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Time Inconsistent Preferences — Tadelis 8.3.4

* Previously, we assumed that players maximize their discounted sum
of payoffs.
* This is typically done using exponential discounting, where every future
period is multiplied by 6°.

* We can show that using exponential discounting, an individual’s
consumption choices are consistent across time periods.
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* Consider a player with u(x) = In(x) who needs to allocate a fixed budget K
across three periods.

e Assume that prices all equal 1.

* His maximization problem is
max In (K —x, — x3> + 8in(x,) + 6%In(x3)
X2,X3 N— v —

X1
FOCs:
dv 1 +5—O
axZ_ K_XZ_X3 XZ—
ov 1 5°

aX3 K — Xy — X3 X3
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 Solving these two equations, we find:

Xy = S(K_x?’), from the first FOC, and
146

(1 + 6%)x3 = 6%(K — x5) from the second FOC.
* Plugging in x5 into x5:

6(K_X3)
_1+d

@(1+52)X3:62 K —

X2

53 53
1-— 2 x3 =62 - K
( 1+5+5)x3 <5 1+6>

5%2(14+68)-83+1+6 _
( 52(1+8)—83 )x3 =k

52
% — K
'3 (1 +6+ 52)

* Rearranging:

* Solving for x3, we get:
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S(K—xg)
1+6

O K o K= 0 K
27155 1+6+62 ] \1+6+ 682

* Finally, plugging in x5 and x3 into x; = K — x5, — X3, we obtain:

5%+6 1
*
1 1+5+652

* Plugging x; into x, = , we get:

146462
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* In summary, we find:

1
>|<= K
M1 TT58+ 62
27756+ 62
52

X2 = K
3146+ 62
* These three choices are made at the beginning of the game, assuming the player
has perfect commitment.

* But, what if the player made his choices sequentially?
* Would he reach the same equilibrium?
e Let’s try backward induction.
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* In period 2, the player solves
max In(x,) + éln ({(2 — x%)

X2
X3

where he is left with a budget of K,
1 5+ 62
Ky=K—-—x{=K—-—K

=K
146+ 6% 146+ 6%

Solving, we find:
K, )

176 XT¥s+02

Xy =
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, - 5+6% . « _ Ko . ,
Plugging K, = K1+5+52 into x, = vy yields:
X, =
2 1+ 6+ 62

which is identical to the player’s original choice of x, under
commitment.
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* Thus, regardless of his previous actions, the player will choose the
same consumption amounts sequentially as he will simultaneously.
* Technically, we say that this player has time consistent preferences.
* This is a useful property of exponential discounting.
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* What about other types of discounting, namely hyperbolic
discounting?
* In this case, a player uses the discount rate § as seen in exponential

discounting, but he uses an additional discount factor # € (0,1) to discount
all future consumption.

* Our previous example would look as follows under hyperbolic discounting:
max In (K — X, — x§> + B68In(x,) + B6%In(x3)

X2,X3 N~

X1

* Intuitively, if the player looks toward future payoffs:

* The discount factor he uses between periodst = 1 and t = 2 is stronger
than...

* the one he uses between periodst = 2 andt = 3.
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* Hyperbolic discounting will cause problems with self-control:
* A player will plan to do one thing but later choose to revise his plan.
e Commitment problems.
* Largely studied in Behavioral Economics.



Time Inconsistent Preferences

e Let 8 = 1 for simplicity. We know that a rational person using
exponential discounting will equalize his consumption across the

three periods, i.e., x; = g, for every periodi = 1,2,3.

* Now, let’s look at the case where a player uses hyperbolic

. . e , 1
discounting, and for simplicity, we’ll assume that § = >

e Our simultaneous problem (with perfelct commitrrlment) becomes
max In (K — Xy — x3) + —In(x,) + =In(x3)

X1
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e First-order conditions:
adv B 1 N 1 _ 0
0xs  K—x,—x3 2x3

= 2x3=K_x2_X3:>3xS=K—X2=>X3=§(K_XZ)

dv 1 N 1 _ 0
0x, K—x,—x3 2x,

= 2x, = K — x, — x5, plugging in x5 = %(K — x,) from above:

= 3x, =K—§(K—x2):»x§‘=il(
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* Plugging in x, = 1K into x; = = (K — x,), we get:
27y 37 3

* Recall x; = K — x5, — x5, so:

XIZK—ZK——KZEK
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* [n summary:

) 1
X1 ZEK
) 1
Xz =ZK
) 1
XB= ZK
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* We now check if the player’s sequential solution is the same (when
the player has no commitment).

* We use backward induction. Our period 2 problem becomes:

X2

1
max In(x,) + Eln ({(2 — X1 — xg)

X3
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e First-order conditions:

av 1 1

— — =0
axZ X9 Z(K — X1 — xZ)

$X2=2(K_x1_x2)

= x2(x1) = §(K — X1)

Plugging x; = K — x; — x5 into x,(x;) = %(K — Xx41), we obtain that

1
= x3(x1) = §(K — X1)
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In summary, the best-response functions are:
2
xz(x1) = 3 (K —xq)

1
x3(x1) = 3 (K — x1)
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* We ck:)an substitute these best-response functions back into our period 1 problem
to obtain:

1 2 1 1
rr}CEllX In(x,) + Eln <§ (K — x1)> + Eln <§ (K — xl))

e First-order condition:

ov 1 1]2 3 1[1 3 0
0x; x1 213 2(K—x)| 2|3 (K—x)
1 1 1 0
x; 2(K—x1) 2(K—xq)
1 1 1
= — =>X1=—K
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e 1, :
* Plugging in x; = EK into the best response functions above, we get:



Time Inconsistent Preferences

* [n summary,

.1
x1 ZEK
.1
xZ :§K
X3= 6

e Note: This differs from Tadelis’ solution. He has an error in his FOCs. (This is
why we check them!)
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* This results in a very different solution than our simultaneous
benchmark (perfect commitment), where we found

1 1 1
X1 =5 K; X5 =2 K; and x; =K.

* In this situation, the player consumes:
* the same amount as he would normally in period 1, but...

* in period 2, he become impatient once again, and “overconsumes” relative to
what he planned to consume in period 1.

* We refer to this as the player having time inconsistent preferences.
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* Comparing time consistent

with time inconsistent A
preferences in the
SimUItaneous game (6 = 1) y Time Inconsistent Preferences, f= %
2 ]
Time Consistent Preferences, =1
1/, i
A
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* Comparing time consistent

with time inconsistent A
preferences in the
Seq ue ntia | ga me (6 — 1) . Time Inconsistent Preferences, = %2
Y :
Time Consistent Preferences, f=1
s
V28 S —
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