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Time Inconsistent Preferences – Tadelis 8.3.4

• Previously, we assumed that players maximize their discounted sum 
of payoffs.

• This is typically done using exponential discounting, where every future 
period is multiplied by 𝛿𝛿𝑡𝑡.

• We can show that using exponential discounting, an individual’s 
consumption choices are consistent across time periods.



Time Inconsistent Preferences

• Consider a player with 𝑢𝑢 𝑥𝑥 = ln(𝑥𝑥) who needs to allocate a fixed budget 𝐾𝐾
across three periods. 

• Assume that prices all equal 1.
• His maximization problem is

max
𝑥𝑥2,𝑥𝑥3

ln 𝐾𝐾 − 𝑥𝑥2 − 𝑥𝑥3
𝑥𝑥 1

+ 𝛿𝛿𝛿𝛿𝛿𝛿 𝑥𝑥2 + 𝛿𝛿2𝑙𝑙𝑙𝑙 𝑥𝑥3

FOCs:
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

= −
1

𝐾𝐾 − 𝑥𝑥2 − 𝑥𝑥3
+
𝛿𝛿
𝑥𝑥2

= 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥3

= −
1

𝐾𝐾 − 𝑥𝑥2 − 𝑥𝑥3
+
𝛿𝛿2

𝑥𝑥3
= 0



Time Inconsistent Preferences
• Solving these two equations, we find:

𝑥𝑥2 = 𝛿𝛿 𝐾𝐾−𝑥𝑥3
1+𝛿𝛿

, from the first FOC, and 
1 + 𝛿𝛿2 𝑥𝑥3 = 𝛿𝛿2 𝐾𝐾 − 𝑥𝑥2 from the second FOC. 

• Plugging in 𝑥𝑥2 into 𝑥𝑥3:
⇒ 1 + 𝛿𝛿2 𝑥𝑥3 = 𝛿𝛿2 𝐾𝐾 −

𝛿𝛿 𝐾𝐾 − 𝑥𝑥3
1 + 𝛿𝛿
𝑥𝑥2

• Rearranging:

1 −
𝛿𝛿3

1 + 𝛿𝛿
+ 𝛿𝛿2 𝑥𝑥3 = 𝛿𝛿2 −

𝛿𝛿3

1 + 𝛿𝛿
𝐾𝐾

⇒ 𝛿𝛿2 1+𝛿𝛿 −𝛿𝛿3+1+𝛿𝛿
𝛿𝛿2 1+𝛿𝛿 −𝛿𝛿3

𝑥𝑥3 = 𝐾𝐾
• Solving for 𝑥𝑥3∗, we get:

𝑥𝑥3∗ =
𝛿𝛿2

1 + 𝛿𝛿 + 𝛿𝛿2
𝐾𝐾



Time Inconsistent Preferences

• Plugging 𝑥𝑥3∗ into 𝑥𝑥2 = 𝛿𝛿 𝐾𝐾−𝑥𝑥3
1+𝛿𝛿

, we get:

𝑥𝑥2∗ =
𝛿𝛿

1 + 𝛿𝛿
𝐾𝐾 −

𝛿𝛿2

1 + 𝛿𝛿 + 𝛿𝛿2
𝐾𝐾 =

𝛿𝛿
1 + 𝛿𝛿 + 𝛿𝛿2

𝐾𝐾

• Finally, plugging in 𝑥𝑥2∗ and 𝑥𝑥3∗ into 𝑥𝑥1 = 𝐾𝐾 − 𝑥𝑥2 − 𝑥𝑥3, we obtain:

𝑥𝑥1∗ = 𝐾𝐾 − 𝛿𝛿2+𝛿𝛿
1+𝛿𝛿+𝛿𝛿2

𝐾𝐾 = 1
1+𝛿𝛿+𝛿𝛿2

𝐾𝐾



Time Inconsistent Preferences

• In summary, we find:

𝑥𝑥1∗ =
1

1 + 𝛿𝛿 + 𝛿𝛿2
𝐾𝐾

𝑥𝑥2∗ =
𝛿𝛿

1 + 𝛿𝛿 + 𝛿𝛿2
𝐾𝐾

𝑥𝑥3∗ =
𝛿𝛿2

1 + 𝛿𝛿 + 𝛿𝛿2
𝐾𝐾

• These three choices are made at the beginning of the game, assuming the player 
has perfect commitment.

• But, what if the player made his choices sequentially? 
• Would he reach the same equilibrium? 
• Let’s try backward induction.



Time Inconsistent Preferences

• In period 2, the player solves
max
𝑥𝑥2

ln 𝑥𝑥2 + 𝛿𝛿𝛿𝛿𝛿𝛿 𝐾𝐾2 − 𝑥𝑥2
𝑥𝑥3

where he is left with a budget of 𝐾𝐾2
𝐾𝐾2 = 𝐾𝐾 − 𝑥𝑥1∗ = 𝐾𝐾 − 𝐾𝐾

1
1 + 𝛿𝛿 + 𝛿𝛿2

= 𝐾𝐾
𝛿𝛿 + 𝛿𝛿2

1 + 𝛿𝛿 + 𝛿𝛿2
Solving, we find:

𝑥𝑥2∗ =
𝐾𝐾2

1 + 𝛿𝛿
= 𝐾𝐾

𝛿𝛿
1 + 𝛿𝛿 + 𝛿𝛿2



Time Inconsistent Preferences

• Plugging 𝐾𝐾2 = 𝐾𝐾 𝛿𝛿+𝛿𝛿2

1+𝛿𝛿+𝛿𝛿2
into 𝑥𝑥2∗ = 𝐾𝐾2

1+𝛿𝛿
, yields:

𝑥𝑥2∗ = 𝐾𝐾
𝛿𝛿

1 + 𝛿𝛿 + 𝛿𝛿2
which is identical to the player’s original choice of 𝑥𝑥2 under 
commitment. 



Time Inconsistent Preferences

• Thus, regardless of his previous actions, the player will choose the 
same consumption amounts sequentially as he will simultaneously. 

• Technically, we say that this player has time consistent preferences.
• This is a useful property of exponential discounting.



Time Inconsistent Preferences

• What about other types of discounting, namely hyperbolic 
discounting?

• In this case, a player uses the discount rate 𝛿𝛿 as seen in exponential 
discounting, but he uses an additional discount factor 𝛽𝛽 ∈ 0,1 to discount 
all future consumption.

• Our previous example would look as follows under hyperbolic discounting:
max
𝑥𝑥2,𝑥𝑥3

ln 𝐾𝐾 − 𝑥𝑥2 − 𝑥𝑥3
𝑥𝑥1

+ 𝛽𝛽𝛽𝛽ln 𝑥𝑥2 + 𝛽𝛽𝛿𝛿2ln 𝑥𝑥3

• Intuitively, if the player looks toward future payoffs:
• The discount factor he uses between periods 𝑡𝑡 = 1 and 𝑡𝑡 = 2 is stronger 

than…
• the one he uses between periods 𝑡𝑡 = 2 and 𝑡𝑡 = 3.



Time Inconsistent Preferences

• Hyperbolic discounting will cause problems with self-control:
• A player will plan to do one thing but later choose to revise his plan.
• Commitment problems.
• Largely studied in Behavioral Economics.



Time Inconsistent Preferences

• Let 𝛿𝛿 = 1 for simplicity. We know that a rational person using 
exponential discounting will equalize his consumption across the 
three periods, i.e., 𝑥𝑥𝑖𝑖∗ = 𝐾𝐾

3
, for every period 𝑖𝑖 = 1,2,3.

• Now, let’s look at the case where a player uses hyperbolic 
discounting, and for simplicity, we’ll assume that 𝛽𝛽 = 1

2
.

• Our simultaneous problem (with perfect commitment) becomes
max
𝑥𝑥2,𝑥𝑥3

ln 𝐾𝐾 − 𝑥𝑥2 − 𝑥𝑥3
𝑥𝑥 1

+
1
2

ln 𝑥𝑥2 +
1
2

ln 𝑥𝑥3
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• First-order conditions:
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥3

= −
1

𝐾𝐾 − 𝑥𝑥2 − 𝑥𝑥3
+

1
2𝑥𝑥3

= 0

⇒ 2𝑥𝑥3 = 𝐾𝐾 − 𝑥𝑥2 − 𝑥𝑥3 ⇒ 3𝑥𝑥3 = 𝐾𝐾 − 𝑥𝑥2 ⇒ 𝑥𝑥3 = 1
3
𝐾𝐾 − 𝑥𝑥2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

= −
1

𝐾𝐾 − 𝑥𝑥2 − 𝑥𝑥3
+

1
2𝑥𝑥2

= 0

⇒ 2𝑥𝑥2 = 𝐾𝐾 − 𝑥𝑥2 − 𝑥𝑥3, plugging in 𝑥𝑥3 = 1
3
𝐾𝐾 − 𝑥𝑥2 from above:

⇒ 3𝑥𝑥2 = 𝐾𝐾 − 1
3
𝐾𝐾 − 𝑥𝑥2 ⇒ 𝑥𝑥2∗ = 1

4
𝐾𝐾



Time Inconsistent Preferences

• Plugging in 𝑥𝑥2∗ = 1
4
𝐾𝐾 into 𝑥𝑥3 = 1

3
𝐾𝐾 − 𝑥𝑥2 , we get:

𝑥𝑥3∗ =
1
3

𝐾𝐾 −
1
4
𝐾𝐾

⇒ 𝑥𝑥3∗ = 1
4
𝐾𝐾

• Recall 𝑥𝑥1 = 𝐾𝐾 − 𝑥𝑥2 − 𝑥𝑥3, so:

𝑥𝑥1∗ = 𝐾𝐾 −
1
4
𝐾𝐾 −

1
4
𝐾𝐾 =

1
2
𝐾𝐾



Time Inconsistent Preferences

• In summary:

𝑥𝑥1∗ =
1
2
𝐾𝐾

𝑥𝑥2∗ =
1
4
𝐾𝐾

𝑥𝑥3∗=
1
4
𝐾𝐾



Time Inconsistent Preferences

• We now check if the player’s sequential solution is the same (when 
the player has no commitment).

• We use backward induction. Our period 2 problem becomes:

max
𝑥𝑥2

ln 𝑥𝑥2 +
1
2

ln 𝐾𝐾2 − 𝑥𝑥1 − 𝑥𝑥2
𝑥𝑥3



Time Inconsistent Preferences

• First-order conditions:

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

=
1
𝑥𝑥2
−

1
2 𝐾𝐾 − 𝑥𝑥1 − 𝑥𝑥2

= 0

⇒ 𝑥𝑥2 = 2 𝐾𝐾 − 𝑥𝑥1 − 𝑥𝑥2
⇒ 𝑥𝑥2 𝑥𝑥1 =

2
3
𝐾𝐾 − 𝑥𝑥1

Plugging 𝑥𝑥3 = 𝐾𝐾 − 𝑥𝑥1 − 𝑥𝑥2 into 𝑥𝑥2 𝑥𝑥1 = 2
3
𝐾𝐾 − 𝑥𝑥1 , we obtain that

⇒ 𝑥𝑥3 𝑥𝑥1 =
1
3
𝐾𝐾 − 𝑥𝑥1



Time Inconsistent Preferences

In summary, the best-response functions are:

𝑥𝑥2 𝑥𝑥1 =
2
3
𝐾𝐾 − 𝑥𝑥1

𝑥𝑥3 𝑥𝑥1 =
1
3
𝐾𝐾 − 𝑥𝑥1



Time Inconsistent Preferences

• We can substitute these best-response functions back into our period 1 problem 
to obtain:

max
𝑥𝑥1

ln 𝑥𝑥1 +
1
2

ln
2
3
𝐾𝐾 − 𝑥𝑥1 +

1
2

ln
1
3
𝐾𝐾 − 𝑥𝑥1

• First-order condition:
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

=
1
𝑥𝑥1
−

1
2

2
3
�

3
2 𝐾𝐾 − 𝑥𝑥1

−
1
2

1
3
�

3
𝐾𝐾 − 𝑥𝑥1

= 0

⇒
1
𝑥𝑥1
−

1
2 𝐾𝐾 − 𝑥𝑥1

−
1

2 𝐾𝐾 − 𝑥𝑥1
= 0

⇒
1
𝑥𝑥1

=
1

𝐾𝐾 − 𝑥𝑥1
⇒ 𝑥𝑥1∗ =

1
2
𝐾𝐾



Time Inconsistent Preferences

• Plugging in 𝑥𝑥1∗ = 1
2
𝐾𝐾 into the best response functions above, we get:

𝑥𝑥2∗ =
2
3

𝐾𝐾 −
1
2
𝐾𝐾 =

1
3
𝐾𝐾

𝑥𝑥3∗ =
1
3

𝐾𝐾 −
1
2
𝐾𝐾 =

1
6
𝐾𝐾



Time Inconsistent Preferences

• In summary,

𝑥𝑥1∗ =
1
2
𝐾𝐾

𝑥𝑥2∗ =
1
3
𝐾𝐾

𝑥𝑥3∗=
1
6
𝐾𝐾

• Note: This differs from Tadelis’ solution. He has an error in his FOCs. (This is 
why we check them!)



Time Inconsistent Preferences

• This results in a very different solution than our simultaneous 
benchmark (perfect commitment), where we found 

𝑥𝑥1∗ = 1
2
𝐾𝐾; 𝑥𝑥2∗ = 1

4
𝐾𝐾; and 𝑥𝑥3∗ = 1

4
𝐾𝐾.

• In this situation, the player consumes:
• the same amount as he would normally in period 1, but…
• in period 2, he become impatient once again, and “overconsumes” relative to 

what he planned to consume in period 1.

• We refer to this as the player having time inconsistent preferences.



Time Inconsistent Preferences

• Comparing time consistent 
with time inconsistent 
preferences in the 
simultaneous game 𝛿𝛿 = 1 :



Time Inconsistent Preferences

• Comparing time consistent 
with time inconsistent 
preferences in the 
sequential game 𝛿𝛿 = 1 :
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