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Introduction

Nash Equilibrium  builds upon the notion that every player finds 
the strategy that maximizes her payoff against each of his rivals’ 
strategies, which we refer as her “best response”.

• Discrete Setting:
If player 𝑖𝑖 has only two available strategies, “maximizing” his payoff means 
choosing the strategy that yields the highest payoff, taking her rivals’ strategies 
as given.

• Continuous Setting:
Player 𝑖𝑖 chooses her strategy from a continuum of available strategies, her 
best response is found by maximizing this player’s payoff, literally:
Solving a utility or profit maximization problem, where we will take the 
strategies of her rivals as given (as if they were a parameter).



Best Response
Definition: Player 𝑖𝑖 regards strategy 𝑠𝑠𝑖𝑖 as a best response to strategy profile 𝑠𝑠−𝑖𝑖, if 

𝑢𝑢𝑖𝑖 𝑠𝑠𝑖𝑖 , 𝑠𝑠−𝑖𝑖 ≥ 𝑢𝑢𝑖𝑖 𝑠𝑠𝑖𝑖′, 𝑠𝑠−𝑖𝑖
for every available strategy 𝑠𝑠𝑖𝑖′ ≠ 𝑠𝑠𝑖𝑖.

• Intuitively, in a game with two players, 𝑖𝑖 and 𝑗𝑗, strategy 𝑠𝑠𝑖𝑖 is player 𝑖𝑖’s best 
response to player 𝑗𝑗’s strategy, 𝑠𝑠𝑗𝑗 , if 𝑠𝑠𝑖𝑖 yields a weakly higher payoff than any 
other strategy 𝑠𝑠𝑖𝑖′ against 𝑠𝑠𝑗𝑗.

• In other words, when player 𝑗𝑗 chooses 𝑠𝑠𝑗𝑗, player 𝑖𝑖 maximizes her payoff by 
responding with 𝑠𝑠𝑖𝑖 than with any other available strategies.



Best Response
Definition: Player 𝑖𝑖 regards strategy 𝑠𝑠𝑖𝑖 as a best response to strategy profile 𝑠𝑠−𝑖𝑖, if 

𝑢𝑢𝑖𝑖 𝑠𝑠𝑖𝑖 , 𝑠𝑠−𝑖𝑖 ≥ 𝑢𝑢𝑖𝑖 𝑠𝑠𝑖𝑖′, 𝑠𝑠−𝑖𝑖
for every available strategy 𝑠𝑠𝑖𝑖′ ≠ 𝑠𝑠𝑖𝑖.

• If player 𝑖𝑖 finds that the same strategy 𝑠𝑠𝑖𝑖 is a best response against 
every strategy profile of her rivals, all 𝑠𝑠−𝑖𝑖, then 𝑠𝑠𝑖𝑖 must also be strictly 
dominant.

• Therefore:
• A strictly dominant strategy is a BR, but…
• not every BR is a dominant strategy.



Tool 3.1. How to find best responses (BR) in 
matrix games
1. Focus on the row player by fixing your attention on one strategy of the 

column player (i.e., one specific column).
• Cover with your hand (or with a piece of paper) all columns that you are not 

considering.
• Find the highest payoff for the row player by comparing the first component of every 

pair.
• For future reference, underline this payoff. This is the row player’s best response 

payoff to the column that you considered from the column player.
2. Repeat step 1, but now fix your attention on a different column.
3. For the column player, the method is analogous, but now direct your 

attention on one strategy of the row player (i.e., one specific row). Cover 
with your hand all the rows that you are not considering, and compare 
the payoffs of the column player (i.e., second component of every pair).



Example BR with discrete strategy spaces

Player 2

l r

Player 1
U 5,3 2,1

D 3,6 4,7
Matrix 3.1a. Finding best responses in a 2x2 matrix



Example BR with discrete strategy spaces

Player 2
l r

Player 1
U 5,3 2,1
D 3,6 4,7

Matrix 3.1a. Finding best responses in a 2x2 matrix

𝐵𝐵𝐵𝐵1 𝑙𝑙 = 𝑈𝑈 ; 𝐵𝐵𝐵𝐵1 𝑟𝑟 = 𝐷𝐷, or simply,

𝐵𝐵𝐵𝐵1 𝑠𝑠2 = �𝑈𝑈 𝑖𝑖𝑖𝑖 𝑠𝑠2 = 𝑙𝑙, 𝑎𝑎𝑎𝑎𝑎𝑎
𝐷𝐷 𝑖𝑖𝑖𝑖𝑠𝑠2 = 𝑟𝑟

We can start finding Player 1’s best responses.



Example BR with discrete strategy spaces

Player 2
l r

Player 1
U 5,3 2,1
D 3,6 4,7

Matrix 3.1a. Finding best responses in a 2x2 matrix

We can start finding Player 1’s best responses.

Player 2
l r

Player 1
U 5,3 2,1
D 3,6 4,7

Matrix 3.1b. Finding best responses in a 2x2 matrix – Player 1



Example: BR with discrete strategy spaces

Player 2
l r

Player 1
U 5,3 2,1
D 3,6 4,7

Matrix 3.1a. Finding best responses in a 2x2 matrix

𝐵𝐵𝐵𝐵2 𝑈𝑈 = 𝑙𝑙 ; 𝐵𝐵𝐵𝐵2 𝐷𝐷 = 𝑟𝑟, or simply,

𝐵𝐵𝐵𝐵2 𝑠𝑠1 = �𝑙𝑙 𝑖𝑖𝑖𝑖 𝑠𝑠1 = 𝑈𝑈, 𝑎𝑎𝑎𝑎𝑎𝑎
𝑟𝑟 𝑖𝑖𝑖𝑖 𝑠𝑠1 = 𝐷𝐷

We can start finding Player 2’s best responses.



Example BR with discrete strategy spaces

Player 2
l r

Player 1
U 5,3 2,1
D 3,6 4,7

Matrix 3.1a. Finding best responses in a 2x2 matrix

We can start finding Player 2’s best responses.

Player 2
l r

Player 1
U 5,3 2,1
D 3,6 4,7

Matrix 3.1c. Finding best responses in a 2x2 matrix – Player 2



Finding BRs with Continuous Strategy Spaces

If player 𝑖𝑖 faces a payoff function 𝑢𝑢𝑖𝑖 𝑠𝑠𝑖𝑖 , 𝑠𝑠−𝑖𝑖 , 
• We only need to fix her rival’s strategies at a generic 
𝑠𝑠−𝑖𝑖 , and 

• Differentiate with respect to 𝑠𝑠𝑖𝑖 to find the value of the 
strategy 𝑠𝑠𝑖𝑖 that maximizes player 𝑖𝑖’s payoff. 



Example 3.1: BR under Cournot Quantity Competition 

• Consider an industry with two firms, 1 and 2, 
• Every firm simultaneously and independently choosing its 

output level. 
• Every firm  𝑖𝑖 faces a symmetric cost function 𝐶𝐶 𝑞𝑞𝑖𝑖 = 𝑐𝑐𝑞𝑞𝑖𝑖 , 

• where 𝑐𝑐 > 0 denotes the marginal cost of additional units of output, 
• Firms face inverse demand function 𝑝𝑝 𝑄𝑄 = 1 − 𝑄𝑄, 

• where 𝑄𝑄 = 𝑞𝑞1 + 𝑞𝑞2 represents aggregate output. 



Example 3.1: BR under Cournot Quantity Competition 

To find BR for firm 1,

max
𝑞𝑞1≥0

1 − 𝑞𝑞1 − 𝑞𝑞2 𝑞𝑞1 − 𝑐𝑐𝑞𝑞1
Differentiating with respect to 𝑞𝑞1, we find:

1 − 2𝑞𝑞1 − 𝑞𝑞2 = 𝑐𝑐
Solving for 𝑞𝑞1:

𝑞𝑞1 =
1 − 𝑐𝑐

2
−

1
2
𝑞𝑞2



Firm 1’s best response function

𝑞𝑞1 𝑞𝑞2 = �
1−𝑐𝑐
2
− 1

2
𝑞𝑞2 𝑖𝑖𝑖𝑖 𝑞𝑞2 < 1 − 𝑐𝑐

0 otherwise

Firm 1’s best response function:

Because firm 1 responds with a lower output 𝑞𝑞1 when its rival increases its output, 𝑞𝑞2, we say that 
firms’ output decisions in this context are “strategic substitutes.”

A symmetric best response function applies for firm 2.



Deleting Strategies that are Never a Best 
Response (NBR)
• Before we use BRs to find the Nash equilibrium of a game…

• We can apply NBR in a similar fashion as in IDSDS.
• Recall that, in IDSDS, we deleted a player’s strictly dominated 

strategies as never being used.
• Now we use a similar approach: 

• If a player never uses a strategy as a BR, we can label it to be “Never a best 
response” (NBR), and…

• Delete it from her strategy set.



Deleting Strategies that are Never a Best 
Response (NBR)
Definition. Never a Best Response (NBR): 
Strategy 𝑠𝑠𝑖𝑖 is never a best response if:

𝑢𝑢𝑖𝑖 𝑠𝑠𝑖𝑖 , 𝑠𝑠−𝑖𝑖 > 𝑠𝑠𝑖𝑖′, 𝑠𝑠−𝑖𝑖 for every 𝑠𝑠𝑖𝑖′ ≠ 𝑠𝑠𝑖𝑖.

does not hold for any strategy profile of her rivals, 𝑠𝑠−𝑖𝑖.

Alternatively, if a strategy 𝑠𝑠𝑖𝑖 is NBR, there are 
no beliefs that player 𝑖𝑖 can sustain about how her opponents behave

that would lead her to use strategy 𝑠𝑠𝑖𝑖 as a best response.



Deleting Strategies that are Never a Best 
Response (NBR)

• If player 𝑖𝑖 finds strategy 𝑠𝑠𝑖𝑖 is strictly dominated by 𝑠𝑠𝑖𝑖′, then:
• 𝑠𝑠𝑖𝑖 yields a strictly lower payoff than 𝑠𝑠𝑖𝑖′

• regardless of the strategy profile her rivals choose.

• As a consequence, 𝑠𝑠𝑖𝑖 cannot be a BR against any strategy profile of 𝑖𝑖’s 
rivals. 

• That is, 𝑠𝑠𝑖𝑖 is NBR. 

• In summary, 
𝑠𝑠𝑖𝑖 strictly dominated ⟹ 𝑠𝑠𝑖𝑖 is NBR.



Rationalizability

• We can go through an iterative process –analogous to 
IDSDS– but…

• Identifying strategies that are NBR for either player, 
• rather than strategies that are strictly dominated.

• This iterative process is known as “rationalizability,” 
• Because it finds strategies that player 𝑖𝑖 can rationalize 

(explain) to be BRs to at least one of her opponents’ 
strategies.



Tool 3.2. Applying Rationalizability

1. Starting with player 𝑖𝑖, delete every strategy that is NBR, obtaining 
the reduced strategy set 𝑆𝑆𝑖𝑖′ ⊂ 𝑆𝑆𝑖𝑖.

2. Using common knowledge of rationality, we continue the above 
reasoning, arguing that player 𝑗𝑗 ≠ 𝑖𝑖 can anticipate player 𝑖𝑖′𝑠𝑠 best 
responses and, as a consequence, the strategies that are NBR for 
player 𝑖𝑖, deleting them from 𝑆𝑆𝑖𝑖.

Given this reduced strategy space 𝑆𝑆𝑖𝑖′ ⊂ 𝑆𝑆𝑖𝑖, player 𝑗𝑗 can now examine 
her own best responses to player 𝑖𝑖, seeking to identify if one or more 
are never used, and further restricting her strategy space to 𝑆𝑆𝑗𝑗′ ⊂ 𝑆𝑆𝑗𝑗 .



Applying Rationalizability

3. We obtain the Cartesian product 𝑆𝑆𝑖𝑖′ × 𝑆𝑆𝑗𝑗′, representing the 
remaining rationalizable strategies after deleting NBRs for two steps. 
Player 𝑖𝑖 then finds if some of her strategies in this reduced game are 
NBR, deleting them from her strategy set 𝑆𝑆𝑖𝑖′ , obtaining 𝑆𝑆𝑖𝑖′′ ⊂ 𝑆𝑆𝑖𝑖.
4…

k. The process continues until we cannot find more strategies that are 
NBR for either player.



Applying Rationalizability

• The strategy profile (or set of strategy profiles) that survives this iterative 
process are referred as “rationalizable” strategy profiles because every player 
can sustain beliefs about her rival’s behavior.

• In games with two players:
• Both solution concepts yield identical equilibrium results, that is, IDSDS=Rationalizability.

• In games with three or more players:
• Equilibrium outcomes do not necessarily coincide.
• Rationalizability produces more precise equilibrium outcomes than IDSDS. 
• [Technical, see Fudenberg and Tirole, 1995]

• That is, for a given strategy profile 𝑠𝑠,
𝑠𝑠 is rationalizable ⟹𝑠𝑠 survives IDSDS

⇍



Example 3.2: Rationalizability and IDSDS
Firm 2

h l

Firm 1
H 4,4 0,2
M 1,4 2,0
L 0,2 0,0

Matrix 3.2a. Applying Rationalizability – First Step

Starting from firm 1, row L is NBR:

• When firm 2 chooses h, firm 1’s BR is H
• When firm 2 chooses l, firm 1’s BR is M

In other words, firm 1 does not have incentives to respond with L regardless of the believes it sustains 
on firm 2’s behavior (i.e., the beliefs on firm 2 chooses column h or l).



Example 3.2: Rationalizability and IDSDS
Firm 2

h l

Firm 1
H 4,4 0,2
M 1,4 2,0

Matrix 3.2b. Applying Rationalizability – Second Step

Moving to firm 2, we find that:

• When firm 1 chooses H, firm 2’s BR is h.
• When firm 1 chooses L, firm 2’s BR is h.

Therefore, column l is NBR for firm 2.



Example 3.2: Rationalizability and IDSDS

Matrix 3.2c. Applying Rationalizability –Third Step

Moving back to firm 1, we find that M is its BR to firm 2 choosing l. 

Therefore, M is NBR in this step of applying rationalizability. 

Firm 2
h

Firm 1
H 4,4
M 1,4

h
H 4,4

In conclusion, (H,h) survives rationalizability.

As expected, this coincides with the unique strategy profile surviving IDSDS.



Evaluating Rationalizability as a solution concept
Spoiler: It exhibits the same properties as IDSDS.

1. Existence? Yes
• Rationalizability satisfies existence, meaning that at least one strategy profile in every game 

must be rationalizable.
2. Uniqueness? No.

• One or more strategy profiles may survive rationalizability
• Does not yield a unique equilibrium prediction in all games with three or more players

3. Robust to small payoff perturbations? Yes.
• Rationalizability is robust to small perturbations because rationalizability does not change 

equilibrium outcomes if we alter the payoff of one of the players by a small amount.
4. Socially Optimal? No.

• Rationalizability does not necessarily yield social optimal outcomes, as illustrated by the 
Prisoner’s Dilemma game, where the only strategy profile surviving rationalizability is 
(Confess, Confess), which is not socially optimal.



Evaluating Rationalizability as a solution concept

IDSDS IDWDS SDE Rationalizability
Existence Yes Yes No Yes
Uniqueness No No Yes No
Robustness of payoff changes Yes Yes Yes Yes
Pareto optimal No No No No



Application of Rationalizability: 
Finding NBRs in the Beauty Contest

• Consider that your instructor of the Game Theory course shows up in the 
classroom proposing to play the following “Guess the Average” game (also 
known as “Beauty Contest”).

• She distributes small pieces of paper and asks each student to write a 
number (an integer) between 0 and 100.

• There are 𝑁𝑁 > 2 students and each of them simultaneously and 
independently writes her number, taking into account the following rules 
of the game: 

• The instructor will collect all numbers, write them on the board, 
• Compute the average, and then multiply that average by 1

2
(half of the average).

• The instructor, then, declares a winner the student who submitted a number closest 
to half the average.



Finding NBRs in the Beauty Contest Contd.

Which strategies survive rationalizability?
• In the first step, we can try to eliminate strategies that are NBR for any 

student. 
• Starting with the highest number, 𝑠𝑠𝑖𝑖 = 100, we can see that, even if all other 

students submit 𝑠𝑠𝑗𝑗 = 100 for all 𝑗𝑗 ≠ 𝑖𝑖, and the number of students is large 
enough to yield an average of 𝑠̅𝑠 = 100, we would obtain that half of the 
average approaches 50.

• Therefore, student 𝑖𝑖′𝑠𝑠 best response would be 50, i.e., 𝐵𝐵𝐵𝐵𝑖𝑖 𝑠𝑠𝑗𝑗 = 50 where 
𝑠𝑠𝑗𝑗 = 100 for all 𝑗𝑗 ≠ 𝑖𝑖, entailing that 𝑖𝑖 cannot rationalize 𝑠𝑠𝑖𝑖 = 100 being a best 
response, regardless of which numbers she believes her rivals submit.

• In summary, 𝑠𝑠𝑖𝑖 = 100 is NBR, helping us restrict her strategy space to 𝑆𝑆𝑖𝑖′ =
0,99 , in the first step of rationalizability.



Finding NBRs in the Beauty Contest Contd.

Which strategies survive rationalizability?
• In the second step, even if all other students submit the highest number (in the 

reduced strategy space 𝑆𝑆𝑖𝑖′), 𝑠𝑠𝑗𝑗 = 99 for all 𝑗𝑗 ≠ 𝑖𝑖, the average would be 𝑠̅𝑠 =
99, entailing that half of the average is 49.5. As a result, every student 𝑖𝑖finds that 
submitting 𝑠𝑠𝑖𝑖 = 99 is NBR either, so we can further restrict her strategy space to 
𝑆𝑆𝑖𝑖′′ = 0,98 in the second step of rationalizability.

• …
• After 97 more rounds, we are left with a restricted strategy space of 0,1 which 

cannot be further reduced. Indeed, submitting 𝑠𝑠𝑖𝑖 = 0 𝑠𝑠𝑖𝑖 = 1 is a best response if 
student 𝑖𝑖 believes that her classmates will all submit 𝑠𝑠𝑗𝑗 = 0 𝑠𝑠𝑗𝑗 = 1 , so we cannot 
rule out strategies as being NBR. Therefore, all symmetric strategy profiles, where 
every student 𝑖𝑖 submits the same number (all submit 𝑠𝑠𝑖𝑖 = 0 or all submit 𝑠𝑠𝑖𝑖 = 1 )
survive rationalizability; and so do all asymmetric strategy profiles, where at least on 
student submits 𝑠𝑠𝑖𝑖 = 0 and all other 𝑗𝑗 ≠ 𝑖𝑖 students submit 𝑠𝑠𝑗𝑗 = 1.



Experimental Tests

• This game has been tested in experimental labs quite often. 
• See, for instance, Nagel (1995) and Stahl and Wilson (1995), which initiated these studies, 

and for a literature review, see Camerer (2003) and Crawford et al. (2011).

• If you participate in one of these experiments and believe that all other 
participants randomly submit a number uniformly distributed between 0 and 
100, often referred by the literature as “Level-0” players, then you can participate 
that the average will be around 50 (assuming a sufficiently large number of 
participants), entailing that half of the average would be 25.

• Therefore, if you think that your rivals are “Level-0” players, you submit 𝑠𝑠𝑖𝑖 = 25.
• However, if you think that your rivals must have gone through that same thought 

process, and they are submitting 𝑠𝑠𝑗𝑗 = 25, so they are “Level-1” players…
• You could outsmart them anticipating that the average will be 25, and half of it will be 12.5, 

inducing you to submit 𝑠𝑠𝑖𝑖 = 12.5.



Experimental Tests

• If you think that your rivals went through that thought process too, and are 
submitting 𝑠𝑠𝑗𝑗 = 12.5, thus being “Level-2” players.

• Then half the average will be 6.25, implying that, for you to outsmart them, you must 
submit 𝑠𝑠𝑖𝑖 = 3.125.

• The argument extends to further steps, so that if a player thinks that her 
rivals are “Level-k” players, she must submit 

𝑠𝑠𝑖𝑖 = 50
2𝑘𝑘+1

.
• Interestingly, this argument implies that, as a participant, it is not 

necessarily optimal for you to submit some of the strategies that survive 
rationalizability 𝑠𝑠𝑖𝑖 = 0 or 𝑠𝑠𝑖𝑖 = 1, as shown above).

• Instead, you submit a different number depending on the type of Level- 𝑘𝑘 rivals that 
you deal with, submitting lower numbers as your rivals become more sophisticated 
(higher 𝑘𝑘, so they can go through more iterations).



Experimental Tests

• Nagel (1995), for instance, shows that:
• Many subjects submit 𝑠𝑠𝑖𝑖 = 25, suggesting they are Level-1 players; but…
• Undergraduate students who took Game Theory courses tend to submit 
𝑠𝑠𝑖𝑖 = 12.5 or 𝑠𝑠𝑖𝑖 = 6.25 (thus being Level-2 or -3 players), 

• and so do Caltech students in the Economics major (who generally have a strong Math 
background)

• and usual readers of financial newspapers (Financial Times in the UK and Expansion in 
Spain).



Finding NBRs in the Cournot Duopoly
From earlier

𝑞𝑞1 𝑞𝑞2 = �
1 − 𝑐𝑐

2
−

1
2
𝑞𝑞2 𝑖𝑖𝑖𝑖 𝑞𝑞2 < 1 − 𝑐𝑐

0 otherwise
and similarly for firm 2.
• Firm 1’s output ranges between 𝑞𝑞1 = 1−𝑐𝑐

2
and 𝑞𝑞1 = 0, implying we can delete all 

output levels 𝑞𝑞1 > 1−𝑐𝑐
2

as NBR for firm 1. So 𝑆𝑆1′ = 0, 1−𝑐𝑐
2

• Following a similar argument with firm 2’s best response function (which is 
symmetric to firm 1’s), we claim that 𝑞𝑞2 > 1−𝑐𝑐

2
is NBR for firm 2, yielding a reduced 

strategy space 𝑆𝑆2′ = 0, 1−𝑐𝑐
2

.

• Therefore, the first step of rationalizability entails that 𝑆𝑆𝑖𝑖′ = 0, 1−𝑐𝑐
2

for every firm 𝑖𝑖.



Finding NBRs in the Cournot Duopoly contd.

• In the second step of rationalizability, we consider firm 1’s best response 
function again, but taking into account that firm 2’s rationalizable output 
levels are those in 𝑆𝑆2′ = 0, 1−𝑐𝑐

2
, that is

𝑞𝑞1 𝑞𝑞2 = �
1 − 𝑐𝑐

2
−

1
2
𝑞𝑞2 if 𝑞𝑞2 <

1 − 𝑐𝑐
2

0 otherwise
• As a consequence, firm 1’s output now ranges between:

• 𝑞𝑞1= 1−𝑐𝑐
2

, which occurs when 𝑞𝑞2 = 0, and
• 𝑞𝑞1= 1−𝑐𝑐

4
, which happens when firm 2 produces 𝑞𝑞2= 1−𝑐𝑐

2
.

• This helps us further reduce firm 1’s strategy space to 𝑆𝑆1′′ = 1−𝑐𝑐
4

, 1−𝑐𝑐
2

.
• A similar argument applies to firm 2, yielding 𝑆𝑆2′′ = 1−𝑐𝑐

4
, 1−𝑐𝑐
2

.



Finding NBRs in the Cournot Duopoly contd.

• In the third step of rationalizability, firm 1’s best response function 
becomes:

• Therefore, firm 1’s output now ranges between:
• 𝑞𝑞1= 1−𝑐𝑐

4
, which occurs when 𝑞𝑞2 = 1−𝑐𝑐

2
, and 

• 𝑞𝑞1= 3(1−𝑐𝑐)
8

, which happens when firm 2 produces 𝑞𝑞2= 1−𝑐𝑐
4

.

• Hence, firm 1’s strategy space shrinks to 𝑆𝑆1′′′ = 1−𝑐𝑐
4

, 3(1−𝑐𝑐)
8

.
• Similarly for firm 2’s strategy space.

𝑞𝑞1 𝑞𝑞2 = �
1 − 𝑐𝑐

2
−

1
2
𝑞𝑞2 if

1 − 𝑐𝑐
4

< 𝑞𝑞2 <
1 − 𝑐𝑐

2
0 otherwise



Finding NBRs in the Cournot Duopoly contd.

• Repeating the process again, we see that firm 2’s output levels that 
induce firm 1 to remain active (upper part of firm 1’s best response 
function) keeps shrinking, approaching the 45-degree line, until the 
point where it does not change in further iterations of 
rationalizability.

• For this to occur, we need that 𝑞𝑞1 = 𝑞𝑞2 . Inserting this property in the 
best response function yields 𝑞𝑞1 = 1−𝑐𝑐

2
− 1

2
𝑞𝑞1 . Solving for 𝑞𝑞1 , we 

obtain 𝑞𝑞1 = 1−𝑐𝑐
3

. 
• Later, we will confirm that this output level coincides with the Nash 

equilibrium of the Cournot game, where 𝑞𝑞1 = 𝑞𝑞2 = 1−𝑐𝑐
3

.



Nash Equilibrium

Definition. Nash Equilibrium (NE). 
A strategy profile 𝑠𝑠∗ = 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖∗ is a Nash Equilibrium if every player 
chooses a best response given her rivals’ strategies.

• In a two-player game, the above definition says that:
• Strategy 𝑠𝑠𝑖𝑖∗ is player 𝑖𝑖’s best response to 𝑠𝑠𝑗𝑗∗ and, similarly, 
• Strategy 𝑠𝑠𝑗𝑗∗ is player 𝑗𝑗′s best response to 𝑠𝑠𝑖𝑖∗.

• For compactness, we often write player 𝑖𝑖𝑖s best response to 𝑠𝑠𝑗𝑗∗ as: 
• 𝐵𝐵𝐵𝐵𝑖𝑖 𝑠𝑠𝑗𝑗∗ = 𝑠𝑠𝑖𝑖∗,
• and player 𝑗𝑗’s as 𝐵𝐵𝐵𝐵𝑗𝑗 𝑠𝑠𝑖𝑖∗ = 𝑠𝑠𝑗𝑗∗.

• Therefore, a strategy profile is a NE if it is a mutual best response.



Tool 3.3 How to find NEs in matrix games

1. Find the best responses to all players, underlining best response 
payoffs.

2. Identify which cell or cells in the matrix has every payoff 
underlined, meaning that all players have a best response payoff. 
These cells are the NEs of the game.



Example 3.3: Finding NEs in a two-player game
Firm 2

h m

Firm 1
M 5,3 2,1
L 3,6 4,7

Matrix 3.3. Finding Best Responses and NEs

Also, show that no player has strictly dominated strategies, 
implying that IDSDS has no bite:

𝑁𝑁𝑁𝑁 = 𝑀𝑀,ℎ , 𝐿𝐿,𝑚𝑚



NE in common games: Prisoner’s Dilemma 
game

Player 2
Confess Not Confess

Player 1
Confess -4,-4 0,-8

Not Confess -8,0 -2,-2
Matrix 3.4a. The Prisoner’s Dilemma Game



NE in common games: Prisoner’s Dilemma 
game

Player 2
Confess Not Confess

Player 1
Confess -4,-4 0,-8

Not Confess -8,0 -2,-2
Matrix 3.4a. The Prisoner’s Dilemma Game

Player 2
Confess Not Confess

Player 1
Confess -4,-4 0,-8

Not Confess -8,0 -2,-2
Matrix 3.4b. The Prisoner’s Dilemma Game – Underlining Best Response payoffs

𝑁𝑁𝑁𝑁 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶



NE in common games: Battle of the Sexes 
game

Wife
Football Opera

Husband
Football 10,8 6,6

Opera 4,4 8,10
Matrix 3.5a. The Battle of the Sexes Game



NE in common games: Battle of the Sexes 
game

Wife
Football Opera

Husband
Football 10,8 6,6

Opera 4,4 8,10
Matrix 3.5a. The Battle of the Sexes Game

Matrix 3.5b. The Battle of the Sexes Game – Underlining Best Response payoffs

Wife
Football Opera

Husband
Football 10,8 6,6

Opera 4,4 8,10

𝑁𝑁𝑁𝑁 = 𝐹𝐹,𝐹𝐹 , (𝑂𝑂,𝑂𝑂)



NE in common games: Stag Hunt game
Player 2

Stag, S Hare, H

Player 1
Stag, S 6,6 1,4
Hare, H 4,1 2,2

Matrix 3.6a. The Stag Hunt Game



NE in common games: Stag Hunt game
Player 2

Stag, S Hare, H

Player 1
Stag, S 6,6 1,4
Hare, H 4,1 2,2

Matrix 3.6a. The Stag Hunt Game

Player 2
Stag, S Hare, H

Player 1
Stag, S 6,6 1,4
Hare, H 4,1 2,2

Matrix 3.6b. The Stag Hunt Game – Underlining Best Response payoffs

𝑁𝑁𝑁𝑁 = 𝑆𝑆, 𝑆𝑆 , (𝐻𝐻,𝐻𝐻)



NE in common games: The Game of Chicken
Player 2

Swerve Stay

Player 1
Swerve -1,-1 -8,10

Stay 12,-8 -30,-30
Matrix 3.7a. Anticoordination Game



NE in common games: The Game of Chicken
Player 2

Swerve Stay

Player 1
Swerve -1,-1 -8,10

Stay 12,-8 -30,-30
Matrix 3.7a. Anticoordination Game

Matrix 3.7b. Anticoordination Game – Underlining Best Response payoffs

𝑁𝑁𝑁𝑁 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)

Player 2
Swerve Stay

Player 1
Swerve -1,-1 -8,10

Stay 12,-8 -30,-30



Multiple Nash Equilibria

• In some games, such as the Battle of the Sexes, the Stag Hunt game, and the 
Game of Chicken, we found more than one NE.

• The literature often relied on some equilibrium refinement tools:
• Pareto dominance or Risk dominance, which we will cover at the end of this chapter.
• More technical tools, such as Trembling Hand Perfect Equilibrium or Proper Equilibrium, 

which we will cover at the end of Chapter 5 (we need to learn mixed strategy NE first). 

• An alternative often used are the so-called “focal points” from Schelling (1960), 
which players tend to choose in the absence of pre-play communication.

• However, it is unclear how a specific focal point arises (i.e., what makes a NE 
more salient than another):

• it may vary depending on the time or place where players interact, 
• leading many researchers to experimentally test the emergence of focal points in 

simultaneous-move games with more than one NE.
• For experimental tests, see Camerer et al. (2004).



Relationship between NE and IDSDS

If a strategy profile 𝑠𝑠 = 𝑠𝑠𝑖𝑖 , 𝑠𝑠−𝑖𝑖 is a NE, then it must survive IDSDS, but the 
opposite does not necessarily hold:

𝑠𝑠 is a NE ⇒ 𝑠𝑠 survives IDSDS
⇍

In other words, the NEs in a game is a subset of the strategy profiles 
surviving IDSDS.
• For the first line of implication, think about (C,C) in the PD game (it is a NE 

and also survives IDSDS).
• For the second line of implication, think about (F,F) in the BoS game (it 

survives IDSDS, but it’s not a NE).



Relationship between NE and IDSDS



Games with no NE

Do all games have at least one NE in pure strategies? 

No, let’s see an example.



Games with no NE
Player 2

Heads Tails

Player 1
Heads 1,-1 -1,1
Tails -1,1 1,-1
Matrix 3.8. Matching Pennies Game



Games with no NE
Player 2

Heads Tails

Player 1
Heads 1,-1 -1,1
Tails -1,1 1,-1
Matrix 3.8. Matching Pennies Game

Player 2
Heads Tails

Player 1
Heads 1,-1 -1,1
Tails -1,1 1,-1

Matrix 3.9. Matching Pennies Game – Underlining Best Response payoffs



Evaluating NE as a solution concept

1. Existence? Yes.
• A NE may not exist in pure strategies, but then there must be one when we allow for 

mixed strategies.
• This result is often known as “Nash’s existence theorem.”
• Requires the use of mixed strategies where players randomize their choices (Chapter 

5)
2. Uniqueness? No.

• While the above discussion helps us rest assured that a NE will arise in most games, 
we cannot claim that every game will have a unique NE.

• As an example, recall BoS or Chicken games where more than one NE exists.
3. Robust to small payoff perturbations? Yes.

• If we alter the payoff of one of the players by a small amount, 𝜀𝜀, we would find the 
same NE than before the payoff change.



Evaluating NE as a solution concept

4. Socially optimal? No.
• As discussed, in the Prisoner’s Dilemma game, the NE of a game does not 

need to be socially optimal.
• A similar argument applies to the following “Modified BoS,” where (F,F) and 

(O,O) are both NEs, but (O,O) Pareto dominates (F,F).
Wife

Football Opera

Husband
Football 8,8 6,6

Opera 4,4 10,10

Matrix 3.10. Modified Battle of the Sexes Game



Evaluating NE as a solution concept

IDSDS IDWDS SDE Rationalizability NE
Existence Yes Yes No Yes Yes
Uniqueness No No Yes No No
Robustness of payoff 
changes

Yes Yes Yes Yes Yes

Pareto optimal No No No No No

Then, it’s similar to IDSDS or Rationalizability in its properties, but has 
more “bite” than any of them.



Appendix



Appendix – Equilibrium Selection

• Coordination and anticoordination games give rise to two NEs.
• In games with two players but N discrete strategies, we can have N strategy 

profiles sustained as NEs (see examples in the EconS 424 website).

• In games with more than one NE, a typical question is whether we 
can select one of them as being more “natural” or “reasonable” to 
occur according to some criteria.

• The literature offers several equilibrium selection criteria and we 
present the most popular below.

• Throughout our presentation, let 𝑠𝑠∗ = 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖∗ denote a NE strategy 
profile.



Appendix – Pareto Dominance

Definition. Pareto Dominated NE. 
A NE strategy profile 𝑠𝑠∗ Pareto dominates another NE strategy profile 𝑠𝑠′ ≠ 𝑠𝑠∗ if 

𝑢𝑢𝑖𝑖 𝑠𝑠∗ > 𝑢𝑢𝑖𝑖 𝑠𝑠′ for every player 𝑖𝑖.

Example:

Here 𝐴𝐴,𝐴𝐴 Pareto dominates 𝐵𝐵,𝐵𝐵 , since every firm earns a higher profit at 
𝐴𝐴,𝐴𝐴 than at 𝐵𝐵,𝐵𝐵 , i.e., 10 > 5.

Firm 2
Tech. A Tech. B 

Firm 1
Tech. A 10,10 0,2
Tech. B 2,0 5,5

Matrix 3.11. Technology Coordination Game

𝑁𝑁𝑁𝑁 = 𝐴𝐴,𝐴𝐴 , (𝐵𝐵,𝐵𝐵)



Appendix – Pareto Dominance

• Pareto dominance, however, does not help us rank NEs in all games.

Example

In this case, we cannot select 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 over 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 or vice versa, 
since  player 1 prefers 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , while player 2 prefers 
otherwise.

Player 2
Swerve Stay

Player 1
Swerve -1,-1 -8,10

Stay 12,-8 -30,-30
Matrix 3.7b. Anticoordination Game – Underlining Best Response payoffs

𝑁𝑁𝑁𝑁 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)



Appendix – Risk Dominance

• Pareto dominance helps us compare NEs where, for instance, both firms 
simultaneously change their technology decision from 𝐵𝐵 to 𝐴𝐴, yielding 
𝐴𝐴,𝐴𝐴 .

• But what if each firm unilaterally deviates from NE?
• If 𝐵𝐵,𝐵𝐵 is played, every firm’s payoff loss when unilaterally switching to 𝐴𝐴 is 5 − 0 =

5.
• But if 𝐴𝐴,𝐴𝐴 is being played, every firm loses 10 − 2 = 8 when unilaterally deviating 

to 𝐵𝐵.
• Informally, at 𝐴𝐴,𝐴𝐴 , unilateral deviations are “riskier” than at 𝐵𝐵,𝐵𝐵 . 

• Note that, as opposed to Pareto dominance, we now seek to understand the payoff 
loss that players can suffer in the path when each of them unilaterally moves from 
one NE to another. 

• How to measure the “riskiness” of deviations in a more formal way?



Appendix – Risk Dominance

• Definition. Risk Dominated NE. 
• A NE strategy profile 𝑠𝑠∗ = 𝑠𝑠1∗, 𝑠𝑠2∗ risk dominates another NE 

strategy profile 𝑠𝑠′ = 𝑠𝑠1′ , 𝑠𝑠2′ if the total payoff loss of moving from 𝑠𝑠′
to 𝑠𝑠∗,

𝑢𝑢1 𝑠𝑠1∗, 𝑠𝑠2∗ − 𝑢𝑢1 𝑠𝑠1′ , 𝑠𝑠2∗ × 𝑢𝑢2 𝑠𝑠1∗, 𝑠𝑠2∗ − 𝑢𝑢2 𝑠𝑠1∗, 𝑠𝑠2′

exceeds that of moving from 𝑠𝑠∗ to 𝑠𝑠′,

𝑢𝑢1 𝑠𝑠1′ , 𝑠𝑠2′ − 𝑢𝑢1 𝑠𝑠1∗, 𝑠𝑠2′ × 𝑢𝑢2 𝑠𝑠1′ , 𝑠𝑠2′ − 𝑢𝑢2 𝑠𝑠1′ , 𝑠𝑠2∗



Appendix – Risk Dominance

We can say that 𝐵𝐵,𝐵𝐵 risk dominates 𝐴𝐴,𝐴𝐴 because the total payoff loss of moving from 𝐵𝐵,𝐵𝐵
to 𝐴𝐴,𝐴𝐴 ,

𝑢𝑢1 𝐴𝐴,𝐴𝐴 − 𝑢𝑢1 𝐵𝐵,𝐴𝐴 × 𝑢𝑢2 𝐴𝐴,𝐴𝐴 − 𝑢𝑢2 𝐴𝐴,𝐵𝐵
= 10 − 2 × 10 − 2 = 64

exceeds that of moving from 𝐴𝐴,𝐴𝐴 to 𝐵𝐵,𝐵𝐵
𝑢𝑢1 𝐵𝐵,𝐵𝐵 − 𝑢𝑢1 𝐴𝐴,𝐵𝐵 × 𝑢𝑢2 𝐵𝐵,𝐵𝐵 − 𝑢𝑢2 𝐵𝐵,𝐴𝐴

= 5 − 0 × 5 − 0 = 25.

Firm 2
Tech. A Tech. B 

Firm 1
Tech. A 10,10 0,2
Tech. B 2,0 5,5

Matrix 3.11. Technology Coordination Game

Example:
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