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1 Introduction

In this chapter, we consider a society with N � 2 individuals, each of them endowed with his own

preference relation over a set of alternatives, such as the political candidates running for o¢ ce, or

the projects being considered for implementation in a region. We then examine the aggregation of

individual preferences into a social preference, which can be interpreted as a ranking of alternatives

for the society.

We discuss di¤erent methods of aggregating individual preferences and their properties, �rst

in binary sets of alternatives, and then in sets with more than two alternatives (e.g., seventeen

candidates competing in the 2015 primary of the Republican party to become the party�s nominee

for U.S. President in the general election). We explore the question, originally posed by Arrow

(1953), of whether there exists a procedure to aggregate individual preferences satisfying a list of

desirable, and not very demanding, properties (spoiler alert: it doesn�t exist!).

We then analyze the reactions of the literature to Arrow�s inexistence result, which can be

divided into two groups: those studies that restricted the type of preferences that individuals can

sustain; and those aggregating individual preferences into a social welfare function with a cardinal

measure (rather than an ordinal ranking of social preferences). We �nish this chapter discussing

di¤erent voting procedures often used in real life, and their properties.

2 Social welfare functional

Consider a group of N � 2 individuals and a set of alternatives X. For simplicity, we �rst consider
that set X is binary, thus containing only two elements X = fx; yg, and later on extend our analysis
to sets with more than two alternatives. These two alternatives could represent, for instance, two

candidates competing for o¢ ce, or two policies to be implemented (i.e., the status quo and a new

policy). In this binary setting, every individual i�s preference over alternatives x and y can be

de�ned as a number:

�i = f1; 0;�1g

indicating that he strictly prefers x to y when �i = 1, he is indi¤erent between x and y when �i = 0,

or he strictly prefers alternative y to x when �i = �1. Our goal in this chapter is to aggregate
individual preferences with the use of a social welfare functional (also referred to as social welfare

aggregator); as de�ned below.
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Social welfare functional. A social welfare functional (swf) is a rule

F (�1; �2; :::; �N ) 2 f1; 0;�1g

which, for every pro�le of individual preferences (�1; �2; :::; �N ) 2 f1; 0;�1gN , assigns a social
preference F (�1; �2; :::; �N ) 2 f1; 0;�1g.

As an example, for individual preferences (�1; �2; �3) = (1; 0; 1) where individuals 1 and 3

strictly prefer x over y while individual 2 is indi¤erent, the swf could be F (1; 0; 1) = 1, thus

preferring alternative x over y at the aggregate level. We next describe di¤erent properties of swfs,

and test whether commonly used methods to aggregate individual preferences (that is, common

swfs) satisfy or violate such properties.

2.1 Properties of swf

Paretian. For any pair of alternatives x and y in X, if x �i y for every individual i, then the
social preference is x � y.

That is, when all individuals strictly prefer alternative x to y, we say that a swf is Paretian if

it yields that x is strictly preferred by society, F (1; 1; :::; 1) = 1. Similarly, when all individuals

strictly prefer alternative y to x, it yields that y is strictly preferred by society F (�1;�1; :::;�1) =
�1. Note that we require that all individuals share the same strict preference for one of the two
alternatives, which is then respected by the social ranking that the swf produces.1

This property is not very demanding. To see this point, note that a swf violating the Paretian

property would pick alternative y as socially preferred even if all individuals strictly prefer alter-

native x to y! This property is, hence, satis�ed by many swfs. For instance, simple and weighted

voting, and even dictatorship, satisfy this property. We de�ne these three swfs below and then

con�rm that they satisfy the Paretian property.

Example 12.1. Weighted voting swf. According to this swf, we �rst add individual

preferences, assigning a weight �i � 0 to every individual, where (�1; �2; :::; �N ) 6= 0, as in a

weighted sum
P
i �i�i 2 R. Intuitively, the preference of every individual i, �i = f1; 0;�1g, is

weighted by the importance that such society assigns to his preference, as captured by parameter

�i. After �nding the weighted sum
P
i �i�i, we apply the sign operator, which yields 1 when the

weighted sum is positive
P
i �i�i > 0, 0 when the weighted sum is zero

P
i �i�i = 0, and �1 when

it is negative
P
i �i�i < 0. Hence, the weighted voting swf can be summarized as

F (�1; �2; :::; �N ) = sign
X
i

�i�i

1For this reason, the literature often refers to the property by saying that the swf respects �unanimity of strict
preference.�
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In order to check if this swf is Paretian, we only need to con�rm that, when all individuals

strictly prefer alternative x to y, the swf also prefers x to y. Indeed,

F (1; 1; :::; 1) = 1, since
X
i

�i�i =
X
i

�i > 0;

and similarly, when all individuals strictly prefer alternative y to x, the swf also prefers y to x,

F (�1;�1; :::;�1) = �1, since
X
i

�i�i = �
X
i

�i < 0. �

Example 12.2. Simple majority. This aggregation method is a special case of weighted
majority, where the swf assigns the same weights to all individuals, i.e., �i = 1 for every individual

i. In this setting, if the number of individuals who prefer alternative x to y is larger than the

number of individuals preferring y to x, then the swf prefers x over y, i.e., F (�1; �2; :::; �N ) = 1.

The opposite argument applies if the number of individuals who prefer alternative y to x is larger

than the number of individuals preferring x to y, where the swf aggregating individual preferences

prefers y over x, i.e., F (�1; �2; :::; �N ) = �1. Finally, note that the simple majority swf is Paretian
since weighted voting is Paretian too (as shown in Example 12.1). We nonetheless test this property

as a practice:

F (1; 1; :::; 1) = 1, since
X
i

�i�i = N > 0; and

F (�1;�1; :::;�1) = �1, since
X
i

�i�i = �N < 0. �

Example 12.3. Dictatorial swf. We say that a swf is dictatorial if there exists an agent d,
called the dictator, such that, for any pro�le of individual preferences (�1; �2; :::; �N ):

1. when the dictator strictly prefers alternative x to y, �d = 1, the swf also prefers x to y,

F (�1; �2; :::; �N ) = 1; and

2. when the dictator strictly prefers alternative y to x, �d = �1, the swf also prefers y to x,
F (�1; �2; :::; �N ) = �1.

Intuitively, the strict preference of the dictator �d prevails as the social preference, regardless

of the preference pro�le of all other individuals i 6= d. We can, hence, understand the dictatorial

swf as a extreme case of weighted voting where the weight assigned to individual d�s preferences is

positive, �d > 0, but nil for all other individuals in the society, i.e., �i = 0 for all i 6= d. Finally,

note that since the weighted voting swf is Paretian, then the dictatorial swf (as a special case of
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weighted voting) must also be Paretian. For completeness, we show it next:

F (1; 1; :::; 1) = 1, since
X
i

�i�i = �d > 0; and

F (�1;�1; :::;�1) = �1, since
X
i

�i�i = ��d < 0. �

After con�rming that weighted majority (and its two special cases, simple majority and dicta-

torship) satisfy the Paretian property, we continue our presentation of properties that are commonly

regarded as desirable for voting procedures to satisfy.

Symmetry among voters (or anonymity). The swf F (�1; �2; :::; �N ) is symmetric among
agents (or anonymous) if the names of the agents do not matter. That is, if a permutation of

preferences across agents does not alter the social preference. More precisely, let

� : f1; 2; :::; Ng ! f1; 2; :::; Ng

be an onto function (i.e., a function that, for every individual i, identi�es another individual j such

that �(j) = i). Then, for every pro�le of individual preferences (�1; �2; :::; �N ), the swf prefers

the same alternative with (�1; �2; :::; �N ) and with the �permuted�pro�le of individual preferences�
��(1); ��(2); :::; ��(N)

�
, that is,

F (�1; �2; :::; �N ) = F
�
��(1); ��(2); :::; ��(N)

�
Intuitively, the name of the individual preferring x over y, preferring y over x, or being indi¤erent

between them, does not a¤ect the socially preferred alternative. Informally, this property says that

the candidate chosen by a swf should depend only on voters�preferences and not who has those

preferences. That is, voters should be treated symmetrically when aggregating their preferences.

As a practice, Example 12.4 below shows that simple majority satis�es anonymity, but weighted

voting or dictatorship do not.

Example 12.4. Testing for anonymity. Simple majority. Let us �rst check if simple

majority satis�es anonymity. The sum
P
i �i coincides when we consider the initial preference

pro�le (�1; �2; :::; �N ) and when we consider the �permuted� pro�le of individual preferences�
��(1); ��(2); :::; ��(N)

�
; thus yielding the same social preference when society uses simple majority

to aggregate individual preferences.2

Weighted majority. The sum
P
i �i�i that we obtain when aggregating individual preferences

according to weighted voting, however, can di¤er in the initial and permuted preference pro�le.
2For instance, consider a pro�le of individual preferences (�1; �2) = (1; 0) and its permutation

�
��(1); ��(2)

�
=

(0; 1) where �(1) = 2 and �(2) = 1, i.e., individual preferences are switched between individuals 1 and 2. Then, the
simple majority swf yields x as being socially preferred according to both the initial preference pro�le (�1; �2) = (1; 0),
F (1; 0) = 1 since

P
i �i = 1 + 0 = 1, and according to the permuted preference pro�le

�
��(1); ��(2)

�
= (0; 1), i.e.,

F (0; 1) = 1 since
P

i �i = 0 + 1 = 1.
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Consider, for instance, a society of three individuals with a pro�le of individual preferences given

by (�1; �2; �3) = (1;�1; 1). According to weighted voting, we �nd thatX
i

�i�i = �1 � �2 + �3;

which is positive if �1 > �2��3. In contrast, if we apply the following permutation to individuals�
idientities, �(1) = 3, �(2) = 1, and �(3) = 2, weighted voting now yieldsX

i

�i�i = ��1 + �2 + �3;

which is positive if �1 < �2+�3. Therefore, weighted voting yields the same output before and after

the permutation (thus satisfying anonymity) only if �1 is intermediate, i.e., �2��3 < �1 < �2+�3;

but it yields di¤erent outcomes otherwise (thus violating anonymity).

Dictatorship. A similar argument applies to the dictatorial swf since it is a special case of

weighted voting where �d > 0 for the dictator and �i = 0 for all other individuals i 6= d. For

instance, if in the above society with three individuals, �1 = 1 and �2 = �3 = 0, then the

initial pro�le of individual preferences (�1; �2; �3) = (1;�1; 1) yields
P
i �i�i = 1 (which entails

alternative x as strictly preferred to y by the society), whereas the �permuted�pro�le of individual

preferences
�
��(1); ��(2); ��(3)

�
= (�1; 1; 1) yields

P
i �i�i = �1 (meaning that society now strictly

prefers alternative y to x). This should come at no surprise since individual 1 is the dictator,

thus imposing his strict preference for x in the initial pro�le of preferences. However, individual 2

becomes individual 1 (and thus the dictator) after we permute the identities of these individuals,

allowing him to impose his strict preference of y over x. �

Neutrality between alternatives. The swf F (�1; �2; :::; �N ) is neutral between alternatives
if, for every pro�le of individual preferences (�1; �2; :::; �N ),

F (�1; �2; :::; �N ) = �F (��1;��2; :::;��N )

That is, if we reverse the preferences of all agents, from (�1; �2; :::; �N ) to (��1;��2; :::;��N ),
then the social preference is reversed as well. For instance, if the pro�le of individual preferences is

(�1; �2) = (1; 0) and the swf produces F (1; 0) = 1, then when we reverse the pro�le of individual

preferences to (�1; 0), the social preference must become F (�1; 0) = �1 for the swf to satisfy
neutrality. Intuitively, this property is often understood as that the swf treats alternatives x and

y symmetrically, without providing an initial advantage to either alternative. As a practice, check

that simple majority voting satis�es neutrality between alternatives.

Positive responsiveness. Consider a pro�le of individual preferences (�1; �2; :::; �N )where
alternative x is socially preferred or indi¤erent to y, i.e., F (�1; �2; :::; �N ) � 0. Take now a new

pro�le (�01; �
0
2; :::; �

0
N ) in which some agents raise their consideration for x, i.e., (�

0
1; �

0
2; :::; �

0
N ) �
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(�1; �2; :::; �N ) where (�01; �
0
2; :::; �

0
N ) 6= (�1; �2; :::; �N ), i.e., �0i > �i for at least one individual i.

We say that a swf is positively responsive if the new pro�le of individual preferences (�01; �
0
2; :::; �

0
N )

makes alternative x socially preferred, i.e., F (�01; �
0
2; :::; �

0
N ) = 1.

In words, initial condition (�01; �
0
2; :::; �

0
N ) � (�1; �2; :::; �N ) says that at least one of the com-

ponents of the new preference pro�le is larger than in the original pro�le, thus indicating that the

consideration of alternative x increased for at least one individual. Therefore, positive responsive-

ness says two things:

1. If alternative x was socially preferred to y under the initial pro�le of preferences,

F (�1; �2; :::; �N ) = 1;

then xmust still be socially preferred under the new pro�le of preferences, F (�01; �
0
2; :::; �

0
N ) =

1; and

2. If alternative x was indi¤erent to y under the initial pro�le of preferences,

F (�1; �2; :::; �N ) = 0;

then x becomes socially preferred under the new pro�le of individual preferences, F (�01; �
0
2; :::; �

0
N ) =

1.

As you probably suspect, point (1) is not demanding, but point (2) does not hold for some

voting procedures. To see this point, consider an extreme case where every individual is indi¤erent

between x and y in the initial pro�le of preferences, yielding F (�1; �2; :::; �N ) = 0. According to

positive responsiveness, if at least one individual strictly prefers x to y in the new preference pro�le,

while everyone else is still indi¤erent between both alternatives, society should strictly prefer x,

that is, F (�01; �
0
2; :::; �

0
N ) = 1. Example 12.5 presents a swf satisfying this property while Example

12.6 tests this property in common swfs.

Example 12.5. A swf satisfying positive responsiveness. Consider an individual prefer-
ence pro�le of (�1; �2; �3) = (1; 0;�1), and assume that the swf in this case yields F (�1; �2; �3) = 0,
i.e., society is indi¤erent between alternatives x and y. Now, assume that the preference pro�le

increases the consideration of alternative x, implying that the new preference pro�le can be any of
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the following3

�
�01; �

0
2; �

0
3

�
= (1; 1;�1)

= (1; 0; 0)

= (1; 0; 1)

= (1; 1; 0)

= (1; 1; 1)

Then, if the swf selects F (�01; �
0
2; �

0
3) = 1, meaning that alternative x is socially preferred to y,

the swf satis�es positive responsiveness. If, instead, the swf for the new preference pro�le is still

F (�01; �
0
2; �

0
3) = 0 or decreases to F (�

0
1; �

0
2; �

0
3) = �1, the such a swf violates this property. �

Example 12.6. Testing positive responsiveness. In this example, we show that weighted
voting satis�es positive responsiveness, implying that simple majority and dictatorship must also

satisfy it since they are both special cases of weighted voting. To test this property, we need to

check the two conditions listed above.

1. First, when society is indi¤erent between alternative x and y under the initial preference

pro�le, the weighted sum is
P
i �i�i = 0. In this context, the sum in the new preference

pro�le,
P
i �i�

0
i, must be positive since at least one of the elements in the vector of individual

preferences (that is, at least of the �i�s) increased. Therefore, the sum
P
i �

0
i > 0 implying

that society strictly prefers alternative x to y.

2. Second, when society strictly prefers alternative x to y under the initial preference pro�le,

the weighted sum is
P
i �i�i > 0. In this case, the sum in the new preference pro�le,

P
i �i�

0
i,

must also be positive, thus implying that x is socially preferred to y under the new pro�le of

individual preferences as well.

Since conditions (1) and (2) hold, weighted voting satis�es positive responsiveness; and so do

simple majority and dictatorship since they are special cases of weighted voting as discussed above.

�

2.2 Arrow�s impossibility theorem

Let us now extend our analysis to non-binary sets of alternativesX, e.g., three candidates competing

for elected o¢ ce or, more generally, X = fa; b; c; :::g. In this context, the aggregation of individual
preferences using a majority voting swf, or a weighted voting swf, can be subject to non-transitivities

3 In the �rst preference pro�le, individual 2 is the only agent increasing his consideration for alternative x (as
�2 = 0 increases to �02 = 1); and in the second perference pro�le, individual 3 is the only agent increasing his
consideration for x (since �3 = �1 increases to �03 = 0). In the third preference pro�le, individual 3 is the only
agent whose consideration for x increases, but now �3 increases from �3 � 1 to �03 = 1; while in the fourth and �fth
preference pro�les, the consideration of individuals 2 and 3 simultaneously increase.
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in the resulting social preference. In other words, the order in which pairs of alternatives are voted

can lead to cyclicalities, as shown in Condorcet�s paradox (see Chapter 1, where we aggregated

di¤erent criteria of a prospective student admitted into three Ph.D. programs). For illustration

purposes, we recall Condorcet paradox below.

Condorcet Paradox. Consider a society with three individuals and three alternatives X =

fx; y; zg, where individual preferences are given by

x % 1 y %1 z for individual 1,

y % 2 z %2 x for individual 2, and

z % 3 x %3 y for individual 3

Cyclicalities. If individual preferences are aggregated according to majority voting, the resulting

social preference is intransitive. Indeed, the social preference is

x %1;3 y %1;2 z %2;3 x

where the superscripts above each preference symbol represent the individuals who sustain these

preferences. For instance, x %1;3 y indicates that individuals 1 and 3 prefer alternative x to y (with
only individual 2 prefering y to x), and thus alternative x beats y under majority voting. A similar

argument applies to y %1;2 z, where alternative y beats z under majority voting since individuals
1 and 2 weakly prefer y to z; and to z %2;3 x, where alternative z beats x given that individuals
2 and 3 weakly prefer it. After comparing every pair of alternatives according to majority voting,

we obtain an intransitive social preference relation leading to cyclicalities.

Agenda manipulation. Cyclicalities are important because they produce social preferences that

are subject to agenda manipulation. In words, this means that the individual selecting which

two alternatives are considered �rst in a pairwise vote can strategically choose two alternatives

to produce his most preferred alternative as the winner of the pairwise vote, i.e., she can alter

the agenda on his own bene�t. In order to see this result, note that if alternatives x and y are

confronted using majority voting, alternative x wins as it receives two votes (from voters 1 and 3)

while alternative y only receives voter 2�s ballot. The winner of this pairwise majority voting, x, is

then paired against the remaining alternative, z, which yields z as the winner, since z receives two

votes (from voters 2 and 3) while alternative x only receives voter 1�s ballot. Hence, if the parwise

vote is �rst between alternatives x and y with the winner subsequently confronting alternative

z, a sophisticated agenda setter could anticipate that alternative z will be declared the winner.

(Individual 3, for instance, would have incentives to set such an agenda for pairwise votes.)4

4 If, instead, alternatives x and z are paired �rst, with the winner confronting alternative y, the outcome changes.
Indeed, z wins a pairwise vote against x (as it receives votes from 2 and 3), but the winner, z, then loses against
the remaining alternative y (as y is preferred to z by voters 2 and 1), thus declaring y as the winner. This agenda
would be bene�cial for individual 2. A similar argument applies if alternatives y and z are �rst matched in a pairwise
voting, and the winner of this pair confronting afterwards alternative x. In particular, y would beat z since voters 1
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Given the possibility of intransitive social preferences when using common voting methods,

such as simple and weighted majority, an interesting question is: Can we design voting systems

(i.e., swfs that aggregate individual preferences) that are not prone to the Condorcet�s paradox and

satisfy a minimal set of �desirable�properties? This was the question Arrow asked himself (for his

Ph.D. thesis) obtaining a rather grim result: such a voting procedure does not exist!. This result

is commonly known as �Arrow�s impossibility theorem.�Before presenting the theorem, let us �rst

de�ne the four minimal requirements that Arrow considered all swfs should satisfy.

1. Unrestricted domain (U). The domain of the swf,
�
%1;%2; :::;%N

�
, must allow for all

combinations of individual preference relations on X.

In other words, we allow any sort of individual preferences over alternatives.

2. Paretian (P). For any pair of alternatives x and y in X, if x �i y for every individual i,
then the social preference is x � y.

This is the same property we de�ned in elections between two alternatives, extended now to

settings with more than two candidates. In words, if every member of society strictly prefers

alternative x to y, society strictly prefers x to y.5

3. Non-dictatorship (ND). There is no individual d such that, for every pair of alternatives
(x; y) 2 X, individual d�s strict preference of x over y, x �d y, implies a social preference of
x � y regardless of the preferences of all other individuals i 6= d.

Note that this is a very mild assumption. Indeed, we could consider a �virtual�dictatorship

in which an individual d imposes his preference on the rest of individuals for all, but one, pair

of alternatives. Such a setting would be considered non-dictatorial, since for a dictatorship

to arise we must �nd that the preferences of individual d dictate the social preference for

all pairs of alternatives. Consider, for instance, a group of two individuals, with the pro�le

of individual preferences depicted in table 12.1. While social preferences coincide with the

preferences of individual 1 in most pairs of alternatives (see �rst two rows of the table), they

do not in one pair (see last row). As a consequence, this swf is not dictatorial.

%1 %2 Soc.Pref. %
x %1 y y %2 x x % y

y %1 z z %2 y y % z

z %1 w w %2 z w % z

Table 12.1. A �virtual�dictatorship of individual 1.

and 2 would vote for y, but the pairwise voting between y and the remaining alternative x ultimately yields x as the
winner (since voters 1 and 3 vote prefer x over y). Such voting agenda would be particularly attractive to individual
1.

5Recall that, if all but one individual strictly prefers alternative x to y, yet one person is indi¤erent between these
two alternatives, a Paretian swf does not necessarily yield that alternative x is strictly preferred to y.
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4. Independence of irrelevant alternatives (IIA). Let % be social preferences arising from
the list of individual preferences

�
%1;%2; ::: %N

�
, and %0 that arising when individual prefer-

ences are
�
%01;%02; ::: %0N

�
. In addition, let x and y be any two alternatives in X. If each

individual ranks alternatives x and y in the same way under his initial preferences, %i, and
new preferences, %0i, then the social ranking of alternatives x and y should not change.

Note that the premise of IIA only requires that, if individual i�s preferences are x %i y
between alternatives x and y (e.g., his preference in the morning), then he keeps ranking

these two alternatives in the same way, x %0i y (e.g., his preferences in the afternoon), even

if his preferences for a third alternative change.6 Then, we say that a swf satis�es IIA if

the social ranking of alternatives x versus y is una¤ected. In other words, even if other

alternatives di¤erent from x and y change their ranking when we move from %i to %0i,

individual preferences for x and y have not changed and, hence, the social preference for x

and y should not change either. The following examples illustrates swfs satisfying or violating

IIA.

Example 12.7. Swfs satisfying/violating IIA. Consider the preference pro�le depicted
in table 12.2. Suppose that in the morning (left side) some individuals prefer alternative x to y,

x %i y, while others prefer y to x, y %i x. However, they all rank alternative z below both x and
y. In addition, suppose that the swf yields a social preference of x over y, i.e., x % y. During the

afternoon (right side), alternative z is ranked above both x and y for all individuals. However, the

ranking of alternatives x and y did not change for any individual, i.e., if x %i y then x %0i y, and

if y %i x then y %0i x; as required by the premise of IIA. Then, IIA says that society should still

prefer x over y in the afternoon, i.e., x %0 y.

Morning

%1 %2 Soc.Pref. %
: : :

: : :

x y x

y x y

: z z

z : :

x %1 y y %2 x x % y

Afternoon

%1 %2 Soc.Pref. %
z : z

: z :

x y x

y x y

: : :

: : :

x %1 y y %2 x x % y

Table 12.2. Swf satisfying IIA.

In contrast, table 12.3 illustrates a swf violating IIA. While the preferences over alternatives x

and y of individuals 1 and 2 remain constant over time (i.e., the premise of IIA holds), the social

6The preferences of individual j 6= i could, however, be di¤erent from those of individual i, i.e., y %j x and y %0j x
so individual j ranks alternatives x and y in the same way in the morning and afternoon.
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preference over these alternatives changes from x % y in the morning to y % x in the afternoon.

Hence, IIA does not hold.

Morning

%1 %2 Soc.Pref. %
: : :

: : :

x y x

y x y

: z z

z : :

x %1 y y %2 x x % y

Afternoon

%1 %2 Soc.Pref. %
z : z

: z :

x y y

y x x

: : :

: : :

x %1 y y %2 x y % x

Table 12.3. Swf violating IIA.

Note that if the preference between alternatives x and y changes for at least one individual from

the morning to the afternoon, then the premise of IIA does not hold; as illustrated in table 12.4.

In such a case, we cannot claim that IIA is violated.7 �

Morning

%1 %2 Soc.Pref. %
: : :

: : :

x y x

y x y

: z z

z : :

x %1 y y %2 x x % y

Afternoon

%1 %2 Soc.Pref. %
z : z

: z :

x x y

y y x

: : :

: : :

x %1 y x %2 y y % x

Table 12.4. Swf for which the premise of IIA does not hold.

Most of these assumptions are often accepted as the minimal assumptions that we should

impose on any swf that aggregates individual preferences into a social preference. Let us now

describe Arrow�s impossibility theorem, which comes as a surprising, even disturbing, result.

Arrow�s impossibility theorem. If there are at least three elements in the set of alternatives
X, then there is no swf that simultaneously satis�es properties U, P, IIA, and ND.

Proof: We will assume that U, P and IIA hold, and show that all swfs simultaneously satisfying
these three properties must be dictatorial, thus violating one of the four properties. (U is used

7For us to claim that the swf violates the IIA, we �rst need that its premise to be satis�ed, and the conclusion
is violated, i.e., while individual preferences for x and y do not change throughout the day, the social preference for
alternatives x and y changes.
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throughout the proof when we alter the pro�le of individual preferences, since this property allows

for all preference pro�les to be admissible.)

Step 1: Consider that an alternative c is placed at the bottom of the ranking of every individual

i. Then, by P, alternative c must be placed at the bottom of the social ranking as well; as depicted

in the last column of table 12.5.

%1 %2 ::: %N Soc.Pref. %
x x0 ::: x00 x000

y y0 ::: y00 y000

: : :

: : :

: : :

c c ::: c c

Table 12.5. Alternative c is at the bottoom of everyone�s ranking.

Step 2: Imagine now that we move alternative c from the bottom of individual 1�s ranking to

the top of his ranking, leaving the position of all other alternatives una¤ected. Next, we do the

same move for individual 2, then for individual 3, etc.; as illustrated in table 12.6. Let individual

n be the �rst for which raising alternative c to the top of his ranking causes the social ranking of

alternative c to increase. The following table places alternative c at the top of the social ranking,

a result we show next.

%1 %2 ::: %n ::: %N Soc.Pref. %
c c ::: c ::: x00 c

x x0 ::: ::: y00 :

y y0 :

: : :

: : :

: : :

w w0 ::: ::: c w000

Table 12.6. Alternative c is raised to the top of the ranking for i = 1; 2; :::; n.

By contradiction, assume that the social ranking of c increases but not to the top, i.e., there is

at least one alternative � such that � % c and one alternative � for which c % �, where �; � 6= c;

as depicted in table 12.7 (left panel). Because alternative c is either at the top of the ranking of

individuals 1; 2; :::; n, or at the bottom of the ranking of individuals n + 1; :::; N , we can change

each individual i�s preferences so that � �i �, while leaving the position of c unchanged for that
individual; as depicted in the right panel of table 12.7.
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%1 %2 ::: %n ::: %N Soc.Pref. %
c c ::: c ::: x00 �

x x0 ::: ::: y00 :

y y0 c

: : �

: : :

: : :

w w0 ::: ::: c w000

%1 %2 ::: %n ::: %N Soc.Pref. %
c c ::: c ::: � �

� � ::: � ::: z :

: � c

: : � �

� : :

: : � :

w w0 ::: ::: c w000

Table 12.7. Alternative c must be at the top of the social ranking.

We have now changed each individual i�s preferences so that � �i �, while leaving the position
of c unchanged for that individual, which produces our desired contradiction:

1. On one hand, � �i � for every individual which, by the P property, must yield a social

preference of � � �; and

2. On the other hand, the ranking of alternative � relative to c, and of � relative to c, have

not changed for any individual.8 By the IIA, this result implies that the social ranking of �

relative to c, and of � relative to c, must remain unchanged. Hence, the social ranking is still

� % c and c % �. By transitivity, this yields that � % �.

However, the result from point 1 (� � �) contradicts that from point 2 (� % �); yielding the

desired contradiction. Hence, alternative c must have moved all the way to the top of the social

ranking. (Q.E.D.)

In the next, and �nal, step of the proof, we show that individual n is a dictator, thus imposing

his preferences on the group regardless of the preference pro�le of all other individuals.

Step 3: Consider now two distinct alternatives a and b, each di¤erent from c. In Table 12.8,

let�s change the preferences of individual n as follows:

a �n c �n b

For every other individual i 6= n, we rank alternatives a and b in any way but keeping the

position of c unchanged (see Table 12.8).

8That is, if an individual i�s preference for alternative � and c was � %i c (c %i �) before changing � �i � for
all individuals, his preference is still � %i c (c %i �, respectively) after the change. A similar argument applies for
individual i�s preference between � and c, which remains una¤ected after imposing the condition of � �i � in the
ranking of all individuals.
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%1 %2 ::: %n ::: %I Soc.Pref. %
c c ::: a ::: x00 c

x x0 ::: c ::: y00 :

y y0 b : :

: : : a

: : : b

a b ::: ::: a :

b a ::: ::: b

: : :

w w0 ::: ::: c w000

Table 12.8. Individual n must be a dictator.

In the new pro�le of individual preferences, the ranking of alternatives a and c is the same for

every individual as it was just before raising alternative c to the top of individual n�s ranking in

Step 2. Therefore, by IIA, the social ranking of alternatives a and c must be the same as it was at

that moment (just before raising c to the top of individual n�s ranking in Step 2). That is, a � c,

since at that moment alternative c was at the bottom of the social ranking. Similarly, in the new

pro�le of individual preferences, the ranking of alternatives c and b is the same for every individual

as it was just after raising c to the top of individual n�s ranking in Step 2. Hence, by IIA, the social

ranking of alternatives c and b must be the same as it was at that moment. That is, c � b, since

at that moment alternative c had just risen to the top of the social ranking. Summarizing, since

a � c and c � b, we have that, by transitivity, a � b.

Then, no matter how individuals di¤erent from individual n rank every pair of alternatives a

and b, the social ranking agrees with individual n�s ranking; thus showing that individual n is a

dictator, which completes the proof.9 (Q.E.D.)

In summary, we started with a swf satisfying properties U, P, and IIA, and showed that the

social preference must coincide with that of one individual, thus violating the non-dictatorship

property (ND). Other proofs of this theorem follow a similar route, by considering that three of

the four assumptions hold, and showing that the fourth assumption must be violated.10

3 Reactions to Arrow�s impossibility theorem

After Arrow�s negative result to the search of a swf satisfying his four minimal assumptions, the

literature reacted using two main approaches: (1) Eliminating the U assumption, by focusing on

9That is, while a �i b for some individuals and b �j a for other individuals, the fact that a �n b for individual n
implies that a � b for the social ranking, which is true for any two alternatives a; b 6= c, and regardless of how many
individuals strictly prefer alternative a to b, and how many strictly prefer b to a.
10Other approaches use �gures to provide a more visual representation of the proof; see, for instance, section 2.4

in Gaertner�s (2009) book. Maskin and Sen (2014) also provide a combination of technical and intuition discussions
on Arrow�s impossibility theorem.
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speci�c types of individual preferences, such as the single-peaked preferences that we de�ne below;

and (2) Aggregating the intensity of individual preferences (not only the ranking of alternatives for

each individual) into a social welfare function. This last approach di¤ers from the swf analyzed in

previous sections, as that provided us with a ranking of social preferences (i.e., a cardinal measure),

while a social welfare function evaluates the welfare that society achieves from each allocation of

goods and services (i.e., an ordinal measure). We explore each approach in the next two subsections.

3.1 First reaction - Single-peaked preferences

We informally say that preferences of individual i are single-peaked if we can identify a blissing

point (or satisfaction point) at which the individual reaches his maximal utility (i.e., his utility

�peak�). Formally, the single peak is de�ned relative to a linear order � on the set of available

alternatives X.11

Single-peaked preferences De�nition. The rational preference relation % is single peaked

with respect to the linear order � on X if there is an alternative x 2 X with the property that %
is increasing with respect to � on the set of alternatives below x, fy 2 X : x � yg, and decreasing
with respect to � on the set of alternatives above x, fy 2 X : y � xg.

As suggested above, this de�nition can be understood as that there is an alternative x that

represents a �peak�of satisfaction; and that satisfaction increases as we approach this peak either

from points below x, x � y, or from points above x, y � x, so there cannot be other peak of

satisfaction.

Example 12.8. Single-peaked preferences. Consider a set of policy alternatives X = [0; 1],

e.g., percentage of the federal budget spent in education. Every individual i�s utility from alternative

xk 2 [0; 1] is
u(xk; �i) = � (xk � �i)2

where �i 2 [0; 1] represents individual i�s ideal policy. To understand this utility function, note
that it collapses to zero when the policy alternative coincides with the individual�s policy ideal,

xk = �i; but becomes a negative number both when the policy falls below his policy ideal, xk < �i,

and when it exceeds his policy ideal, xk > �i. Graphically, the utility function exhibits an inverted

U-shape, and lies in the negative quadrant for all xk 6= �i, and becomes zero only at xk = �i. This

function is then single-peaked at xk = �i. �

Example 12.9. Single-peaked preferences and convexity. Consider a set of alternatives
X = [a; b] � R, i.e., a segment of the real line. Then, a preference relation % on X is single peaked if

11Recall the de�nition of a linear order. We say that a binary relation � is a linear order on the set of alternatives
X if it is: (1) re�exive, i.e., x � x for every x 2 X; (2) transitive, i.e., x � y and y � z implies y � z; and (3) total,
i.e., for any two distinct x; y 2 X, we have that either x � y or y � x, but not both. If the set of alternatives is a
segment of the real line, i.e., X � R, then the linear order � can be understood as the �greater than or equal to�
operator in the real numbers.
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and only if it is strictly convex : That is if, for every alternative w 2 X, and for any two alternatives
y and z weakly preferred to w, i.e., y % w and z % w where y 6= z, their linear combination is

strictly preferred to w,

�y + (1� �)z � w for all � 2 (0; 1)

For illustration purposes, Figure 12.1 depicts utility functions satisfying (violating) the single-

peaked property in the left panel (right panel, respectively). In particular, note that in both panels

u(y) � u(w) and u(z) � u(w); as required by the premise of convexity. The linear combination of

y and z yields a utility u(�y+(1��)z) that lies above (below) u(w) when the utility function has
a single peak (multiple peaks); as depicted in the left (right) panel.

Figure 12.1. Single-peaked preferences and convexity.

Importantly, the single-peaked property is not equivalent to strict concavity in the utility func-

tion.12 Figure 12.2 depicts a utility function that, despite being strictly convex, satis�es the single-

peaked property. Indeed, u(y) � u(w) and u(z) � u(w), and the linear combination of y and z

yields a utility u(�y+(1��)z) that lies above u(w); as requred by the single-peaked property. �
12This is analogous to say that strictly convex preferences are not equivalent to strictly concave utility functions.

For more details on these properties, see Section 1.7 in Chapter 1.
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Figure 12.2. Single-peaked preferences and strictly concave

utility function.

We will now restrict our attention to settings in which all individuals have single-peaked pref-

erences with respect to the same linear order �. In this setting, consider pairwise majority voting,
which confronts every pair of alternatives x and y against each other, and determines that alterna-

tive x is (weakly) socially preferred to y if the number of agents who strictly prefer x to y is larger

or equal to the number of agents that strictly prefer y to x. Formally, for any pair of alternatives

fx; yg � X, we say that x bF �%1;%2; :::;%N� y, which denotes �x is weakly socially preferred to y�,
if

#
�
i 2 N : x �i y

	| {z }
votes for x

� #
�
i 2 N : y �i x

	| {z }
votes for y

that is, if the number of votes for alternative x is weakly larger than those to alternative y.

We next show that single-peaked preferences avoids the presence of Condorcet cycles in social

preferences. Before doing that, we de�ne what we mean by a �median voter�which we use in our

subsequent discussion and proof.

Median voter De�nition. Individual m 2 N is a median voter if

# fi 2 N : xi � xmg �
N

2
and # fi 2 N : xm � xig �

N

2

That is, at least half of the population has ideal points weakly above that of individual m, and

at least half of the population has ideal points weakly below that of m. A natural conclusion of

this de�nition is that, if there are no ties in peaks (i.e., individuals with the same ideal points)

and if the number of individuals is odd, then there are exactly N�1
2 individuals with ideal points
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strictly smaller than xm and, similarly, N�12 individuals with ideal points strictly larger than xm;

ultimately implying that the median voter is unique.13 We are now ready to provie the existence

of a Condorcet winner in this setting.

Result. When preferences are single-peaked, the social preference arising from applying pair-

wise majority voting has at least one alternative that cannot be defeated by any other alternative,

i.e, a Condorcet winner exists.

Proof. Consider a society with N individuals, each of them exhibiting single-peaked prefer-

ences. Then, the ideal point of the median agent, xm, cannot be defeated by majority voting by

any other alternative y, i.e., xm is a Condorcet winner. To prove this point, take any alternative

y 2 X and suppose that the ideal point of the median agent, xm, satis�es xm > y (the argument

is analogous if we assume that y > xm). For xm to be a Condorcet winner, we then need to show

that alternative xm defeats y, that is,

#
�
i 2 N : xm �i y

	| {z }
votes to xm

� #
�
i 2 N : y �i xm

	| {z }
votes to y

meaning that the number of individuals who strictly prefer xm to y is larger than the number of

individuals who strictly prefer y to xm.

Consider now the number of individuals with ideal points to the right-hand side of xm, that is,

Rm = # fi 2 N : xi � xmg. Similarly, the number of individuals with ideal points to the left of xm
can be compactly represented as Lm = # fi 2 N : xm � xig. Therefore, Rm � Lm and, since m

is the median voter, the number of individuals with ideal points to the right of xm must be larger

than N
2 , entailing

Rm �
N

2
� Lm.

We can now think again about the number of votes going to xm and y when only these two

alternatives are on the ballot. On one hand, all individuals with ideal points to the right of xm, as

captured by Rm, vote for xm since their ideal point xi satis�es xi � xm > y, weakly prefering xm
13As an example, consider a setting with �ve voters with ideal points in xi 2 [0; 1], where x1 < x2 < ::: < x5.

Hence, the median voter is individual 3, with ideal point x3, leaving the ideal points of voters 1 and 2 to the left of
x3, and the ideal points of voters 4 and 5 to the right of x3.
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to y. This is illustrated in �gure 12.3.14

Figure 12.3. Condorcet winner with single-peaked preferences.

This means that the number of votes to xm is weakly larger than Rm, #
�
i 2 N : xm �i y

	
� Rm.

Inserting this result in the above inequality, we obtain

#
�
i 2 N : xm �i y

	
� Rm �

N

2
� Lm.

On the other hand, the voters to the left of xm, as described by Lm, may prefer alternative y to

xm, but not necessarily, implying that Lm is larger than the votes going to alternative y, i.e., some

voters in Lm prefer xm to y. Therefore, Lm � #
�
i 2 N : y �i xm

	
, which inserted in our above

inequality yields

#
�
i 2 N : xm �i y

	
� Rm �

N

2
� Lm � #

�
i 2 N : y �i xm

	
.

Focusing on the terms in the extreme left- and right-hand side of the inequality, we obtain

that the number of individuals who prefer to vote for xm is larger than those voting for y. Since

alternative y is arbitrary, the median voter�s ideal point, xm, beats all other alternatives, ultimately

making xm the Condorcet winner; as required. (Q.E.D.)

As a consequence, imposing the assumption of single-peaked preferences guarantees the exis-

tence of a Condorcet winner. This is a positive result, as it helps us avoid the cyclicalities described

in the Condorcet paradox. In other words, the order in which pairs of alternatives are confronted

in pairwise majority voting does not a¤ect the �nal outcome of the election. However, the pres-

ence of single-peaked preferences does not necessarily guarantee transitivity; as the next example

illustrates.
14 Intuitively, for every individual i 2 S, alternative xm is closer to i�s ideal point, xi, than alternative y is, since

xi � xm and xm > y.
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Example 12.10. Intransitive social preferences. Consider a set of three alternatives

X = fx; y; zg and N = 4 individuals, with the following preference pro�les

x � 1 y �1 z for individual 1,

z � 2 y �2 x for individual 2,

x � 3 z �3 y for individual 3, and

y � 4 x �4 z for individual 4

We thus have that, when we run a pairwise majority voting between alternatives x and y, we

obtain

#
�
i 2 N : x �i y

	
= #

�
i 2 N : y �i x

	
= 2

that is, the number of individuals preferring x over y (voters 1 and 3) coincides with the number

preferring y over x (voters 2 and 4). Similarly, if we confront alternatives y and z in a pairwise

majority voting, we �nd that

#
�
i 2 N : z �i y

	
= #

�
i 2 N : z �i y

	
= 2

since individuals 2 and 3 vote for alternative z, while individuals 1 and 4 vote for y. Therefore, we

can conclude that alternative x is socially indi¤erent to y and, similarly, y is socially indi¤erent to

z. More compactly, z bF �%1;%2;%3;%4� y and y bF �%1;%2;%3;%4�x. For transitivity to hold, we
would need z bF �%1;%2;%3;%4�x to be satis�ed. However, this result does not hold. Indeed, when
alternatives z and x are presented to voters, the number of individuals preferring x to z (voters 1,

2 and 4) is larger than those preferring z to x (voter 2), that is,

#
�
i 2 N : x �i z

	
= 3 and #

�
i 2 N : z �i x

	
= 1

thus implying x bF �%1;%2;%3;%4� z, which violates transitivity in the swf.
However, a Condorcet winner exists. To show that, let us run a pairwise majority voting

between all pairs of alternatives, in order to test if one alternative beats all others. First, in a

pairwise majority voting between x and y, there is a tie since, as described above, two individuals

vote for alternative x (voters 1 and 3) and the same number of individuals vote for y (voters 2 and

4). Second, in a pairwise majority voting between y and z, there is a tie since, as discussed above,

two individuals vote for alternative z (voters 2 and 3) and the same number of individuals vote for

y (voters 1 and 4). Finally, in a pairwise majority voting between z and x, alternative z wins as it

receives votes from voters 1, 2 and 4. Hence, alternative z becomes the Condorcet winner.15 �

Guaranteeing transitivity in the swf. In order to guarantee that the social preference

15Note that a Condorcet winner, such as alternative z in this example, allows for z to either defeat all other
alternatives, or produce a tie when z is confronted to some (but not all) alternatives. In other words, we cannot �nd
another alternative that defeats z in a pairwise majority voting, thus declaring z as the Condorcet winner.
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emerging from the swf is transitive, we need to impose single-peaked preferences and two additional

conditions: (1) The preference relation of every individual i must be strict (that is, we no longer

allow individuals to be indi¤erent between some alternatives); and (2) the number of individualsN is

odd. While the previous example, in which the social preference was intransitive, satis�ed condition

(1) since individual preferences were strict, it did not satisfy condition (2), as we considered four

voters. We next show that these two requirements help us obtain a transitive swf.

Result. Consider an odd number of individuals N , each of them with strict single-peaked

preferences relative to the linear order �. The social preference must be transitive.

Proof. Consider a set of alternatives X = fx; y; zg, where

x bF �%1;%2; :::;%N� y and y bF �%1;%2; :::;%N� z:
That is, alternative x defeats y, and y defeats x. Since individual preferences are strict and N

is odd, there must be one alternative in X that is not defeated by any other alternative in X.

However, such alternative can be neither y (since y is defeated by x) nor z (which is defeated by y).

Hence, such alternative has to be x. We can, thus, conclude that x bF �%1;%2; :::;%N� z; as required
to prove transitivity. (Q.E.D.)

In summary, imposing the assumptions of strict, single-peaked preferences, with an odd number

of individuals, helped us guarantee not only acyclic preferences (thus producing a Condorcet win-

ner), but also a transitive social preference relation. While this result is positive, we must recognize

that our above discussion only considered that the set of alternatives X was unidimensional, i.e.,

X � R, a segment in the real line. For instance, the alternative being considered for a vote is the
percentage of government budget that a political candidate plans to spend in education. In many

settings, however, candidates are evaluated on several dimensions, such as their plans for military

spending, their experience, and even their looks, thus making their policy proposals multidimen-

sional. A natural question is, then, whether we can still �nd a Condorcet winner in the social

preference when we consider individual preferences that rank policy alternatives according to two

or more dimensions. Bad news: a Condorcet winner may not exist in this setting; see Caplin and

Nalebu¤ (1988) for a detailed analysis.16

3.2 Second reaction - Social welfare function

While the �rst reaction of the literature to Arrow�s impossibility theorem restricted the set of

individual preferences being considered, the second reaction allows for the intensity of individual

preferences to enter into social preferences. That is, rather than seeking an ordinal measure of

social preferences, we obtain a cardinal measure. In particular, this approach uses a social welfare

function

W
�
u1(�); u2(�); :::; uN (�)

�
16Caplin, A. and B. Nalebu¤ (1988) �On 64% majority rule�Econometrica, 56, pp. 787-814.
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with its arguments being the utility levels of all individuals. We next describe some well-known

social welfare functions, such as the utilitarian and the Rawlsian. Afterwards, we present some

properties and discuss which social welfare functions satisfy each property. Formal proofs of each

result are left as short end-of-chapter exercises.

3.3 Common social welfare functions

Rawlsian social welfare function. This function considers that the welfare that society obtains
from an alternative x coincides with the utility level of the worst-o¤ individual, that is,

W (x) = min
�
u1(x); :::; uN (x)

	
.

Utilitarian social welfare function. This function assigns an equal weight to the utility level
of each individual, and it is probably the most commonly used social welfare function in economics.

W (x) = u1(x) + u2(x) + :::+ uN (x) =
NX
i=1

ui(x)

Hence, in a society with two individuals, W = u1(x) + u2(x) which, solving for u2, yields

u2(x) =W � u1(x),

thus being represented by a straight line with slope �1 in the (u1; u2)�quadrant; which can be
interpreted as the �iso-welfare curve.�

Example 12.11. Generalized utilitarian swf. We can also expand our previous results to
the �generalized utilitarian�function of the form

W (x) =

IX
i=1

�iui(x)

where �i > 0 represents the weight society assigns to individual i. For the case of two individuals,

the generalized utilitarian swf becomes W = �1u1 + �2u2 which, solving for u2, yields a social

indi¤erence curve of

u2 =
W

�2
� �1

�2
u1;

thus being still a straight negatively sloped line, but its slope is now ��1

�2
. Figure 12.4 depicts

three social indi¤erence curves, depending on the value of the �1

�2
ratio. In order to interpret

this ratio, consider a society seeking to increase individual 1�s utility in one more unit while still

maintaining the welfare level una¤ected (graphically represented by a rightward movement along

the same social indi¤erence curve). When society assigns a larger weight to the utility of individual

1 than 2, �1 > �2, the ratio becomes larger than 1 in absolute value, i.e., ��1

�2
> �1, implying
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that the amount of u2 that society is willing to give up (in order to increase u1 by one unit) is

relatively large. The opposite argument applies when weights satisfy �1 < �2, as the ratio now

satis�es ��1

�2
< �1, entailing that society is willing to give up a small utility from individual 2, u2,

to increase the utility of individual 1, u1, by one unit. Finally, note that the utilitarian swf can be

understood as a special case of the generalized utilitarian when weights coincide, i.e., �1 = �2. �

Figure 12.4. Social indi¤erence curves for a generalized

utilitarian swf.

CES social welfare function. As a summary, we can encompass all previous functional forms
of social welfare functions into the following, which exhibits a familiar CES form,

W (x) =
NX
i=1

h�
ui(x)

��i 1�
where 0 6= � < 1. Hence, the constant elasticity of social substitution between the utility of any two

individuals, �, can be expressed as � = 1
1�� . This swf satis�es a common assumption in consumer

theory: strong separability. Formally, the MRSui;uj only depends on the utility of individuals i

and j, ui and uj , but does not depend on the utility from any other individual k 6= i; j. Indeed,

the MRSui;uj of this CES swf is

MRSui;uj = �
�
ui

uj

���1
which is independent on uk. For illustration purposes, �gure 12.5 depicts three social indi¤erence
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curves of a CES swf: (1) � ! 1, corresponding to linear social indi¤erence curves, i.e., utilitarian

swf; (2) �1 < � < 1, curvy social indi¤erence curves, resembling Cobb-Douglas indi¤erence curves

in consumer theory; and (3) �! �1, corresponding to right-angled social indi¤erence curves, i.e.,
Rawlsian swf.

Figure 12.5. CES swf (three cases).

3.4 Social welfare functions - Properties

Since individual preferences can be represented with di¤erent utility functions, the following prop-

erties consider transformations on individual utility functions, and their e¤ects on the social welfare

function that aggregates these individual utility levels.

In particular, we are interested in guaranteeing that the social ranking of two alternatives x

and y, e.g., W
�
u1(x); u2(x); :::; uI(x)

�
� W

�
u1(y); u2(y); :::; uI(y)

�
, is una¤ected if we transform

individual utility functions. Otherwise, it would be troublesome if, after applying a monotonic

transformation on utility functions (which still represent the same preference relations), the social

ranking between alternatives x and y changes. The next subsections investigate conditions on the

monotonic transformations on utility functions that guarantee that the social ranking of alternatives

is una¤ected.

3.4.1 Utility-level invariance

First, consider a setting in which u1(x) > u1(y) for individual 1, and u2(x) < u2(y) for individual

2. In addition, assume that u1(y) > u2(x), i.e., individual 1 is better o¤ at his least-preferred

alternative than individual 2 is. Then,

u1(x) > u1(y) > u2(x)
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where u2(y) must be larger than u2(x), but could rank above/below u1(x) or u1(y). Figure 12.6

provides an example of this utility ranking. First, note that individual 1 obtains a higher utility

from alternative x than from y (see, respectively, points B and A in u1); while individual 2 enjoys

a higher utility from alternative y than from x (as illustrated, respectively, in points C and D in

the �gure). Second, point A is higher than C, thus implying that u1(y) > u2(x), as required.

Figure 12.6. Utility-level invariance (motivation).

Assume that, in this context, society deems alternative y as socially preferred to x.17 Now,

consider strictly increasing transformations  1(�) and  2(�) producing the same individual ranking

v1(x) �  1(u1(x)) >  1(u1(y)) � v1(y), and

v2(x) �  2(u2(x)) >  2(u2(y)) � v2(y)

but altering the ranking across individuals, i.e., we started with u1(y) > u2(x) but after applying

these increasing transformation we obtain v1(y) < v2(x). Hence, society would identify alternative

x as socially preferred to y. However, this new social ranking is troublesome: we have not changed

the individual ranking over alternatives, yet the social ranking changed! Figure 12.7 superimposes

functions v1(�) and v2(�) on top of utility functions u1(�) and u2(�), showing that the individual
ranking of alternatives did not change but the social ranking did.

17This social ranking of alternatives could be explained because society seeks to make its least well o¤ individual
as well o¤ as possible, thus using the Rawlsian (or maxmin) criterion that we describe below. The assumption that
alternative y is socially preferred to x is, however, without loss of generality; so a similar argument applies if x is
socially preferred to y.
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Figure 12.7. Utility-level invariance (transformations).

In order to avoid this possibility, we need to use the same monotonic transformations on both

individuals�utility function, i.e.,  1 =  2; as we next de�ne.

Utility-level invariance, ULI. De�nition. A social welfare function W (�) is utility-level in-
variant if it is invariant to arbitrary, but common, strictly increasing transformations  applied to

every individual�s utility function.

This de�nition can alternatively be understood as follows. Consider a pro�le of individ-

ual preferences u �
�
u1(�); u2(�); :::; uN (�)

�
, where u(x) �

�
u1(x); u2(x); :::; uN (x)

�
and u(y) ��

u1(y); u2(y); :::; uN (y)
�
denote the pro�le of individual utility levels from any two alternatives

x 6= y. Therefore, ULI implies that

if W (u(x)) > W (u(y)) then W ( (u(x))) > W ( (u(y)))

under a common strictly increasing transformation  (�). In summary, if we apply the same

monotonic transformation  (�) to all individuals�utility function, the social ranking over alter-
natives remains una¤ected.

The Rawlsian social welfare function satisifes this property holds since, after applying a common,

strictly increasing, transformation  , on every individual�s utility function, W (x) varies by exactly

 . Therefore, the ranking between any two alternatives x and y must remain una¤ected, i.e., if

W (x) � W (y) then W ( (x)) � W ( (y)). We ask you to provide a more formal proof of these

results in Exercise 15 at the end of the chapter.
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3.4.2 Utility-di¤erence invariance

While the utility level that each individual obtains is important in making social choices, and thus

the relevance of our above discussion on ULI, another type of information often used in making

social choices is related with the utility gain/loss that every individual experiences when he moves

from an alternative y to another alternative x. Let us now analyze this utility di¤erence. In

particular, consider that individual 1 enjoys a utility gain u1(x)� u1(y) when moving from y to x,

while individual 2 su¤ers a utility loss of u2(x) � u2(y) from the same change in alternatives, i.e.,

u1(x) � u1(y) > 0 > u2(x) � u2(y). A common comparison is, then, whether individual 1�s gain,

u1(x)� u1(y), is larger (in absolute value) than individual 2�s loss, u2(y)� u2(x), that is,

u1(x)� u1(y) > u2(y)� u2(x).

Figure 12.8a depicts a setting where individuals�utility functions are linear and this ranking

holds.18 For the swf to preserve this information, we need that monotonic transformations on ui(x)

to be linear; as we next de�ne.

Figure 12.8a. UDI-motivation. Figure 12.8b. UDI-transformations.

Utility-di¤erence invariance, UDI. De�nition. A social welfare function W (�) is utility-
di¤erence invariant if it is invariant to strictly increasing transformations of the following linear

form

 i
�
ui(x)

�
= ai + bui(x)

where b > 0 is common to all individuals.

While the slope of the linear transformation b coincides across all individuals, parameter ai is

18 Indeed, individual 1�s gain of moving from alternative y to x (see arrow measuring gain u1(x) � u1(y) in the
vertical axis of �gure 12.8a) o¤sets individual 2�s loss (depicted by u2(y)� u2(x) in the vertical axis as well).
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allowed to be type-dependent. Graphically, this means that the upward or downward shift on the

vertical intercept of ui(x) can vary across individuals, thus implying that the linear transforma-

tion can di¤er for each individual. Figure 12.7b depicts the initial utility function ui(x) and the

monotonic transformation vi(x) for both individuals. The �gure illustrates that, after applying a

linear transformation (but not necessarily common) on both individuals�utility function, the initial

ranking still holds, i.e., if u1(x)� u1(y) > u2(y)� u2(x) then v1(x)� v1(y) > v2(y)� v2(x) is still
satis�ed.19 (The utilitarian social welfare function satis�es UDI, a proof we leave for the reader for

practice in Exercise 18 at the end of the chapter.)

3.4.3 Anonymity

Anonymity. De�nition. Let u(x) and eu(x) be two utility vectors of alternative x, where eu(x)
has been obtained from u(x) after a permutation of its elements. Then,

W (u(x)) =W (eu(x))
In words, the social ranking between alternatives x and y does not depend on the identity

of the individuals involved, but only on the levels of utility that each alternative produces. In a

two-individual society, anonymity request that

W (u1(x); u2(x)) =W (u2(x); u1(x))

for every alternatively x, where we only permuted the identify of individuals 1 and 2.

The Rawlsian social welfare function satis�es anonymity, since the utility of the worst-o¤ in-

dividual k, uk(x) = min
�
u1(x); :::; uN (x)

	
, regardless of how we permute the list of individuals

(their identities). Similarly, the utilitarian social welfare function W (u(x)) =
X

i
ui(x) satis�es

this property since the result of the sum of utility levels is una¤ected if we �shu­ e� individuals�

identities. However, the generalized utilitarian social welfare function, W (u(x)) =
X

i
�iui(x),

where �i 2 [0; 1] represents the weight that society assigns to the utility of individual i, violates
anonymity since total social welfare may increase or decrease after we shu­ e individuals�identities.

3.4.4 Hammond Equity

Hammond Equity, HE. De�nition. Let u(x) and u(y) be the utility vectors of two distinct

alternatives x and y, where uk(x) = uk(y) for every individual k except for two individuals, i and

j. If

ui(x) < ui(y) < uj(y) < uj(x)

then W (u(y)) �W (u(x)).

19As a remark, note that parameter ai is allowed to be positive, as in �gure 12.8b whereby ui experiences an
upward shift, or negative, where ui would shift downwards.
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Intuitively, HE says that society has a preference towards the alternative that produces the

smallest variance in utilities across individuals (which corresponds to alternative y in the above

de�nition). Figure 12.9 depicts, for a society with two individuals, the inequality which constitutes

the premise for HE. Since this inequality implies that alternative y produces a utility pair that lies

closer to the 45-degree line, alternative y is then associated to more equality than x. According to

HE, the more equal alternative y generates a larger social welfare than x.

Figure 12.9. Hammond Equity.

While HE seems a reasonable property, it is often criticized because it focuses on equity, but po-

tentially ignores the sum of utility levels that individuals obtain (i.e., the size of the pie). Consider,

for instance, the following utility levels, which satisfy the premise in HE

ui(x) = 1 < ui(y) = 1:1 < uj(y) = 1:2 < uj(x) = 100:

A social welfare function satisfying HE prefers alternative y to x, as it is more equal. However,

the sum of utility levels under alternative y is only 1:1 + 1:2 = 2:3, being much smaller than the

sum of utilities with alternative x, 1 + 100 = 101.

It is straightforward to show that the Rawlsian social welfare function satis�es HE. First, let

uk(x) = uk(y) = u, which can lie in any of the regions A�E in �gure 12.10. We next demonstrate

that the Rawlsian social welfare function produces W (x) � W (y) regardless of the speci�c region
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where u lies.

Figure 12.10. uk(x) = uk(y) can lie in regions A� E.

In Region A, we obtainW (x) = uk(x) since uk(x) is lower than ui(x) and uj(x), which coincides

with W (y) = uk(y) since uk(x) = uk(y) by assumption. In Region B, we �nd that W (x) = ui(x)

since uk(x) is lower than uj(x) and uk(x) for all regions B � E, and W (y) = uk(y), entailing

W (x) < W (y) in this case. In regions C � E, we have W (x) = ui(x) and W (y) = ui(y), which

implies that W (x) < W (y) since ui(x) < ui(y) by assumption. Therefore, in all regions, society

ranks alternative y as weakly preferred to x.

The utilitarian social welfare function, however, violates HE; as illustrated in the above numer-

ical example where the sum of utilities was 101 with alternative x and only 2:3 with alternative y.

A similar argument applies to the generalized utilitarian social welfare function.

4 Alternatives to majority voting

In previous sections, we criticized both majority voting, as it could lead to ciclycalities and agenda

manipulation, and the Condorcet criterion, as it could lead to no candidate being selected as the

winner. A natural question is, then, whether other voting procedures, especially those commonly

observed in real life elections, produce Condorcet winners. In this section, we �nish this chapter

taking a relatively applied approach, �rst describing voting procedures and then comparing them

in terms of their properties.

4.1 A list of voting procedures

We �rst describe two familiar voting procedures: majority rule, and the Condorcet winner.

Majority rule: Society chooses the candidate who is ranked �rst by more than half of the
voters.

Condorcet criterion: Society chooses the candidate who defeats all others in pairwise elections
using majority rule.

Example 12.11. Applying majority rule and the Condorcet criterion. Consider three
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candidates, A, B, and C; and three voters who rank these candidates as follows:

Voter 1 Voter 2 Voter 3

A A C

B C B

C B A

Table 12.9. Applying majority rule and the Condorcet criterion.

For instance, voter 2 ranks candidate A at the top of his list, candidate C next, and candidate

B last. If majority voting is used, and each voter cast his ballot for his most preferred candidate,

candidate A would receive two votes (from voters 1 and 2), candidate B would receive no votes,

and candidate C would receive one vote (from voter 3). Hence, candidate A would be the winner

according to majority rule.

If, instead, the Condorcet criterion was used, a pairwise vote between candidates A and B would

yield A as the winner (since A is preferred to B by voters 1 and 2, while B is preferred to A by only

voter 3). The winner of this pairwise confrontation, candidate A, would then be paired against

the remaining candidate, candidate C, still yielding candidate A as the winner (in this case, A is

preferred to C by voters 1 and 2, while only voter 3 prefers C to A). As a consequence, A would

be the candidate winning the election according to pairwise majority voting, thus becoming the

Condorcet winner. Therefore, the winner according to majority rule and the Condorcet criterion

coincide. This coincidence in outcomes occurs regardless of the number of candidates, the number

of voters, and their preferences. Other voting methods, however, do not necessarily produce a

Condorcet winner as we show below. �

Majority rule with runo¤ election: If one of the m candidates receives more than half of

the votes, then he/she is the winner. Otherwise, a second (runo¤) election is held between the two

candidates receiving the most votes on the �rst ballot. The candidate receiving the most votes on

the second election is declared the winner. Runo¤ elections are common in several countries, such

as France, Russia, Chile, Argentina, and Brazil.

Example 12.12. Applying majority rule with runo¤ election. Consider four candidates
running for o¢ ce fX;Y; Z;Wg, and �ve voters, 1-5, with the following preferences

Voter 1 Voter 2 Voter 3 Voter 4 Voter 5

X X Y W W

Y Y Z Y Y

Z Z W Z Z

W W X X X

Table 12.10. Applying majority rule with runo¤ election.
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If society uses majority rule with runo¤ election, candidate X receives two votes (from voters

1 and 2), candidate Y receives only one vote from voter 3, candidate Z receives no votes, and

candidate W receives two votes from voters 4 and 5. Hence, no candidate receives more than 50%

of the votes (since four candidates run for o¢ ce in this example, we need at least three votes going

to the same candidate for her to win). A runo¤ election is then held between the two candidates

receiving the most votes on the �rst ballot: candidates X and W . In this runo¤ election, voters 1

and 2 cast their ballot for candidate X (as they prefer X to W ), while voters 3-5 vote for candidate

W , thus making W the winner. As a practice, note that, if this society uses majority rule (without

runo¤ election) candidates X and W would receive two votes each, thus producing a tie. �

Plurality rule: Voters choose one candidate in the ballot, and the candidate with most votes
wins.

This voting method is often known as ��rst past the post� since the candidate accumulating

the most votes wins, even if he/she receives less than half of total votes.

Example 12.13. Applying plurality rule. Consider the preference pro�le in Example 12.11
again. In such a setting, voters 1 and 2 rank candidate A at the top of their list, while voter 3

ranks candidate C. (Candidate B is not ranked �rst by any voter.) Hence, candidate A is voted

by most voters, and is declared the winner under plurality rule. �

Instant runo¤: Every voter ranks candidates in order of preference. If a candidate is ranked
the highest by more than 50% of voters, she is declared the winner. Otherwise, the candidate

ranked the highest by the fewest voters is eliminated. The top remaining choices in every ballot are

then counted again, eliminating the candidate ranked as the top choice by the fewest voters. The

process is repeated until only one candidate remains as the top choice for a majority of voters (more

than 50%). When the number of candidates reduces to two, the above voting system becomes an

instant runo¤ since it allows for a comparison of the two top candidates head-to-head.

Intuitively, instant runo¤ uses voters�ranked choice ballots to simulate a traditional runo¤ in

a single round of voting, rather than asking voters to cast their ballots several times. Since voters

are asked to provide their ranking of candidates, instant runo¤ is often known as �ranked-choice

voting,�or �preferential voting.�Instant-runo¤ is used to elect members of the Australian House of

Representatives, the President of Ireland, members of Congress in Maine (U.S.), in local elections

in several countries20 and, as a curiosity, to select the Academy Award for Best Picture.

Example 12.14. Instant runo¤ and the �spoiler�e¤ect. Consider the preference pro�le
in Table 12.11, where 35% of voters prefer candidate A to B and B to C, 25% prefer candidate

B to A and A to C, and the remaining 40% of the voters prefer candidate C to B and B to A.

20Examples include London (United Kingdom), Wellington (New Zealand), Minneapolis and St. Paul in Minnesota,
San Francisco and Oakland in California, and Portland in Maine.
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Intuitively, the �rst two groups of voters (who account together for 60% of votes) regard candidates

A and B are relatively similar, while C is perceived as an extremist. If the election used plurality

voting, candidate A would receive 35% of the votes, candidate B would receive 25%, and C would

achieve 40% of the votes, thus being declared the winner. This can be regarded as a surprising

outcome of the election, since 60% of electors prefer both candidates A and B over C.21

35% 25% 40%

A B C

B A B

C C A

Table 12.11. Applying instant runo¤-I.

In contrast, with instant runo¤, we �rst eliminate candidate B since it was ranked as the top

candidate by the fewest voters (25%), which yields Table 12.12. We now count how many voters

ranked candidate A as the top choice (35 + 25 = 60%) against those ranking candidate C as the

top choice (40%), which implies that candidate A wins the election.

35% 25% 40%

A A C

C C A

Table 12.12. Applying instant runo¤-II.

In this example, candidate B is often regarded as the election �spoiler�when plurality rule is

used, since his presence changes the outcome of the election. (To see this, note that if candidate B

did not run for o¢ ce, the relevant table of voter preferences should be Table 12.12, where candidate

A wins according to both plurality rule and instant runo¤.) Generally, the spoiler e¤ect occurs

when the presence of a candidate that voters regard as similar to other candidate (the spoiler) splits

the vote, allowing a third candidate to win. Examples include the 2000 U.S. presidential election

between Bush, Gore, and Nader, or the 2002 French presidential election between Chirac, Jospin,

and LePen. �

While instant runo¤ reduces the chances of spoiler e¤ects, this can still exist. Other voting

methods we discuss below, such as approval voting, completely eliminate the risk of an spoiler.

Mathematically, the spoiler e¤ect indicates that the swf aggregating individual preferences violates

the IIA property, since the ranking between candidates A and B does not change when we move

from Table 12.12 to 12.11, where the only thing that changed was the addition of candidate B.

However, under plurality voting, the outcome of the election (i.e., the social ranking of candidates)

21This outcome may also give rise to �strategic voting,�since voters prefering A and B to C in the �rst two columns
of Table 12.11 may have incentives to choose a candidate di¤erent from their top choice to reduce the chances of C
winning. For instance, the voters with preferences B � A � C in the second column (which only account for 25% of
the votes) may vote for their second-best candidate A since that could secure A wins the election to C.
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changes from A being the winner in Table 12.12 to C being the winner in Table 12.11. Hence, the

presence of a new alternative (the spoiler candidate B) alters the social ranking, thus violating IIA.

In our example, however, instant runo¤ produces the same winning candidate, thus not violating

IIA.

The Hare system: First, each voter indicates the candidate he ranks highest of the m can-

didates. Second, remove from the list the candidate ranked the highest by the fewest number of

voters. Third, repeat the procedure for the remaining m � 1 candidates. Continue until only one
candidate remains in the list, who is declared the winner.

Example 12.15. Applying the Hare system. Consider again the preference pro�le in

Example 12.11. As we discussed in Example 12.13, candidate A is ranked highest by two voters,

C is ranked highest by one voter, while B is not ranked highest by any voter. Hence, candidate B

is removed from the list. Once candidate B is removed from the list, every voter is asked to rank

the remaining candidates, A and C, which yields the preference pro�le in Table 12.13.

Voter 1 Voter 2 Voter 3

A A C

C C A

Table 12.13. Applying the Hare system.

Candidate A is now ranked highest by two voters (voter 1 and 2), C is ranked highest by one

voter (voter 3), which implies that candidate C is removed from the list. Therefore, A is the only

candidate remaining, and he is declared the winner. As a practice, note that the winner according

to the Hare system coincides with that under plurality voting identi�ed in Example 12.13. �

Variations of the Hare system are used in elections in Australia and Ireland. While the Hare

system is often proposed as an alternative to the plurality voting system common in most developed

countries, it still su¤ers from two problems: (1) it can fail to select the Condorcet winner (even if

it exists); and (2) it violates monotonicity. (We ask you to show these to points in Exercise 6 at

the end of the chapter.)

The Coombs system: This voting procedure can be understood as the opposite of the Hare
system. (To emphasize the di¤erences, the next description italicizes the words that changed relative

to the Hare system.) First, each voter indicates the candidate he ranks lowest of the m candidates.

Second, remove from the list the candidate ranked the lowest by most voters. Third, repeat the

procedure for the remaining m � 1 candidates. Continue until only one candidate remains in the
list, who is declared the winner.

Example 12.16. Applying the Coombs system. Consider three candidates, A, B, and C;
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and three voters who rank these candidates as follows:

Voter 1 Voter 2 Voter 3

A A C

B C A

C B B

Table 12.14. Applying the Coombs system.-I

(This preference pro�le is similar to that in Example 12.11 but with a twist in voter 3�s pref-

erences for candidates A and B.) In this context, candidate B is ranked the lowest by two voters

(voters 2 and 3), C is ranked the lowest by only voter 1, while A is not ranked the lowest by any

voter. We can then proceed to remove candidate B from the list, as illustrated in the table.

Voter 1 Voter 2 Voter 3

A A C

C C A

Table 12.15. Applying the Coombs system.-II

We can now identify which candidate is ranked the lowest by most voters. In particular,

candidate C is ranked the lowest by voters 1 and 2, while A is ranked the lowest only by voter 3.

Hence, candidate C is removed from the list, leaving candidate A as the only surviving candidate,

who is declared the winner according to the Coombs system; a result that coincides with the winner

under plurality rule and the Hare system. �

The Borda count: First, each voter gives a score s 2 [1;m] to each of the m candidates,

i.e., he gives m points to his most preferred candidate, m� 1 points to the second most preferred
candidate, ..., and one point to his least preferred candidate. The candidate receiving the highest

number of points is declared the winner.

This approach to aggregate preferences is rarely used in elections, but it is relatively common

in college sports, such as ranking NCAA teams in the US (especially famous for college basketball),

or identifying the most valuable player (MVP) in sport tournaments.

Example 12.17. Applying Borda count. Consider three candidates A, B and C; and three
voters who are asked to score each candidate with a number 1-3. In this setting, a ballot would

ask:

�Please give a score 1-3 to each of the three candidates in the following list, writing 3

next to your most preferred candidate, 2 next to your second most preferred candidate,

and 1 next to your least preferred candidate.�
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Here are examples of possible ballots marked by voters 1 and 2.

Voter 1 Voter 2 Total points

A 3 A 1 A 3 + 1 = 4

B 2 B 3 B 2 + 3 = 5

C 1 C 2 C 1 + 2 = 3

Table 12.16. Applying the Borda count

Intuitively, candidate A is the most preferred by voter 1, followed by candidate B, and candidate

C. In contrast, voter 2 prefers candidate B, followed by C, and ultimately by A. In this context,

candidate A receives a total of 4 points, B receives 5 points, and C receives only 3 points, implying

that B is declared the winner under Borda count. �

Approval voting: First, each voter votes for the k candidates he ranks highest of the m
candidates, where k can vary from voter to voter and k 2 (1;m). The candidate with the most
votes is declared the winner.

Approval voting is mostly used in elections for private associations, such as Mathematical Asso-

ciation of America and the American Mathematical Society, the selection of the Secretary-General

of the United Nations, papal conclaves, and elections in 19th century England.

Example 12.18. Applying approval voting. Consider four candidates A, B, C, and D;
and three voters who are asked to vote for one, two or three candidates, i.e., k 2 (1; 4) which implies
that the number of votes, k, must be either k = 2 or k = 3. In such a setting, a ballot�s instructions

would read:

�In the next list of three candidates, please mark a cross next to the candidate (or

candidates) you want to vote for. You can mark a cross next to two or three candidates.�

Examples of ballots marked by voters 1-4 could look like the following:

Voter 1 Voter 2 Voter 3 Voter 4

A X A A A X

B X B X B X B

C C X C X C

D D D X D X

Table 12.17. Applying approval voting.T

Table 12.17 indicates that voter 1 deems candidates A and B as acceptable, while C and D

is regarded as unacceptable.22 Approval voting would then sum the number of votes that each
22Voter 2 deems candidates B and C as acceptable, but A and D are unacceptable. A similar intuition applies to

the votes from voters 3 and 4.
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candidate receives: candidate A receives two votes (one from voter 1 and another from voter 4), B

receives three votes (from voters 1-3), C receives two votes (from voters 2 and 3), and D obtains

two votes (from voters 3 and 4). Since B is the candidate receiving the most votes, he is declared

the winner according to approval voting. �

4.2 Evaluating voting procedures

Given the di¤erent voting procedures suggested above (and other variations we could easily con-

struct), which criteria can we use to compare them? We next brie�y describe two common criteria.

Decisiveness. De�nition. The voting procedure picks a winner.

As discussed in previous sections, when the number of candidates is only two, m = 2, all voting

procedures are decisive. However, when m > 2 , majority voting and the Condorcet criterion are

not necessarily decisive, but all other voting procedures are decisive.

Condorcet winner. De�nition. The winner of the voting procedure coincides with the

Condorcet winner.

While most voting procedures identify a winner, i.e., they are decisive, such a winner doesn�t

need to coincide with the Condorcet winner; as the following example illustrates. Therefore, ma-

jority rule selects a Condorcet winner (if one exists), but all other voting procedures may select a

winner that is not necessarily the Condorcet winner (even when one exists).

Example 12.19. Winner does not need to be the Condorcet winner. Consider four
candidates running for o¢ ce, fX;Y; Z;Wg, and �ve voters, 1-5, with the following preference
ranking.

Voter 1 Voter 2 Voter 3 Voter 4 Voter 5

X X Y Z W

Y Y Z Y Y

Z Z W W Z

W W X X X

Table 12.18. Plurality voting does not produce a Condorcet winner.

Using plurality voting, candidate X is ranked the highest by two voters (1 and 2), while can-

didates Y , Z, and W are ranked highest by only one voter each. Hence, candidate X is ranked

highest by the largest number of voters, and becomes the winner according to plurality voting.23

However, X is not the Condorcet winner. Indeed, if candidates X and Y are confronted in a

pairwise vote, Y wins as Y is preferred to X by three out of �ve voters (i.e., voters 3-5). The winner

of this pairwise election, candidate Y , is then confronted against Z in a pairwise vote, where Y

23As a practice, �nd the winner when other voting procedures are used, such as the Borda count.
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wins again since Y is preferred to Z by four voters (1, 2, 3 and 5). Finally, Y faces the remaining

candidate W , which yields Y to be the winner again, as Y is preferred to W by four voters (1-

4). In summary, candidate Y beats all other candidates in pairwise votes, and thus becomes the

Condorcet winner; which does not coincide with the winner according to plurality voting. �

5 Appendix 12.A - Unifying social welfare functions

In previous sections, we described the properties of di¤erent swfs, but did not discuss how societies

choose one swf over another. The literature has mainly considered two approaches: Harsanyi�s

and Rawls�. Both approaches assume that individuals do not yet know which position they will

occupy in society. That is, before being borned, every individual i cannot perfectly anticipate his

utility level ui, thus not knowing whether he will be one of the individuals with the highest or

lowest utility level in society. This assumption by both approaches is commonly referred to as

individuals��veil of ignorance,� after Rawls (1971). However, the two approaches di¤er in how

every individual i assigns probabilities to each of the possible positions he could occupy, as we

discuss below. While both approaches seem at �rst glance incompatible, we show below that they

can actually be modeled as special cases of a more general (�uni�ed�) approach.

Harsanyi�s approach. Harsanyi claims that individuals assign an equal probability to the

prospect of being in any possible position in society, which is often referred to as the �principle of

insu¢ cient reason.�Hence, if there are N individuals in a society, there is a probability 1
N that

individual i will end up in the position of any of these N individuals, yielding a utility ui(x), thus

implying that i�s expected utility is
NX
i=1

1

N
ui(x)

Therefore, when society chooses between two alternatives x and y, alternative x is socially

preferred if
NX
i=1

1

N
ui(x) >

NX
i=1

1

N
ui(y)()

NX
i=1

ui(x) >

NX
i=1

ui(x)

which exactly coincides with the condition provided by the utilitarian swf. This explains why

Harsanyi�s approach is often used to support the use of utilitarian swfs.

Rawls� approach. In contrast, Rawls claims that individuals have no empirical basis for

assigning probabilities to each position, whether equal or unequal probabilities to each position.24

Assuming people are risk averse, he argues that individuals would order alternatives according to

which one provides him with the highest utility in case he ends up as society�s worst-o¤ member.

24That is, Rawls viewed every individual i�s initial assessment in a setting of complete ignorance.
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Thus, alternative x is socially preferred to y if and only if

min
�
u1(x); :::; uN (x)

	
� min

�
u1(y); :::; uN (y)

	
which is a purely maximin criterion, i.e., society should choose the alternative that maximizes the

utility of the worst-o¤ individual.

Uni�cation of both approaches. Let us now show that Rawls�and Harsanyi�s approaches
can be modeled as special cases of a more general setting. First, take a utility function ui(x)

for individual i. Since the underlying preferences of this individual can also be represented by

monotonic transformations of ui(x), we can apply the following concave transformation to ui(x)

vi(x) � �ui(x)�a, where a > 0

where vi(x) can be understood as the vNM utility function of this individual, with parameter a

capturing his degree of risk aversion; as Figure 12.11 depicts.25

Figure 12.11. Concave transformation of ui(x):

Using the Harsanyi�s approach on this monotonic transformation, yields a social welfare function

W =
NX
i=1

vi(x) � �
NX
i=1

�ui(x)�a

Importantly, the social ranking of alternatives provided by this swf must coincide with that of

25Note that function vi(x) � �ui(x)�a is only linear if a = �1, which is not allowed since by de�nition parameter
a satis�es a > 0. In addition, when a decreases, function vi(x) becomes more concave, thus re�ecting a higher degree
of risk aversion.
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its monotonic transformation W �, where W � � (�W )� 1
a , entailing

W � � (�W )�
1
a =

 
�

NX
i=1

�ui(x)�a
!� 1

a

=

 
NX
i=1

�ui(x)�a
!� 1

a

Hence, if we relabel parameter a as �a = �, we can express swf W � as

W � =

 
NX
i=1

�ui(x)�
! 1

�

which coincides with the CES swf described in Section 12.3.3. Therefore, when � ! �1, the
parameter of risk aversion a becomes a!1, and the above swf approaches the maximin criterion
by Rawls as a limiting case. In addition, the Rawlsian criterion becomes a special case of Harsanyi�s

approach when individuals become in�nitely risk averse. Finally, when �1 < � < 1, the parameter

of risk aversion a satis�es a 2 [0;+1) : (Note that we do not claim a > �1 since a > 0 by de�nition.)
In that scenario, individuals are risk averse (but not in�nitely), and social indi¤erence curves are

curvy.

6 End-of-Chapter Exercises

1. Majority voting - Some properties Consider majority voting between two alternatives x
and y, so the preferences of every individual i over these two alternatives can be represented as

�i = f1; 0;�1g, where �i = 1 indicates that individual i strictly prefers x to y; �i = 0 re�ects
that he is indi¤erent between alternatives x and y; and �i = �1 represents that he strictly
prefers y to x. Let us check that, in this context, majority voting satis�es the following three

properties: (a) symmetry among agents, (b) neutrality between alternatives, and (c) positive

responsiveness.

2. Three examples of social welfare functionals In this exercise, we consider a setting with
two alternatives x and y, and discuss three speci�c social welfare functionals F (�1; ::; �I)

in parts (a)-(c) below. For each functional, determine whether or not it satis�es the three

properties of majority voting (symmetry among agents, neutrality between alternatives, and

positive responsiveness).

(a) Let us �rst consider the lexicographic social welfare functional

F (�1; ::; �N )

8>>>><>>>>:
�1 if �1 6= 0

�2 if �1 = 0 and �2 6= 0
�3 if �1 = �2 = 0 and �3 6= 0

:::

Intuitively, society selects the alternative that individual 1 strictly prefers. However, if
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he is indi¤erent between alternatives x and y, society follows the strict preferences of

individual 2 (if he has a strict preference over x or y). If both individuals 1 and 2 are

indi¤erent between x and y, the strict preferences of individual 3 are considered, and so

on.

(b) A constant social welfare functional F (�1; :::; �N ) = 1 for all (�1; :::; �N ), thus repre-

senting that society chooses alternative x over y regardless of the pro�le of individual

preferences (�1; :::; �N ).

(c) A constant social welfare functional F (�1; :::; �N ) = 0 for all (�1; :::; �N ), thus indicat-

ing that society is indi¤erent between alternatives x and y regardless of the pro�le of

individual preferences (�1; :::; �N ).

3. An alternative proof of Arrow�s impossibility theorem, based on Geanakoplos
(2005).26 Genakopolos (2005) provides three proofs of Arrow�s imposibility theorem. The
�rst one, probably the most graphical, was already discussed in the chapter. In this exercise,

we focus on the third proof (see pages 214-215 of the article). This proof shows that Arrow�s

axioms imply �strict neutrality,� which we can informally interpret as that every decision

must be independent of the names of the alternatives (anonymity). We use strict neutrality

to show that any pivotal voter is a dictator.

Consider the following preference relation.

a �ib for all i 2 S, but

b �ia for all i 2 InS.

where group S is a subset of individuals in a �nite population I. Intuitively, all individuals

in group S strictly prefer alternative a to b, while all other individuals in I strictly prefer

alternative b to a.

(a) Strict neutrality. Show that if the social preference relation coincides with the preference

relation of group S over alternatives (a; b), then the preference relation of group S over

any alternatives (�; �) also determines the social preference relation over alternatives

(�; �).

(b) A pivotal voter exists, and he is a dictator. Show that there exists a dictator in group

S. (Hint : Assume b �i a for all i 2 I. Begin with i = 1, successively move a above b

for every individual in S, and then �nd an individual n� whose move changes the social

preference relation from b �i a to a �i b for all i 2 I.)

4. An Alternative Proof to Arrow�s Impossibility Theorem, based on Maskin and
Sen (2014).27 In this exercise, we examine an alternative proof to Arrow�s Impossibility

26Geanakoplos, J. (2005) �Three brief proofs of Arrow�s Impossibility Theorem,�Economic Theory, 26, pp. 211-215.
27Maskin E. and Sen A. (2014). The Arrow Impossibility Theorem, pp. 33-37. New York, NY: Columbia University

Press.
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Theorem. Following our discussion in this chapter, we consider sets of at least three alter-

natives (e.g., candidates running for o¢ ce) and four assumptions on social welfare functions:

unrestricted domain (U), independence of irrelevant alternatives (IIA), Pareto principle (P),

and no dictatorship (ND). Like in the proof presented in the chapter, we seek to show that

any social welfare function F which satis�es U, IIA and P, violates ND. For simplicity, we

split the proof in di¤erent steps.

(a) Spread of Decisiveness. Show that if a subset of agents S � N is decisive over a particular

set of alternatives fx; yg, then S is globally decisive over any set of alternatives fw; zg 2
X .28

(b) Contraction of Decisive Sets. Show that if a set of individuals T � N is decisive, then

some partition of T is also decisive. [Hint : Consider two disjoint partitions of set T , T1
and T2, where T1 \ T2 = ? and T1 [ T2 = T , allowing for the preference orderings of the

two groups di¤er.]

(c) Show that Arrow�s Impossibility Theorem holds.

5. Plurality rule and independent candidates with few supporters Consider the 2000
US Presidential elections between George W. Bush (B), Al Gore (G), and Ralph Nader (N).

Assume that voter preferences are as follows

Bush supporters, 46% Gore supporters, 45% Nader supporters, 9%

B G N

G B G

N N B

In words, the �rst column indicates that 46% of voters are Bush supporters, valuing him

above Gore, and Gore above Nader. The second column represents that 45% of voters were

Gore supporters, valuing him above Bush, and Bush above Nader. Finally, the last column

illustrates that only 9% of voters were Nader supporters, valuing him above Gore, and Gore

above Bush. Nader was considered the independent candidate, since it did not represent the

Republican or Democratic party.

(a) Show that Gore is the Condorcet winner.

(b) Show that Bush wins the election by plurality rule.

(c) Show that if Nader did not run, Gore would have won the election by plurality rule.

(d) Repeat your analysis of parts (a)-(c) assuming now that Gore supporters (the second

column) preferences change to G � N � B, thus moving Nader to a �second best�

position rather than their last preferred candidate. How are the above results a¤ected

by this preference change?
28For a general proof with three alternatives, for instance, fx; y; zg 2 X , refer to step 1 of Proposition 21.C.1 in

Mas-Colell, Whinston, and Green (1995, p.797).
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6. Strategic voting under majority rule. Consider the following three group of voters (A,
B and C) with their corresponding ranking of preferenced candidates (x, y and z).

A B C

0:35 0:33 0:32

x y z

y z x

z x y

(a) Show that majority voting yields to a Condorcet cycle if every individual votes for his

most preferred candidate.

(b) Show that if some voters in group A vote for their second-best candidate y, rather than

their �rst-best candidate x, they guarantee that their least prefreed candidate z does

not win. This will prove that majority rule is manipulable, that is, every voter does not

necessarily vote for his most preferred alternative. An example su¢ ces.

7. Hare system - Two problems Consider three candidates running for o¢ ce, X;Y; Z, and
17 voters with the following preference ranking.

Voters 1-7 Voters 8-12 Voters 13-17

X Y Z

Y Z Y

Z X X

(a) Show that candidate X wins according to the Hare system.

(b) Show that Y is the Condorcet winner.

8. Majority loser criterion. Given that all voting methods present problems under some
preference orderings, an alternative could be to start ruling out candidates in an election. For

instance, we could rule out the candidate ranked the lowest by more than half of the voters,

which is referred as the �Majority Loser�. This approach, however, can also be problematic,

since we may eliminate candidates who would become the winner according to some of the

voting methods described in the chapter. To illustrate this possibility, consider a setting with

three candidates A� C, and 9 voters, with the following preferences.

4 voters 3 voters 2 voters

A B C

B C B

C A A

(a) Find the winner according to plurality rule.
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(b) Eliminate the majority loser.

9. Sequential pairwise voting Consider an alternative approach to aggregate individual pref-
erences, known as �sequential pairwise voting.�In this voting procedure, every pair of alterna-

tives is compared by majority rule; the winner is then compared against another alternative;

and so on until we exhaust all possible alternatives. Consider that four candidates run for

o¢ ce fA;B;C;Dg. We then compare candidates A and B by majority rule, the winner is

compared against candidate C, and the winner is �nally compared against candidate D. In

this exercise, we seek to show that sequential pairwise voting may lead to outcomes that are

not Pareto optimal.

(a) Consider that voter preferences are given by

Voter 1 Voter 2 Voter 3

A B A

B D C

C C B

D A D

Find the candidate that wins the election by sequential pairwise voting. Is the outcome

of the election Pareto optimal?

(b) Consider now that voter preferences change to

Voter 1 Voter 2 Voter 3

A B C

B D A

C C B

D A D

Find the candidate that wins the election by sequential pairwise voting. Show that the

outcome of the election is not Pareto optimal?

10. Borda count and Condorcet winner. Consider three candidates running for o¢ ce,

fX;Y; Zg, and �ve voters, 1-5, with the following preference ranking.

Voter 1 Voter 2 Voter 3 Voter 4 Voter 5

X X X Y Y

Y Y Y Z Z

Z Z Z X X

(a) Find the Condorcet winner.

(b) Find the winner according to the Borda count.
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11. Hare system and Condorcet winner. Consider four candidates running for o¢ ce,

fX;Y; Z;Wg, and �ve voters, 1-5, with the following preference ranking.

Voter 1 Voter 2 Voter 3 Voter 4 Voter 5

Y W X Y W

X Z Z Z X

Z X W X Z

W Y Y W Y

(a) Find the Condorcet winner.

(b) Find the winner according to the Hare system.

12. Coombs system and Condorcet winner. Consider four candidates running for o¢ ce,
fA;B;C;Dg, and 21 voters with the following preference ranking.

9 voters 6 voters 4 voters 1 voter 1 voter

A D D B C

B B C D D

C C A A B

D A B C A

(a) Find the Condorcet winner.

(b) Find the winner according to the Coombs system.

13. Insincere voting under Borda count. Consider three candidates running for o¢ ce, A�C,
and 20 voters with the following preferences over candidates. Assume that the winner is

selected using Borda count.

6 voters 5 voters 5 voters 4 voters

A A B C

B C C B

C B A A

(a) Find the winner of the election if all voters assign 3 points to her most preferred candi-

date, 2 points to the second most preferred candidate, and 1 point to her least preferred

candidate. We refer to this voting strategy as �sincere voting�.

(b) How can the 4 voters in the last column alter the outcome of the election by misreporting

their true preferences over candidates, i.e., insincere voting? An example su¢ ces.

14. Copeland�s voting method. Consider that candidates are confronted pairwise using ma-
jority voting. If a candidate i beats another candidate j according to pairwise majority rule,
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he receive one point, if he ties with candidate j he receives half point. After comparing can-

didates in all possible pairs, we add up the number of points each candidate earned, and the

winner is the candidate with the most points.

Consider the following preference pro�le.

Voter 1 Voter 2 Voter 3 Voter 4 Voter 5

A E A D B

C C B E D

B A C C C

D B D A E

E D E B A

(a) Find the winner according to the Copeland method.

(b) Find the winner according to the Borda count.

(c) Find the Condorcet winner.

(d) Find the winner according to majority rule.

15. Cyclicality in bidimensional ranking. Consider that the space of alternatives is bidi-
mensional and, in particular, given by the unit square, i.e., X = [0; 1]2. A speci�c alternative

is, hence, represented now by a pair x = (x1; x2), rather than a point in the real line. In this

setting, consider three individuals with the following utility functions:

u1(x1; x2) = �2x1 � x2,

u2(x1; x2) = x1 + 2x2, and

u3(x1; x2) = x1 � x2.

(a) Find the indi¤erence curve of every individual i for a given utility level u. Are his

preferences convex?

(b) Show that no Condorcet winner exists. That is, demonstrate that, starting from any

pair x = (x1; x2) you can �nd another pair y = (y1; y2) which is preferred by at least two

of the three individuals. Importantly, you must show this result for all possible positions

of pair x = (x1; x2) on the unit square.

16. Social welfare functions. Consider an economy with two individuals, 1 and 2. Every

individual i�s utility function is ui(x) = �ixi, where �i > 0; and xi represents individual i�s

wealth, where x1 + x2 = x.

(a) Find the socially optimal wealth distribution, i.e., the pair of wealth levels
�
x1; x2

�
that

maximizes the social welfare function

W (u1; u2) =
�
u1
��
+
�
u2
��

where � 2 (0; 1)
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(b) Numerical example. Use the social welfare function of part (a), but assume that �1 = 1,

�2 = � where � 2 (0; 1), and � = 1=3. Identify the socially optimal wealth levels x1 and
x2.

17. Rawlsian swf - Properties. Consider a Rawlsian social welfare functionW (x) = min
�
u1(x); :::; uN (x)

	
:

(a) Show that W (x) is utility-level invariant.

(b) Show that W (x) satis�es anonymity.

18. Rawlsian social welfare function - More properties. Consider a strictly increasing and
continuous social welfare function W .

(a) Show that if W satis�es Hammond equity it can only can be represented with the

Rawlsian form, W (x) = min
�
u1(x); :::; uN (x)

	
.

(b) Show that if W is represented by the Rawlsian form, W (x) = min
�
u1(x); :::; uN (x)

	
,

then W must satisfy Hammond equity.

19. Rawlsian swf satisfying UDI. Consider a society evaluating two alternatives x and y

according to a Rawlsian swf. In particular, assume that u1(x) = 6 and u2(x) = 12 for

alternative x, and u1(y) = 4 and u2(y) = 12 for alternative y.

(a) Find the alternative that yields the highest social welfare.

(b) Let us now apply a linear, but potentially asymmetric, strictly increasing transformation

 i
�
ui(x)

�
= ai + bui(x), where b = 1. Identify for which values of parameters a1 and

a2 utility-di¤erence invariance (UDI) holds, and for which values this property does not

hold.

20. Utilitarian social welfare function - Properties. Consider a society with N individuals,

with a social welfare functionW which is strictly increasing and continuous in every individual

i�s utility level ui.

(a) Show that if the social welfare function is utilitarian, W (x) =
NX
i=1

ui(x), it satis�es

anonymity and utility-di¤erence invariance.

(b) Now show the opposite line of implication. That is, show that if the social welfare func-

tion satis�es anonymity and utility-di¤erence invariance, thenW can only be represented

with the utilitarian form.

21. Flexible-form social welfare function. In the analysis of certain policies, e.g., moving
from alternative x to y, we might be interested in the percentage change in utility that each
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individual experiences, u
i(x)�ui(y)
ui(x)

, and whether such a percentage is larger for individual i

than for j. That is,
ui(x)� ui(y)

ui(x)
>
uj(x)� uj(y)

uj(x)

If we seek to maintain the ranking of percentage changes across individuals invariant to

monotonic transformations on the utility functions we need monotonic transformations to be

linear and common among individuals,  (ui) = bui, where b > 0 for all i. Indeed, applying

this transformation on the above inequality yields

bui(x)� bui(y)
bui(x)

>
buj(x)� buj(y)

buj(x)

which, factoring b out, reduces to

ui(x)� ui(y)
ui(x)

>
uj(x)� uj(y)

uj(x)

Formally, we say that a social welfare function is �utility-percentage invariant�if it is invariant

to arbitrary, but linear and common, strictly increasing transformations of the form  (ui) =

bui, where b > 0 for every individual i.

(a) Show that if a social welfare function satis�es utility-percentage invariant (UPI), it must

also satisfy ULI and UDI. A verbal discussion su¢ ces.

(b) Demonstrate that a strictly increasing social welfare function satisfying UPI must yields

homothetic social indi¤erence curves.

22. Checking properties on a social welfare function - Kaneko and Nakamura (1979)29

Consider the following social welfare function

SW (x) = x�11 � x�22 � ::: � x�NN =

NY
i=1

x�ii

where x = (x1; x2; :::xN ) denotes an alternative, where x 2 RN , and �i > 0 represents the

weight that the social planner assigns to agent i. Alternatively, this social welfare function

can be represented in its linear form by applying logs, as follows,

�1 lnx1 + �2 lnx2 � ::: � �N lnxN =
NX
i=1

�i lnxi

In this exercise, we show that ordinal preferences among the alternatives can be represented

by the above (cardinal) social welfare function that satis�es:

� Pareto Optimality (P),
29Kaneko M. and Nakamura K. (1979). The Nash Social Welfare Function. Econometrica, 47 (2), 423-35.
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� Anonymity (A),

� Neutrality (N ),

� Independence of Irrelevant Alternatives (IIA), and

� Convexity (C ).

Show that the above social welfare function SW (x) satis�es these �ve properties.

23. A benevolent philantropist distributing wealth. Consider a benevolent philanthropist
allocating his wealthM among his three successors. Each successor, denoted by the subscript

i, has a non-zero endowment !i to begin with, and is bestowed for an amount of mi from the

philanthropist. The philanthropist, subject to the resource constraint m1 +m2 +m3 = M ,

has assigns a weight �i to successor i. Without loss of generality, we normalize the preference

weights to �1 + �2 + �3 = 1. Also, for simplicity, we assume that each successor i has a

logarithmic utility function, that is, u (xi) = lnxi.

(a) Solve the wealth allocation problem of the philanthropist.

(b) What are the �nal wealth of the successors? What is the e¤ect of the philanthropist�s

preference towards successor i on his �nal wealth distribution? What happen if the

philanthropist is "fair" in a sense of having the same preferences on all successors?

(c) Numerical Example. Assume parameter values �1 = 1
4 , �2 =

7
20 , �3 =

2
5 , !1 = 100,

!2 = 200, !3 = 300, and M = 500. Find the wealth allocation to the successors and

their �nal wealth respectively. What if the philanthropist is "fair"?

24. Gibbard-Satterthwaite theorem. In this chapter, we analyzed the aggregation of indi-
vidual preferences into a social preference relation satisfying a set of desirable properties.

However, we assumed individual preferences were truthfully reported by each individual. In

this exercise, we examine a setting in which individuals do not necessarily truthfully re-

veal their preferences. In particular, we are interested in social choice functions that are

�strategy proof.�First, note that a social choice function c
�
%1;%2; :::;%N

�
2 X maps the

pro�le of individual preferences
�
%1;%2; :::;%N

�
into an alternative x 2 X. That is, society

uses the social choice function (scf) to �select�an alternative x 2 X, using the information
in the pro�le of individual preferences

�
%1;%2; :::;%N

�
. Hence, we say that a scf c (�) is

strategy-proof if every individual i prefers the alternative that the scf selects when he reports

his true preferences, c
�
%i;%�i

�
= x, than that arising when he misreports his preferences,

c
�
%0i;%�i

�
= y, i.e., x %i y, where %�i denotes the pro�le of individual preferences by all

other agents
�
%1; :::;%i�1;%i+1; :::;%N

�
. In words, if a scf is strategy proof, individuals have

no strict incentives to misreport their preferences, regardless of the preferences other individ-

uals report, %�i; which holds true even if the other individuals misreport their preferences.
We seek to show, in several steps, Gibbard-Satterthwaite�s theorem, which says that: If there
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are three or more alternatives in X, then every strategy-proof scf is dictatorial.30 In the next

questions of this exercise, we will start showing that (1) a strategy-proof scf must exhibit two

properties: Pareto e¢ ciency and monotonicity; and (2) every Pareto e¢ cient and monotonic

scf must be dictatorial.

We of course need to de�ne what we mean by Pareto e¢ cient scf: A scf is Pareto e¢ cient

when every individual i�s strict preference for x over y, x �i y, where x; y 2 X, yields the

scf to select x, i.e., c
�
%1;%2; :::;%N

�
= x. We also de�ne what we mean by monotonic scfs:

Consider a initial pro�le of individual preferences,
�
%1;%2; :::;%N

�
, yielding that alternative

x is chosen by the scf, i.e., c
�
%1;%2; :::;%N

�
= x. Assume that the preferences of at least

individual i change from x %i y to x �0i y, for every y 2 X, i.e., alternative x rises to the only
spot at the top of his ranking of alternatives, and the preference for x is not lowered for any

individual, i.e., x � y. We then say that a scf is monotonic if the scf still selects x under the

new pro�le of individual preferences, c
�
�01;�02; :::;�0N

�
= x. Hence, loosely speaking, a scf

is monotonic if it keeps selecting x as socially preferred when x becomes the top alternative

for at least one individual.

(a) Show that strategy-proofness implies monotonicity on the scf.

(b) Use monotonicity to show that the scf must be Pareto e¢ cient.

(c) Step 1. Consider a pro�le of strict rankings in which alternative x is ranked highest and

y lowest for every individual i; as illustrated in the next table. In this setting, Pareto

e¢ ciency implies that the scf must select x.

%1 ... %n�1 %n %n+1 ... %N Social choice

x ::: x x x ::: x x

: : : : :

: : : : :

: : : : :

y ::: y y y ::: y

Consider now that we change individual 1�s ranking by raising y in it one position at a

time. Show that there must exist an individual n for which the social ranking changes

when y is raised above x in individual n�s ranking.

(d) Step 2. Consider now a di¤erent pro�le of individual preferences in which: x is moved

to the bottom of individual i�s ranking, for all i < n, and x is moved to the second last

position in individual i�s ranking, for all i > n. Show that this change in individual

preferences does not change the selection of the scf.

30The de�nition of a dictatorial scf is similar to , in the de�nition in swf. In particular, we say that a scf c (�) is
dictatorial if there is an individual d (the dictator) such that, if x %d y for every two alternatives x; y 2 X, then the
scf selects x, i.e., c

�
%1;%2; :::;%N

�
= x. That is, a scf is dictatorial if there is an individual d such that c (�) chooses

d�s top choices, regardless of the preferences of all other individuals.
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(e) Step 3. In this step, we use the assumption that the number of elements in the set of

alternatives X is equal or larger than 3. For that, we only need to consider an alternative

z 6= x; y in our above steps.

(f) Step 4. Consider a pro�le of individual preferences compatible with those in Step 3.

Switch the ranking of alternatives x and y for all individuals i > n; as depicted in the

next table.
%1 ... %n�1 %n %n+1 ... %N Social choice

: : x : ::: : x

: : z : :

: : y : :

z ::: z z ::: z

y ::: y : y ::: y

x ::: x : x ::: x

Show that alternative x must be socially selected.

(g) Step 5. Argue that the scf must be dictatorial.
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