pure strategies U and D, their expected utilities

SatISfyul(U, o) = }(1 B Z) + 0 (Z) —1— Z > 0=u,(D,0o,)

* Consider g; = (1 ——,=
a a

Player 2 Player 2
chooses 1 choosesr



Example 5.10. € —Proper Equilibrium Example

And the probabilities of applying U and D are

e X o1(U) = 5(1 — 2 = 8(aa_8)and
01(D) = 1
which satisfy
e X 0,(U) =222 %= 0, (D)

since, after rearranging, this inequality simplifiesto a = &, which

holds given thata = 2 and 0 < € < 1 by assumption.

(Since the game is symmetric, a similar argument applies to player 2’s
utility from choosing [ and r, and its associated probabilities.



Proper Equilibrium

* Definition. Proper Equilibrium. A mixed strategy profile ¢ = (o0;,0_;) is a
proper equilibrium if there exists:

(0¢]
1. Asequence {cf that converges to g; for every player i
L k=1 l
co
2. Asequence {8{‘}k=1where e¥ > 0 for all k, that converges to zero

3. {aik}:):lis an g, —proper equilibrium for every k

* Proper equilibrium are also THPE, but the converse in not necessarily true.

* |n other words:

* If o is a proper equilibrium, it must be robust to a sequence of decreasing trembles
where costly mistakes are less likely to occur;

* while 0 being THPE only requires that it is robust to any sequence of decreasing
trembles.



Example 5.11. Proper Equilibrium

Player 2
l

ﬁ

U 11
D 0,0
Matrix 5.14. A Game with two psNEs, but only (

Player 1

o |lo
o | ©

S

,1) is THPE

* The sequence of totally mixed strategies from example 5.9

k

= (1%, %) f layer i, wh =
g; = >~ ) for every player i, where g, =

Z_k'

is a proper equilibrium if it satisfies the three requirements in the above
definition:
k

1. Asequence g;° converges to (U, 1)
2. e*converges to zero

3. al-k is an g,-proper equilibrium for every k (as shown in Example 5.10).



Appendix



Fixed-point theorems, an Introduction

* Consider a function f: X — X,

mapping elements from X into X,

N S 1 , 45-degree line, f(x)=x g
where X < R". -
L f)

 We then say that a pointx € X is a
“fixed point” if x € f(x). For instance,
if X € R, we can define the distance

\ () =/(x)-x

function ole” L S
- * * Fixed point,
g(x) — f(x) - x’ Fixed point, fie)=x
Sx)=x
* which graphically measures the
distance from f(X) to the 45-d egree Figure 5.8a. Function f(z) against the 45-degree line.

line, as illustrated in Figure 5.8a and
5.8b.

Figure 5.8b. Distance function g(z).



Fixed-point theorems, an Introduction

* At points such as x'where g(x') >
0, we have that f(x") > x’, ot ssdegmetine Sy 5
meaning that f(x') lies above the |
45-degree line.

\ () =/(x)-x

* |n contrast, at points x"' > x'

where g(x'') < 0, we have that ¢ — i
f(x") <x", entailing that f(x"") Fx o s
lies below the 45-degree line. .

Figure 5.8a. Function f(z) against the 45-degree line.

Figure 5.8b. Distance function g(z).



Fixed-point theorems, an Introduction

e Since x''> x', if the distance function is continuous, we can invoke the
intermediate value theorem to say that:

* There must be an intermediate value, X, between x’ and x"’ (or more than one)
where g(X) = 0, implying that
« g(X) =f(X) —x =0,o0r f(X) =X, as required for a fixed point to exist.
* Note that if f (x) was not continuous, then:
* g(x) would not be continuous either...

* Allowing for g(x') > 0and g(x'") < 0 to occur,

 yet we could not guarantee the existence of an intermediate point X between x'
and x"’ for which g(x) = 0.

* Brouwer’s fixed-point theorem formalizes this result (next slide).



Brouwer’s fixed-point theorem

Definition. Brouwer’s fixed-point theorem.

If f: X — X is a continuous function, where X C RN then it has at
least one fixed point, that is, a point x € X where f(x) = x.

* While Brouwer’s fixed-point theorem is useful when dealing with best
response functions, it does not apply to best response correspondences.

* where player i is, for instance, indifferent between two or more of her pure strategies
when her opponent chooses strategy s;.

* The following theorem generalizes Brouwer’s fixed-point theorem to
correspondences.

* For a more detailed presentation on fixed-point theorems, see Border (1985).



Kakutani’s fixed-point theorem

Definition. Kakutani’s fixed-point theorem.

A correspondence F: X — X, where X © R, has a fixed point, that is,
a point x € X where F(x) = x, if these conditions hold:

1. X is a compact, convex, and non-empty set.
2. F(x) is non-empty.

3. F(x) is convex.

4. F(x) has a closed graph.



Nash Existence theorem

* First, define player i’s pure strategy set, S;, to be finite, i.e., a discrete
list of pure strategies, and denote a mixed strategy for this player as
g;, where g; € ).;, meaning that player i chooses her randomization
among all possible mixed strategies available to her. Therefore, the

Cartesian product

XX i= X
denotes the set of all possible mixed strategy profiles in the game, so
that every strategy profile 0 = (o3, 0_;) satisfiesg € ),.

* Second, let us define player i's best response correspondence to her
rivals choosing o_; as g; € BR;(0_;).



Nash Existence Theorem

* We now define the joint response correspondence BR (¢ ), as the product
of BR;(0_;) and BR_;(0;), that is,
BR(O') = BRi(O'_l') X BR_i(O'_l')
* Importantly, if BR has a fixed point, then, a NE exists.

 Therefore, we next check if BR satisfies the four conditions on Kakutani’s
fixed-point theorem, as that would guarantee the existence of a NE.

* Before doing that, we identify:

* X in Kakutani’s fixed-point theorem with the set of all possible mixed strategy
profiles, )., and

e correspondence F with BR.



Nash Existence Theorem

1. ), is a non-empty, compact, and convex set.

a. The set ), is non-empty as long as players have some strategies, so we can
identify pure or mixed strategy profiles.

b. Recall that if a set is closed and bounded, it is compact. The set of all
possible mixed strategy profiles is closed and bounded, thus satisfying
compactness.

c. Convexity is satisfied since:

* For any two strategy profiles, o and ¢’,
* their linear combination Ag + (1 — A)o’ where 1 € [0,1],
* is also a mixed strategy profile, thus being part of ), .



Nash Existence Theorem

2. BR(o) is nonempty.

Since every player i’s payoff, u;(ag;, 0_;), is linear in both g; and o_; (expected utility is
linear in the probabilities)...

She must find a maximum (a best response to her rivals choosing o_;) among her
available strategies, ).; , which we know it is a compact set from point 1b.

Because g; € BRi(a_ie and o_; € BR;(o;) are non-empty (best response exists),
then their product, BR(o) , must also be non-empty.

3. BR(0) is convex.

To prove this Eoint_, consider two strategies for player i, g; and g, that are best
responses to her rivals choosing o_;, that is, 0;, 0; € BR;(0_;) .

Because both g; and g, are best responses, they must both yield the same expected
payoff; otherwise, one of them cannot be a best response.

Therefore, a linear combination of o; and a;’, Ao; + (1 — )a] where 1 € [0,13, must

ield the same expected payoff as o; and g;, thus being a best response as well, that is,
g, + (1 —2A)o; € BR;(0_;) .



Nash Existence Theorem

4. BR(o) has a closed graph.

This property means that the set {(g;,0_;) | 0; € BR;(0_;)} is
“closed,” meaning that every player i’s best response correspondence
has no discontinuities.

The best responses depicted in this chapter, for instance, showed no

discontinuities. Because every player i's payoff, u;(o;,0_;), is
continuous and compact, the set {(g;,0_;) | 0; € BR;(0_;)} is closed.



Nash Existence Theorem

* The previous 4 properties guarantee that a NE exists when players
face finite strategy spaces (i.e., a list of pure strategies).

* What if they choose their strategies from a continuous strategy space,
as when firm set their prices or output levels?
* Glicksberg (1952) extended the above result to setting with continuous
strategy spaces, where S; ¢ RY , showing that, if:
1. Every playeri’s strategy space, S; , is compact, and
2. Her utility function, u;(. ), is continuous,
* Then, a NE exists, in pure or mixed strategies.

e (For generalization of this result to non-continuous utility functions, see
Dasgupta and Maskin (1986).)
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