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Introduction

Nash Equilibrium builds upon the notion that every player finds
the strategy that maximizes her payoff against each of his rivals’
strategies, which we refer as her “best response”.

* Discrete Setting:
If player i has only two available strategies, “maximizing” his payoff means
choosing the strategy that yields the highest payoff, taking her rivals’ strategies

as given.

* Continuous Setting:
Player i chooses her strategy from a continuum of available strategies, her
best response is found by maximizing this player’s payoff, literally:
Solving a utility or profit maximization problem, where we will take the
strategies of her rivals as given (as if they were a parameter).



Best Response

Definition: Player i regards strategy s; as a best response to strategy profile s_;, if

u;(s;,s_;) = ui(Si,;S—i)

for every available strategy s; # s;.

* Intuitively, in a game with two players, i and j, strategy s; is player i’s best
response to player j’s strategy, s;, if s; yields a weakly higher payoff than any
other strategy s; against Sj.

* In other words, when player j chooses s;, player i maximizes her payoff by
responding with s; than with any other available strategies.



Best Response

Definition: Player i regards strategy s; as a best response to strategy profile s_;, if

u;(s;,s_;) = ui(Si,;S—i)

for every available strategy s; # s;.

* If player i finds that the same strategy s; is a best response against
every strategy profile of her rivals, all s_;, then s; must also be strictly
dominant.

* Therefore:
* A strictly dominant strategy is a BR, but...
* not every BR is a dominant strategy.



Tool 3.1. How to find best responses (BR) in
matrix games

1. Focus on the row player by fixing your attention on one strategy of the
column player (i.e., one specific column).

* Cover with your hand (or with a piece of paper) all columns that you are not
considering.

* Find the highest payoff for the row player by comparing the first component of every
pair.

* For future reference, underline this payoff. This is the row player’s best response
payoff to the column that you considered from the column player.

2. Repeat step 1, but now fix your attention on a different column.

3. For the column player, the method is analogous, but now direct your
attention on one strategy of the row player (i.e., one specific row). Cover
with your hand all the rows that you are not considering, and compare
the payoffs of the column player (i.e., second component of every pair).



Example BR with discrete strategy spaces

Player 2
[ r
U 5,3 2,1
Player 1
3,6 4,7

Matrix 3.1a. Finding best responses in a 2x2 matrix



Example BR with discrete

We can start finding Player 1’s best responses.

strategy spaces

Player 1

Player 2
[ r
5,3 2,1
3,6 4,7

Matrix 3.1a. Finding

BR.(l) = U;
BR,(sz) = -

best responses in a 2x2 matrix

BR,(r) = D, or simply,
(U if s, =1, and

Difs,=r



Example BR with discrete strategy spaces

We can start finding Player 1’s best responses.

Player 2
[ r
5,3 2,1
Player 1
3,6 4,7

Matrix 3.1a. Finding best responses in a 2x2 matrix

Player 2
[ r
5,3 2,1
Player 1
3,6 4,7

Matrix 3.1b. Finding best responses in a 2x2 matrix — Player 1



Example: BR with discrete strategy spaces

We can start finding Player 2’s best responses.

Player 1

Player 2
[ r
5,3 2,1
3,6 4,7

Matrix 3.1a. Finding

BR,(U) =1;
BR,(s1) = -

best responses in a 2x2 matrix

BR,(D) = r, or simply,
(1 if s; = U,and

TifSlzD



Example BR with discrete strategy spaces

We can start finding Player 2’s best responses.

Player 2
[ r
5,3 2,1
Player 1
3,6 4,7

Matrix 3.1a. Finding best responses in a 2x2 matrix

Player 2
[ r
53 2,1
Player 1
3,6 4,7

Matrix 3.1c. Finding best responses in a 2x2 matrix — Player 2



Finding BRs with Continuous Strategy Spaces

If player i faces a payoff function u;(s;, s_;),
* We only need to fix her rival’s strategies at a generic
S_;, and
* Differentiate with respect to s; to find the value of the
strategy s; that maximizes player i’s payoft.



Example 3.1: BR under Cournot Quantity Competition

* Consider an industry with two firms, 1 and 2,

* Every firm simultaneously and independently choosing its
output level.

* Every firm i faces a symmetric cost function C(q;) = cq;,
 where ¢ > 0 denotes the marginal cost of additional units of output,

* Firms face inverse demand function p(Q) = 1 — 0Q,
* where ) = g4 + g, represents aggregate output.



Example 3.1: BR under Cournot Quantity Competition

To find BR for firm 1,

max (1 —q; —q2)q, —cqq

q]_ZO
Differentiating with respect to g, we find:
1-2q,—q;=c
Solving for q;:
1—c 1

qd1 = > qu




Firm 1’s best response function
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Figure 3.1. Firm 1’s best response function.

Firm 1’s best response function:

1-¢c 1 .
TC—E(IZlfCIz<1—C

0 otherwise

q1(q2) =

Because firm 1 responds with a lower output g; when its rival increases its output, g,, we say that
firms’ output decisions in this context are “strategic substitutes.”

A symmetric best response function applies for firm 2.



Deleting Strategies that are Never a Best
Response (NBR)

* Before we use BRs to find the Nash equilibrium of a game...

* We can apply NBR in a similar fashion as in IDSDS.

e Recall that, in IDSDS, we deleted a player’s strictly dominated
strategies as never being used.

* Now we use a similar approach:

* If a player never uses a strategy as a BR, we can label it to be “Never a best
response” (NBR), and...

* Delete it from her strategy set.



Deleting Strategies that are Never a Best
Response (NBR)

Definition. Never a Best Response (NBR):
Strategy s; is never a best response if:

u;(s;,s_;) > (s{,s_;) foreverys; #s;.
does not hold for any strategy profile of her rivals, s_;.
Alternatively, if a strategy s; is NBR, there are

no beliefs that player i can sustain about how her opponents behave
that would lead her to use strategy s; as a best response.



Deleting Strategies that are Never a Best
Response (NBR)

* If player i finds strategy s; is strictly dominated by s;, then:
* s; yields a strictly lower payoff than s;
* regardless of the strategy profile her rivals choose.

* As a consequence, s; cannot be a BR against any strategy profile of i’s
rivals.

* Thatis, s; is NBR.
* |[n summary,
s; strictly dominated = s; is NBR.



Rationalizability

* We can go through an iterative process —analogous to
IDSDS— but...
* |[dentifying strategies that are NBR for either player,
* rather than strategies that are strictly dominated.

* This iterative process is known as “rationalizability,”

* Because it finds strategies that player i can rationalize
(explain) to be BRs to at least one of her opponents’
strategies.



Tool 3.2. Applying Rationalizability

1. Starting with player i, delete every strategy that is NBR, obtaining
the reduced strategy set S c ;.

2. Using common knowledge of rationality, we continue the above
reasoning, arguing that player j + i can anticipate player i's best
responses and, as a consequence, the strategies that are NBR for
player i, deleting them from §;.

Given this reduced strategy space S| c S;, player j can now examine
her own best responses to player i, seeking to identify if one or more
are never used, and further restricting her strategy space to Sj' cC S



Applying Rationalizability

3. We obtain the Cartesian product S; X S, representing the

remaining rationalizable strategies after deleting NBRs for two steps.
Player i then finds if some of her strategies in this reduced game are
NBR, deleting them from her strategy set S; , obtaining S;’ c ;.

4...

k. The process continues until we cannot find more strategies that are
NBR for either player.



Applying Rationalizability

* The strategy profile (or set of strategy profiles) that survives this iterative
process are referred as “rationalizable” strategy profiles because every player
can sustain beliefs about her rival’s behavior.

* In games with two players:
* Both solution concepts yield identical equilibrium results, that is, IDSDS=Rationalizability.

* [n games with three or more players:
* Equilibrium outcomes do not necessarily coincide.
 Rationalizability produces more precise equilibrium outcomes than IDSDS.
* [Technical, see Fudenberg and Tirole, 1995]

* That is, for a given strategy profile s,

S is rationalizable = s survives IDSDS
&



Example 3.2: Rationalizability and IDSDS

Firm 2
h [
H 4,4 0,2
Firm1l1l M 1,4 2,0
L 0,2 0,0

Matrix 3.2a. Applying Rationalizability — First Step

Starting from firm 1, row L is NBR:
* When firm 2 chooses h, firm 1’'s BR is H
* When firm 2 chooses |, firm 1’s BR is M

In other words, firm 1 does not have incentives to respond with L regardless of the believes it sustains
on firm 2’s behavior (i.e., the beliefs on firm 2 chooses column h or I).



Example 3.2: Rationalizability and IDSDS

Firm 2
h [
4.4 0,2
Firm 1
1,4 2,0

Matrix 3.2b. Applying Rationalizability — Second Step

Moving to firm 2, we find that:
* When firm 1 chooses H, firm 2’s BR is h.
* When firm 1 chooses L, firm 2’s BR is h.

Therefore, column | is NBR for firm 2.



Example 3.2: Rationalizability and IDSDS

Firm 2
h
4.4

1,4
Matrix 3.2c. Applying Rationalizability —Third Step

Firm 1

Moving back to firm 1, we find that M is its BR to firm 2 choosing I.
Therefore, M is NBR in this step of applying rationalizability.

h
H| 4,4

In conclusion, (H,h) survives rationalizability.

As expected, this coincides with the unique strategy profile surviving IDSDS.



Evaluating Rationalizability as a solution concept

Spoiler: It exhibits the same properties as IDSDS.

1. Existence? Yes

* Rationalizability satisfies existence, meaning that at least one strategy profile in every game
must be rationalizable.

2. Uniqueness? No.
* One or more strategy profiles may survive rationalizability
* Does not yield a unique equilibrium prediction in all games with three or more players

3. Robust to small payoff perturbations? Yes.
* Rationalizability is robust to small perturbations because rationalizability does not change
equilibrium outcomes if we alter the payoff of one of the players by a small amount.
4. Socially Optimal? No.

e Rationalizability does not necessarily yield social optimal outcomes, as illustrated by the
Prisoner’s Dilemma game, where the only strategy profile surviving rationalizability is
(Confess, Confess), which is not socially optimal.



Evaluating Rationalizability as a solution concept

—mmm

Existence
Uniqueness No No Yes No
Robustness of payoff changes Yes Yes Yes Yes

Pareto optimal No No No No



Application of Rationalizability:
Finding NBRs in the Beauty Contest

e Consider that your instructor of the Game Theory course shows up in the

classroom proposing to play the following “Guess the Average” game (also
known as “Beauty Contest”).

* She distributes small pieces of paper and asks each student to write a
number (an integer) between 0 and 100.

* There are N > 2 students and each of them simultaneously and

independently writes her number, taking into account the following rules
of the game:

* The instructor will collect all numbers, write them on the board,
: 1
 Compute the average, and then multiply that average by E (half of the average).

* The instructor, then, declares a winner the student who submitted a number closest
to half the average.



Finding NBRs in the Beauty Contest Contd.

Which strategies survive rationalizability?

* In the first step, we can try to eliminate strategies that are NBR for any
student.

* Starting with the highest number, s; = 100, we can see that, even if all other
students submit s; = 100 for all j # i, and the number of students is large
enough to yield an average of s = 100, we would obtain that half of the
average approaches 50.

* Therefore, student i’s best response would be 50, i.e., BRi(Sj) = 50 where
s; = 100 for all j # i, entailing that i cannot rationalize s; = 100 being a best
response, regardless of which numbers she believes her rivals submit.

* In summary, s; = 100 is NBR, helping us restrict her strategy space to S; =
{0,993}, in the first step of rationalizability.



Finding NBRs in the Beauty Contest Contd.

Which strategies survive rationalizability?

* In the second step, even if all other students submit the highest number (in the
reduced strategy space S;), sj =99 forall j # i, the average would be § =
99, entailing that half of the average is 49.5. As a result, every student ifinds that
submitting s; = 99 is NBR either, so we can further restrict her strategy space to
S;" = {0,98} in the second step of rationalizability.

« After 97 more rounds, we are left with a restricted strategy space of {0,1} which
cannot be further reduced. Indeed, submitting s; = 0 (s; = 1) is a best response if
student i believes that her classmates will all submit si=10 (Sj = 1), SO we cannot
rule out strategies as being NBR. Therefore, all symmetric strategy profiles, where
every student i submits the same number (all submit s; = 0 or all submits; = 1)
survive rationalizability; and so do all asymmetric strategy profiles, where at least on
student submits s; = 0 and all other j # i students submit s; = 1.



Experimental Tests

* This game has been tested in experimental labs quite often.

» See, for instance, Nagel (1995) and Stahl and Wilson (1995), which initiated these studies,
and for a literature review, see Camerer (2003) and Crawford et al. (2011).

* |f you participate in one of these experiments and believe that all other
participants randomly submit a number uniformly distributed between 0 and
100, often referred by the literature as “Level-0” players, then you can participate
that the average will be around 50 (assuming a sufficiently large number of
participants), entailing that half of the average would be 25.

* Therefore, if you think that your rivals are “Level-0” players, you submit s; = 25.

* However, if you think that your rivals must have gone through that same thought
process, and they are submitting s; = 25, so they are “Level-1" players...

* You could outsmart them anticipating that the average will be 25, and half of it will be 12.5,
inducing you to submit s; = 12.5.



Experimental Tests

* |f you think that your rivals went through that thought process too, and are
submitting s; = 12.5, thus being “Level-2” players.

* Then half the average will be 6.25, implying that, for you to outsmart them, you must
submit s; = 3.125.

 The argument extends to further steps, so that if a player thinks that her
rivals are “Level-k” players, she must submit
50
Si — 2k+1°
* |Interestingly, this argument implies that, as a participant, it is not
necessarily optimal for you to submit some of the strategies that survive
rationalizability s; = 0 or s; = 1, as shown above).
* Instead, you submit a different number depending on the type of Level- k rivals that

you deal with, submitting lower numbers as your rivals become more sophisticated
(higher k, so they can go through more iterations).




Experimental Tests

* Nagel (1995), for instance, shows that:
* Many subjects submit s; = 25, suggesting they are Level-1 players; but...

* Undergraduate students who took Game Theory courses tend to submit
s; = 12.5 or s; = 6.25 (thus being Level-2 or -3 players),

* and so do Caltech students in the Economics major (who generally have a strong Math
background)

* and usual readers of financial newspapers (Financial Times in the UK and Expansion in
Spain).



Finding NBRs in the Cournot Duopoly

From earlier
(1-¢c 1
(@)= 3 ~ 3% Ua<l-c
L 0 otherwise

and similarly for firm 2.

: ) 1- . ]
* Firm 1’s output ranges between q; = ~—and g, = 0, implying we can delete all

1—-c . 2 / 1-c
output levels g; > ——as NBR for firm 1. So §; = [O, » ]

* Following a similar argument with firm 2’s est response function (which is
symmetric to firm 1’5[), we claim that g, > — is NBR for firm 2, yielding a reduced

1_
strategy space S5 = |0,—|.

2
* Therefore, the first step of rationalizability entails that S; = [O, %‘ for every firm 1.



Finding NBRs in the Cournot Duopoly contd.

* |[n the second step of rationalizability, we consider firm 1’s best response
function again, but takinf into chount that firm 2’s rationalizable output

. 1- .
levels are those in S, = O,Tc , that is

(1-¢ 1 o 1—c
q1(q2) = { 2 Zq2 o 2
L 0 otherwise

* As a consequence, firm 1’s output now ranges between:

* 1= %, which occurs when g, = 0, and
°* 4= % , Which happens when firm 2 produces g,= %

I : ’ 1-c 1-
* This helps us further reduce firm 1’s strategy space to S;' = 46, ZC] :
1-c 1-—c

* Asimilar argument applies to firm 2, yielding S;' = -5



Finding NBRs in the Cournot Duopoly contd.

* In the third step of rationalizability, firm 1’s best response function
becomes:

1-¢c 1 " 1—-c g < 1—-c
1(q) =4 2 2N T S1257
0 otherwise

* Therefore, firm 1’s output now ranges between:

* 1= = , which occurs when g, = %, and
* q1= 3120 , Which happens when firm 2 produces g,= % :
: ’ . 1— 3(1—
* Hence, firm 1’s strategy space shrinks to S;"' = [ = ( C)] .
4 8

* Similarly for firm 2’s strategy space.



Finding NBRs in the Cournot Duopoly contd.

* Repeating the process again, we see that firm 2’s output levels that
induce firm 1 to remain active (upper part of firm 1’s best response
function) keeps shrinking, approaching the 45-degree line, until the
point where it does not change in further iterations of
rationalizability.

* For this to occur, we need that g, = 9 - Iniertlng this property in the
best response function yields g; = TC — 541 - Solving for g4 , we

1
obtain g, = TC

* Later, we will confirm that this output level comudelelth the Nash
C

equilibrium of the Cournot game, where g; = q, = —



Nash Equilibrium

Definition. Nash Equilibrium (NE).
A strategy profile s* = (s, s”;) is a Nash Equilibrium if every player
chooses a best response given her rivals’ strategies.

* In a two-player game, the above definition says that:
* Strategy s; is player i’s best response to Sj‘ and, similarly,
* Strategy sj‘ is player j's best response to s;.
* For compactness, we often write player i's best response to S; as:
* BRy(s]) =si,
* and player j’s as BR;(s;) = s;.
* Therefore, a strategy profile is a NE if it is a mutual best response.




Tool 3.3 How to find NEs in matrix games

1. Find the best responses to all players, underlining best response
payoffs.

2. ldentify which cell or cells in the matrix has every payoff
underlined, meaning that all players have a best response payoff.
These cells are the NEs of the game.



Example 3.3: Finding NEs in a two-player game

Firm 2
h m
5,3 2,1
Firm 1
3,6 4,7

Matrix 3.3. Finding Best Responses and NEs

Also, show that no player has strictly dominated strategies,
implying that IDSDS has no bite:

NE ={(M, h),(L,m)}



NE in common games: Prisoner’s Dilemma
game

Player 2
Confess Not Confess
Confess -4 -4 0,-8
Player 1
Not Confess -8,0 -2,-2

Matrix 3.4a. The Prisoner’s Dilemma Game



NE in common games: Prisoner’s Dilemma
game

Player 2
Confess Not Confess
Confess -4 -4 0,-8
Player 1
Not Confess -8,0 -2,-2
Matrix 3.4a. The Prisoner’s Dilemma Game
Player 2
Confess Not Confess
Confess -4 -4 0,-8
Player 1
Not Confess -8,0 -2,-2

Matrix 3.4b. The Prisoner’s Dilemma Game — Underlining Best Response payoffs

NE = {(Confess,Confess)}



NE in common games: Battle of the Sexes
game

Wife
Football Opera
Football 10,8 6,6
Husband
Opera 4,4 8,10

Matrix 3.5a. The Battle of the Sexes Game



NE in common games: Battle of the Sexes
game

Wife
Football Opera
Football 10,8 6,6
Husband
Opera 4.4 8,10
Matrix 3.5a. The Battle of the Sexes Game
Wife
Football Opera
Football 10,8 6,6
Husband
Opera 4.4 8,10

Matrix 3.5b. The Battle of the Sexes Game — Underlining Best Response payoffs

NE ={(F,F),(0,0)}



NE in common games: Stag Hunt game

Player 2
Stag, S Hare, H
Stag, S 6,6 1,4
Player 1
Hare, H 4.1 2,2

Matrix 3.6a. The Stag Hunt Game



NE in common games: Stag Hunt game

Player 2
Stag, S Hare, H
Stag, S 6,6 1,4
Player 1
Hare, H 4,1 2,2
Matrix 3.6a. The Stag Hunt Game
Player 2
Stag, S Hare, H
Stag, S 6,6 1,4
Player 1
Hare, H 4,1 2,2

Matrix 3.6b. The Stag Hunt Game — Underlining Best Response payoffs

NE ={(S,S),(H,H)}



NE in common games: The Game of Chicken

Player 2
Swerve Stay
Swerve -1,-1 -8,10
Player 1
Stay 12,-8 -30,-30

Matrix 3.7a. Anticoordination Game



NE in common games: The Game of Chicken

Player 2
Swerve Stay
Swerve -1,-1 -8,10
Player 1
Stay 12,-8 -30,-30
Matrix 3.7a. Anticoordination Game
Player 2
Swerve Stay
Swerve -1,-1 -8,10
Player 1
Stay 12,-8 -30,-30

Matrix 3.7b. Anticoordination Game — Underlining Best Response payoffs

NE = {(Swerve, Stay), (Stay, Swerve)}



Multiple Nash Equilibria

* |n some games, such as the Battle of the Sexes, the Stag Hunt game, and the
Game of Chicken, we found more than one NE.

* The literature often relied on some equilibrium refinement tools:
* Pareto dominance or Risk dominance, which we will cover at the end of this chapter.

* More technical tools, such as Trembling Hand Perfect Equilibrium or Proper Equilibrium,
which we will cover at the end of Chapter 5 (we need to learn mixed strategy NE first).

* An alternative often used are the so-called “focal points” from Schelling (1960),
which players tend to choose in the absence of pre-play communication.

* However, it is unclear how a specific focal point arises (i.e., what makes a NE
more salient than another):
* it may vary depending on the time or place where players interact,

* leading many researchers to experimentally test the emergence of focal points in
simultaneous-move games with more than one NE.

* For experimental tests, see Camerer et al. (2004).



Relationship between NE and IDSDS

If a strategy profile s = (s;,s_;) is a NE, then it must survive IDSDS, but the
opposite does not necessarily hold:

s isa NE = s survives IDSDS
&

In other words, the NEs in a game is a subset of the strategy profiles
surviving IDSDS.

 For the first line of implication, think about (C,C) in the PD game (it is a NE
and also survives IDSDS).

* For the second line of implication, think about (F,F) in the BoS game (it
survives IDSDS, but it’s not a NE).



Relationship between NE and IDSDS

All strategy profiles All strategy profiles
m the game in the game

Figure 3 2a. Comparing strategy profiles - Two players.




Games with no NE

Do all games have at least one NE in pure strategies?

No, let’s see an example.



Games with no NE

Player 2
Heads Tails
Heads 1,-1 -1,1
Player 1
Tails -1,1 1-1

Matrix 3.8. Matching Pennies Game



Games with no NE

Player 2
Heads Tails
Heads 1,-1 -1,1
Player 1
Tails -1,1 1-1
Matrix 3.8. Matching Pennies Game
Player 2
Heads Tails
Heads 11 -1,1
Player 1
Tails -1,1 1-1

Matrix 3.9. Matching Pennies Game — Underlining Best Response payoffs



Evaluating NE as a solution concept

1. Existence? Yes.

* A NE may not exist in pure strategies, but then there must be one when we allow for
mixed strategies.

* This result is often known as “Nash’s existence theorem.”
* Requires the use of mixed strategies where players randomize their choices (Chapter
5)
2. Uniqueness? No.

* While the above discussion helps us rest assured that a NE will arise in most games,
we cannot claim that every game will have a unique NE.

* As an example, recall BoS or Chicken games where more than one NE exists.

3. Robust to small payoff perturbations? Yes.

* If we alter the payoff of one of the players by a small amount, &, we would find the
same NE than before the payoff change.



Evaluating NE as a solution concept

4. Socially optimal? No.

* As discussed, in the Prisoner’s Dilemma game, the NE of a game does not
need to be socially optimal.

e Asimilar argument applies to the following “Modified BoS,” where (F,F) and
(O,0) are both NEs, but (O,0) Pareto dominates (F,F).

Wife
Football Opera
Football 8,8 6,6
Husband
Opera 4.4 10,10

Matrix 3.10. Modified Battle of the Sexes Game



Evaluating NE as a solution concept

I T P T

Existence

Uniqueness No No Yes No No
Robustness of payoff Yes Yes Yes Yes Yes
changes

Pareto optimal No No No No No

Then, it’s similar to IDSDS or Rationalizability in its properties, but has
more “bite” than any of them.



Appendix



Appendix — Equilibrium Selection

* Coordination and anticoordination games give rise to two NEs.

* |n games with two players but N discrete strategies, we can have N strategy
profiles sustained as NEs (see examples in the EconS 424 website).

* In games with more than one NE, a typical question is whether we
can select one of them as being more “natural” or “reasonable” to
occur according to some criteria.

* The literature offers several equilibrium selection criteria and we
present the most popular below.

* Throughout our presentation, let s* = (s;,s-;) denote a NE strategy
profile.



Appendix — Pareto Dominance

Definition. Pareto Dominated NE.
A NE strategy profile s* Pareto dominates another NE strategy profile s’ # s* if
u;(s*) > u;(s") for every player i.

Firm 2
Exam ple. Tech. A Tech. B
Tech. A 10,10 0,2
Firm 1
Tech. B 2,0 5,5

Matrix 3.11. Technology Coordination Game

NE = {(4,4), (B, B)}

Here (A, A) Pareto dominates (B, B), since every firm earns a higher profit at
(4,A) than at (B,B), i.e.,, 10 > 5.



Appendix — Pareto Dominance

e Pareto dominance, however, does not help us rank NEs in all games.

Example Player 2
Swerve Stay
Swerve -1,-1 -8,10
Player 1
Stay 12,-8 -30,-30

Matrix 3.7b. Anticoordination Game — Underlining Best Response payoffs
NE = {(Swerve, Stay), (Stay, Swerve)}

In this case, we cannot select (Stay, Swerve) over (Swerve, Stay) or vice versa,

since player 1 prefers (Stay, Swerve) to (Swerve, Stay), while player 2 prefers
otherwise.



Appendix — Risk Dominance

e Pareto dominance helps us compare NEs where, for instance, both firms

%imulicaneously change their technology decision from B to 4, yielding
AA).

e But what if each firm unilaterally deviates from NE?
 If (B, B) is played, every firm’s payoff loss when unilaterally switchingto Ais5 — 0 =
5

* Butif (4,A) is being played, every firm loses 10 — 2 = 8 when unilaterally deviating
to B.
 Informally, at (4, 4), unilateral deviations are “riskier” than at (B, B).

* Note that, as opposed to Pareto dominance, we now seek to understand the payoff
loss that players can suffer in the path when each of them unilaterally moves from
one NE to another.

* How to measure the “riskiness” of deviations in a more formal way?



Appendix — Risk Dominance

e Definition. Risk Dominated NE.

* A NE strategy profile s* = (s1,s,) risk dominates another NE
strategy profile s’ = (sy,s5) if the total payoff loss of moving from s’

to s,
[ui(s1,52) —us(s1,82)] X [uz(sqy,s2) — up(sq, sz)]
exceeds that of moving from s* to s/,

[ul(siJSé) —ul(Sik,Sé)] X [uz(S]’_,Sé) _uZ(Si'S;)]



Appendix — Risk Dominance

Example: Firm 2
Tech. A Tech. B
Tech. A 10,10 0,2
Firm 1
Tech. B 2,0 5,5

Matrix 3.11. Technology Coordination Game

We(flalrzl)say that (B, B) risk dominates (4, A) because the total payoff loss of moving from (B, B)
to (4,A4),
[ul (A, A) — U (B)A)] X [uZ (A)A) — Uy (A; B)]

= (10—-2) x(10—-2) =64

exceeds that of moving from (4,4) to (B, B)
lu;(B,B) —uy(4,B)] X [uy(B,B) —uy(B,A4)]

= (5—-0) x(5—-0) = 25.
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