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1 Introduction

In previous chapters, we analyzed different games, allowing for players to be perfectly or imperfectly

informed, to interact simultaneously or sequentially, once or in repeated interactions. However, the

“rules of the game”were assumed to be given (exogenous). In this chapter, we analyze how the

agent organizing the game can alter the rules of the game to maximize his objective function. A

common example is that of auctions, where the auctioneer does not need to take the auction form

as given (e.g., organizing a first-price auction) but can instead design the auction (the “rules of the

game”) to his advantage, which in this case often implies maximizing his expected revenue.

This “game design”can be critical for the auctioneer, or generally for any social planner, if he

cannot observe the preferences of the individuals playing the game, such as the bidders’valuation

of a good being sold by the auctioneer, citizens’preferences for a public project (e.g., a bridge), or

firms’production costs in procurement contracts. In all of these settings a similar question emerges:

Which game design, often referred to as “mechanism,”can induce individuals

to choose a strategy profile that maximizes the social planner’s objective function?

A related question considers that, since the social planner designs the game (mechanism), he

could envision a setting where every individual is asked to directly report his private information

(e.g., valuation for an object in an auction), and then the social planner could choose a socially

preferred outcome using that information. The question in this “direct revelation mechanism” is

whether individuals have incentives to truthfully report their private information if they anticipate

the social planner will use it for policy decisions, such as taxes or subsidies.

In this chapter we explore the above questions, analyzing direct revelation mechanisms as the

one described above, and indirect revelation mechanisms, whereby players choose a strategy (e.g., a

bid in an auction) and the strategy profile arising in equilibrium determines an outcome which can

be used to infer players’private information. We also study the relationship between both types

of mechanisms, that is, under which conditions a “clever”mechanism designer could envision an

indirect revelation mechanism (e.g., a particular type of auction) that produces the same equilibrium

outcomes as that chosen by a social planner who could directly observe players’private information.

We then examine properties that are usually regarded as desirable for a mechanism, such as

effi ciency (the social planner cannot find any reallocation that could increase aggregate surplus);

1We appreciate the suggestions and comments of several students, specially Pak-Sing Choi and Kiriti Kanjilal.
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incentive compatibility (so players have incentives to truthfully reveal their private information to

the mechanism designer rather than misreporting it); participation constraint (i.e., every player’s

payoff from participating in the mechanism is weakly higher than his outside option); and budget

balance (the mechanism does not run a deficit or surplus). Finally, we present different mechanisms

often used in the literature, such as the Groves mechanism, the Vickrey-Clarke-Groves (VCG)

mechanism, and the d’Aspremont, Gerard-Varet and Arrow (dAGVA) mechanism. We accompany

our discussion with several examples from auction theory and public economics to facilitate the

presentation.

2 Model: Mechanisms as Bayesian Games

Players: Each player i = {1, 2, ..., n} privately observes his type θi ∈ Θi which determines his

preferences over the public project, or his willingness to pay for the object being sold in an auction.

The profile of types for all n players, θ = (θ1, θ2, . . . , θn) , is often called the “state.” State θ is

drawn randomly from the state space Θ ≡ Θ1 × Θ2 × · · · × Θn. The draw of θ is according to

some prior distribution φ (·) over Θ. While the specific draw θi is player i’s private information, the

distribution φ (·) is common knowledge among all players. Many applications assume that every
player i has quasilinear preferences, which eliminates wealth effects. In particular, a common utility

function considers that player i’s utility is

vi (x, t, θi) = ui (x, θi) + ti

where ui (x, θi) indicates player i’s utility from consuming x units of the good (e.g., public project

or good being sold at an auction) given his individual preference for such good, as captured by

parameter θi. Function ui(·) could be increasing (decreasing) in x ∈ X when x represents a good

(bad, respectively), and concave or convex in x depending on the application we seek to study.2

Transfer ti is the amount of money given to (or taken away from) individual i. Such a transfer

can thus be positive, but can also be negative if money is taken away from individual i (e.g., he pays

ti to the central authority in order to fund the public project). An outcome is, then, represented as

y = (x, t1, · · · , tN ), which describes, for instance, the amount of public project to be provided, x,

and the profile of transfers to each individual (which allows for some of them to be positive while

other can be negative).

Mechanism Designer: The mechanism designer has the objective of achieving an outcome

that depends on the types of players. For instance, the seller in an auction seeks to maximize

his revenue without being able to observe the valuations that each bidder has for the good; or a

government offi cial considering the construction of a bridge would like to maximize a social welfare

2 In auction settings, x ∈ X represents the assignment of the object for sale, thus becoming a vector x =
(0, ..., 0, 1, 0, ..., 0) where 0 indicates that individual 1, .., i − 1 did not receive the object for sale, as so did indi-
viduals i+ 1, ..., N ; while a 1 indicates that individual i received the object. For this reason, in auctions x is referred
to as an assignment or allocation of the object.
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function without observing the preferences of his constituents for that bridge. Hence, most of our

subsequent discussion deals with the incentives that mechanism designers can provide to privately

informed agents (e.g., bidders or citizens in the above two examples) so they voluntarily reveal their

private information.

We assume that the mechanism designer does not have a source of funds to pay the players.

That is, the monetary payments have to be self-financed, implying that
∑n

i=1 ti ≤ 0. When this

condition holds strictly,
∑n

i=1 ti < 0, the mechanism designer keeps some of the money that he

raises from players; while if, instead, the condition holds with equality,
n∑
i=1

ti = 0, all negative

transfers collected from some players end up distributed to other players, that is, the budget is

balanced.

Since, as defined above, an outcome is represented as a vector y = (x, t1, · · · , tN ), the set of

outcomes is

Y =

{
(x, t1, · · · , tN ) : x ∈ X, ti ∈ R for all i ∈ N,

n∑
i=1

ti ≤ 0

}
.

In words, an outcome is an alternative x ∈ X and a transfer profile (t1, t2..., tn) such that

transfers satisfy
∑n

i=1 ti ≤ 0. Finally, the mechanism designer’s objective is given by a choice rule

f (θ) = (x (θ) , t1 (θ) , · · · , tN (θ)) ,

That is, for every profile of players’preferences θ ∈ Θ, the choice rule f(θ) selects an alternative

x(θ) ∈ X and a transfer profile (t1(θ), t2(θ), ..., tn(θ)) satisfying
∑n

i=1 ti ≤ 0.

2.1 The Mechanism Game

Indirect revelation mechanism. Definition. An indirect revelation mechanism (IRM)

Γ = {S1, S2, . . . , Sn, g (·)}

is a collection of action sets S1, S2, . . . , Sn, one for each player, and an outcome function g :

S1 × S2 × · · · × Sn → Y mapping the actions chosen by the players into an outcome of the game.

In this context, a pure strategy for player i in the mechanism Γ is a function that maps his

type θi ∈ Θi into an action si ∈ Si, that is, si : Θi → Si. The payoffs of the players are then given

by vi (g (s) , θi) , which depend on the outcome that emerges from the game g(s) when the action

profile is s, and on player i′s type θi (e.g., his preferences for a public project).

Since the mechanism first maps players’types into their actions, and then their actions into a

specific outcome, this type of mechanism is often referred to as “indirect revelation mechanism”;

as depicted in figure 11.1a.
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Figure 11.1(a). Indirect revelation mechanism.

In a special class of mechanisms we define next, each player i’s strategy space Si is restricted

to coincide with his set of types, i.e., Si = Θi.

Direct revelation mechanism. Definition. A direct revelation mechanism (DRM) consists

of Θ = (Θ1,Θ2, · · · ,ΘN ) and a social choice function f(·) mapping every profile of types θ ∈ Θ,

where θ = (θ1, θ2, · · · , θN ), into an outcome x ∈ X,

f : Θ→ X

As mentioned above, DRMs can be understood as a special class of mechanisms, in which each

player i’s strategy space Si is restricted to coincide with his set of types, i.e., Si = Θi. In contrast,

IRMs require that, first, every player i chooses a strategy si ∈ Si, such as a bid or a production
level, and then all players’strategies are mapped into an outcome. Figure 11.1b below depicts a

DRM, which could be understood as directly connecting the two unconnected balloons in the upper

part of figure 11.1(a) rather than doing the “de-tour”of first mapping strategies into actions, and
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then actions into outcomes.

Figure 11.1(b). Direct revelation mechanism

2.2 Examples of DRMs

The following examples explore a setting where a seller (agent 0) seeks to sell an indivisible object

to one of two buyers (agents 1 and 2) so that the set of players is N = {0, 1, 2}. The set of feasible
outcomes is

X = {(y0, y1, y2, t0, t1, t2) : yi ∈ {0, 1} where
2∑
i=0

yi = 1 and ti ∈ R ∀i ∈ N};

In words, the object is assigned to either the seller, y0 = 1, buyer 1, y1 = 1, or buyer 2, y2 = 1;

and a transfer ti is provided to player i, if ti > 0, or a tax is imposed on him, if ti < 0.3 The utility

that buyer i = {1, 2} obtains from outcome x in the above set of feasible outcomes, i.e., x ∈ X, is

ui(xi, θi) = θiyi + ti

where θi represents the buyer’s valuation for the object (which buyer i only enjoys if the object is

assigned to him, i.e., yi = 1), and ti is the positive (or negative) transfer he receives (or pays).

Example 11.1 - Direct revelation mechanism. Consider a setting in which the seller asks
buyers 1 and 2 to simultaneously and independently reveal their types (their valuation for the

object), θ̂1 and θ̂2, and the seller assigns the object to the agent with the highest revealed valuation

θ̂i. Without loss of generality, we assume that if there is a tie, the object is assigned to buyer 1.

More formally, for every profile of announced types, θ̂ = (θ̂1, θ̂2), the assignment rule of this direct

revelation mechanism is

y0(θ̂) = 0

3At this point, we do not require the mechanism to be budget balanced, which would imply that positive and
negative transfers offset each other at the aggregate level,

∑3
i=1 ti = 0. We return to the budget balance property in

further sections.
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implying that the seller never keeps the object, and

yi(θ̂) =

{
1 if θ̂i ≥ θ̂j
0 otherwise

for every player i 6= j where i = {1, 2}; while the transfer (or payment) rule is

ti(θ̂) = −θ̂i · yi(θ̂) where i = {1, 2}

and

t0(θ̂) = −[t1(θ̂) + t2(θ̂)] = θ̂1 · y1(θ̂) + θ̂2 · y2(θ̂)

In words, if player i reports a larger valuation than his rival, θ̂i ≥ θ̂j , he is assigned the object,
yi(θ̂) = 1, paying a transfer equal to his reported valuation θ̂i, i.e., ti(θ̂) = −θ̂i ·1 = −θ̂i. In contrast,
his rival j does not receive the object, yj(θ̂) = 0, thus entailing a zero transfer tj(θ̂) = 0. Finally,

the seller receives the sum of the transfers, which in this setting is equivalent to the transfer paid

by the individual i who receives the object, that is, t0(θ̂) = −ti(θ̂) = θ̂i. �

Example 11.2 - Direct revelation mechanism (variation of Example 11.1). Buyer

1 and 2 report θ̂1 and θ̂2 to the seller, the seller assigns the object to the buyer with the highest

announced report θ̂i (that is, we use the same allocation rule yi(θ̂) for i = {0, 1, 2} as in the previous
example), but the payment rule now becomes

ti(θ̂) = −θ̂j · yi(θ̂)

and

t0(θ̂) = −[t1(θ̂) + t2(θ̂)]

Intuitively, if player i reports a larger valuation than his rival, θ̂i ≥ θ̂j , he is assigned the

object, yi(θ) = 1, but pays the second highest reported valuation, θ̂j . A similar argument extends

to settings with N players, where ti(θ̂) = −maxj 6=i{θ̂j} · yi(θ), i.e., player i, if he is assigned the
object, pays a price equal to the highest competing reported valuation. �

Example 11.3 - Procurement contract. Consider a seller (agent 0) and buyers 1 and 2,
with the set of outcomes X being the same as that in all previous examples, and the same utility

function. However, the assignment rule is now reversed, as the seller seeks to assign the service

(e.g., public water management) to the firm reporting the lowest cost. That is, the assignment rule

specifies

y0(θ̂) = 0

implying that the seller never keeps the object, and

yi(θ̂) =

{
1 if θ̂i ≤ θ̂j
0 otherwise

for every i = {1, 2}
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That is, the procurement contract is assigned to the firm announcing the lowest cost, θ̂i ≤ θ̂j .

Finally, the transfer rule coincides with that in Example 11.1 (if the winning agent is paid his costs)

or with that in Example 11.2 (if the winning agent is paid the cost of the losing firm). �

Example 11.4 - Funding a public project. A set of individuals N = {1, 2, · · · , n} seek to
build a bridge. Let k = 1 indicate that the bridge is built, and k = 0 that it is not. The cost of the

project is C > 0. Let ti be a transfer to agent i, so −ti is a tax paid by agent i. The project is then
built, k = 1, if total tax collection exceeds the bridge’s total cost C ≤ −

∑n
i=1 ti, but it is not build

otherwise. Alternatively, we can express this condition by writing kC ≤ −
∑n

i=1 ti captures both

the case in which the bridge is built and the case it is not, where k operates here as an “indicator

function,”being activated when k = 1 or inactive when k = 0.

The set of outcomes, X, in this setting is then

X =

{
(k, t1, t2, · · · , tn) : k ∈ {0, 1}, ti ∈ R, and kC ≤ −

n∑
i=1

ti where i ∈ N
}

As in the outcomes sets considered in previous examples, X specifies the assignment rule k followed

by transfer rule to each agent i ∈ N (which can be taxes since ti ∈ R is not restricted to be positive).
Utility function for every agent i is

ui(k, ti, θi) = kθi + ti

where θi can be interpreted as agent i’s valuation of the project. Note that agent i only enjoys such

a valuation if the bridge is built, k = 1, and that we allow for agent i to pay taxes if ti < 0. �

Example 11.5 - Direct revelation mechanism in the public project. In this case, the
mechanism asks agents to directly report their types (i.e., their private valuation for the bridge).

In other words, the game restricts every player i’s strategy set to coincide with his set of types,

Si = Θi. In this setting, the social choice function maps the reported (announced) profile of types

θ̂ ≡ (θ̂1, θ̂2, · · · , θ̂n) into an assignment rule and a transfer rule. In particular, the assignment rule

specifies

k(θ̂) =

{
1 if

∑n
i=1 θ̂i ≥ C

0 otherwise

i.e., the project is built if and only if the aggregate reported valuation of all agents exceeds the

project’s cost. In addition, the transfer rule of this mechanism is

ti(θ̂) = −C
n
k(θ̂).

In words, if the project is built, k(θ̂) = 1, every agent i bears an equal share of its cost, Cn ; but if

the project is not built k(θ̂) = 0, no agent has to pay anything, i.e., ti(θ̂) = 0 for every agent i. �
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3 Implementation

3.1 Testing the implementability of SCF in direct revelation mechanisms

Let us test the implementability of the social choice function (SCF) described in Example 11.1

above. Suppose θ1, θ2 ∼ U [0, 1] and i.i.d. In order to test if truthfully reporting his type θ1 = θ̂1,

is a weakly dominant strategy for player 1, let’s assume that player 2 truthfully reports his type, so

his equilibrium strategy is θ̂2 ≡ s∗2(θ2) = θ2 and check for profitable deviations for player 1. (Recall

that this is the standard approach to test whether a strategy profile is an equilibrium, where we fix

the strategies of all N − 1 players and check if the remaining player has incentives to deviate from

the proposed equilibrium strategy.)

In particular, player 1 solves

max
θ̂1

(θ1 − p) · prob{win} = (θ1 − θ̂1) · prob{θ2 ≤ θ̂1}

where θ1−θ̂1 represents the margin that player 1 keeps by under-reporting his valuation of the object

(which helps him obtain the good at a lower price), while prob{θ2 ≤ θ̂1} denotes the probability
that player 1 wins the object because he reveals a larger valuation than player 2 to the seller.

Since θ2 ∼ U [0, 1], prob{θ2 ≤ θ̂1} is F (θ̂1) = θ̂1, which reduces player 1’s problem to

max
θ̂1

(θ1 − θ̂1) · θ̂1 = θ1θ̂1 − θ̂
2

1

Differentiating with respect to θ̂1 yields θ1 − 2θ̂1 = 0. Solving for θ̂, we obtain an optimal

announcement of

θ̂1 =
θ1

2

(An analogous argument applies to player 2: if player 1 truthfully reports his type, θ̂1 = θ1, then

player 2’s optimal report is θ̂2 = θ2
2 .) Hence, the SCF in Example 11.1 is not implementable as a

DRM since it doesn’t induce every player to truthfully report his type to the seller.

3.2 Incentive Compatibility

In our above discussion, player 1 shades his valuation in half, not truthfully reporting his type to

the seller, so θ̂1 ≡ s∗1(θ1) 6= θ1. As suggested by Example 11.1, players may not have incentives to

truthfully report their types in DRMs. This is, however, a desirable property that the mechanism

designer will try to guarantee to extract information from agents. When a SCF induces privately

informed players to truthfully report their types in equilibrium, we refer to such SCF as “Incentive

Compatible.”We can, nonetheless, consider two types of incentive compatibilities depending on

whether truthtelling is a Bayesian Nash Equilibrium (BNE) of the incomplete information game, or

a dominant strategy equilibrium. We separately study each case below. In both of them, consider a
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DRM D = ((Θi)i∈N , f(·)) where every player i submits a report θ̂i to the mechanism designer (e.g.,
social planner) and a SCF f(·) maps the profile of reported types θ̂ ≡

(
θ̂1, ..., θ̂n

)
to an outcome

x ∈ X, that is, f(θ̂) = x.

Bayesian Incentive Compatibility. Definition: A SCF f(·) is Bayesian Incentive Compat-
ible (BIC) if the DRM has a BNE where every player i’s strategy is to thruthfully report his type,

s∗i (θi) = θi, for every type θi ∈ Θi.

That is, every player i finds truthtelling optimal, given his beliefs about his opponents’types,

and given that all his opponents’strategies are truthtelling, s∗−i(θ−i) = θ−i. More formally, BIC

entails that for every player i ∈ N and every type θi ∈ Θi,

Eθ−i [ui(f(θi, θ−i), θi)|θi] ≥ Eθ−i
[
ui(f(θ′i, θ−i), θi)|θi

]
for every misreport θ′i 6= θi. This inequality says that player i prefers to truthfully report his type

θi, yielding an outcome f(θi, θ−i) than misreporting his type to be θ′i 6= θi, which would yield an

outcome f(θ′i, θ−i). Importantly, player i prefers to truthfully reveal his type θi in expectation, as

he doesn’t observe his rivals’types θ−i ∈ Θ−i. As a consequence, the above definition could allow

player i to find truthtelling optimal for some values of his rivals’types θ−i, but not for others as

long as, in expectation, he prefers to truthfully report his type θi.

The following version of incentive compatibility is more demanding since it requires player i to

find truthtelling optimal regardless of the specific realization of his rivals’types θ−i, and regardless

of his rivals’announcements. That is, the SCFs makes truthtelling a dominant strategy for every

player i ∈ N.

Dominant Strategy Incentive Compatibility, Definition: A SCF f(·) is Dominant Strategy
Incentive Compatible (DSIC) if the DRM has a dominant strategy equilibrium where every player

i’s strategy is to thruthfully report his type, s∗i (θi) = θi, for every type θi ∈ Θi.

Therefore, every player i finds truthtelling optimal regardless of his beliefs about his opponents’

types, and independently on his opponents’strategies in equilibrium, i.e., both when they truthfully

report their types, s∗−i(θ−i) = θ−i, and when they do not, s∗−i(θ−i) 6= θ−i. More formally, DSIC

entails that for every player i ∈ N and every type he may have θi ∈ Θi,

ui(f(θi, s−i), θi) ≥ ui(f(θ′i, s−i), θi)

for every misreport θ′i 6= θi, where s−i ∈ S−i. Then, DSIC is a more demanding property than BIC
since DSIC requires that players find truthtelling optimal regardless of the specific types of their

opponents and independently on their specific actions in equilibrium. In contrast, BIC asks that

truthtelling is utility maximizing only in expectation and given that all other players are truthfully

reporting their own types.

9



4 Implementation and the revelation principle

An indirect revelation mechanism (IRM) allows strategy spaces to differ from a direct announcement

of types, i.e., Si 6= Θi, or to coincide, Si = Θi, for every player i. A DRM can then be interpreted

as a special case of IRM where players’strategies are restricted to coincide with their type space,

i.e., when Si = Θi we only allow players to report a type (either truthfully or misreporting)

but they cannot do anything else. In contrast, in an IRM players can potentially choose from

a richer strategy space, such as submitting a bid. Once every player i chooses his strategy si,

and a profile of strategies emerges s = (s1, s2, ..., sn), the IRM maps such strategy profile s into

an outcome g(s) = x. The equilibrium that arises in the IRM has every player i choosing a

strategy as a function of his privately observed type, s∗i (θi), which yields equilibrium strategy

profile s∗(θ) = (s∗1(θ1), · · · , s∗n(θn)) . This strategy profile entails an equilibrium outcome g(s∗(θ)).

A natural question is whether the equilibrium outcome g(s∗(θ)) emerging from the IRM, where

every player chooses an action, ultimately giving rise to an outcome in the game, coincides with

the outcome that the SCF selects in the DRM. This coincidence in outcomes, where the rules of

the game in the IRM produce the same equilibrium outcome as the SCF in the DRM, is referred to

as “implementability”since the IRM implements the same equilibrium outcome as the DRM. For

completeness, we next explore two versions of implementability, first in dominant strategies and

then in BNE. In both cases, consider a mechanism M = ((Si)i∈N , g(·)), which we can interpret as
an IRM, or more informally as a game, allowing player i to choose his strategy from strategy space

Si, and mapping every strategy profile s into an outcome of the game, g(s).

4.1 Implementation in Dominant Strategies

A mechanism M implements the SCF f(·) in dominant strategy equilibrium if there is a weakly

dominant strategy profile s∗(θ) = (s∗i (θ1), · · · , s∗n(θn)) of the Bayesian game induced by mechanism

M such that

g (s∗(θ)) = f(θ) for all θ ∈ Θ

Example 11.6. Implementation in dominant strategies. Second-price auctions imple-
ment the SCF in Example 11.2 in weakly dominant strategy equilibrium. In particular, the strategy

set for every bidder i is his set of feasible bids, which in the case of positive bids without a reser-

vation price simplifies to Si = R+.4 In this context, we showed that every bidder i finds that a bid

of si(θi) = θi (bids coinciding with his valuation) constitutes a weakly dominant strategy in the

second-price auction, i.e., he would choose it regardless of his opponents’valuations for the object

and independently of their bidding profile s−i. Hence, the object is assigned to the bidder submit-

ting the highest bid, who pays a price equal to the second highest bid. Therefore, the equilibrium

4When a reservation price r > 0 exists, every player i’s strategy profile is restricted to Si = [r,+∞) since player i
can only submit bids weakly above the reservation price r.
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outcome emerging in the SPA coincides with that arising from the SCF in Example 11.2 where the

social planner aksed each bidder i to report his valuation for the object, θ̂i. �

4.2 Implementation in BNE

We say that a mechanism M implements the SCF f(·) in BNEs if there is a BNE strategy profile
s∗(θ) = (s∗i (θ1), · · · , s∗n(θn)) of the Bayesian game induced by mechanism M such that

g (s∗(θ)) = f(θ) for all θ ∈ Θ

Example 11.7. Implementation in BNE. Recall that the SCF of Example 11.3 is BIC,
meaning that, for every profile of types θ, every player i thruthfully reports his type in the BNE of

the game, s∗i (θi) = θi. In addition, we can use a first-price auction as an IRM which produces the

same outcomes as the SCF of Example 11.3, namely, the bidder with the highest valuation for the

object wins the auction, paying for it his submitted bid. Therefore, we can say that a first-price

auction “implements”the SCF of Example 11.3 in BNE. �

The above discussion suggests a connection between the outcomes of a DRM that induces

truthtelling and an IRM. In particular, we might wonder if, for a given SCF, which maps profiles of

types into socially desirable outcomes, we can design a clever game (a IRM) in which equilibrium

play would yield the same outcome as that identified by the SCF. The answer is positive (although

we discuss some disadvantages later), and it is known in the literature as the “Revelation Principle.”

The next sections separately present it for the cases of BNE and dominant strategies.

Figure 11.2 depicts the revelation principle by combining figures 11.1a and 11.1b. The upper

part of the figure illustrates a DRM, thus mapping types into outcomes through a social choice

function. The lower part, in contrast, takes an “indirect route” by first allowing every player to

map his own type into a strategy, i.e., si(θi) for every player i, and then mapping the action profile

into an outcome of the game. Informally, the Revelation Principle asks whether we can find game

rules that provide players with the incentives to choose strategies that ultimately lead to outcomes
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coinciding with those selected by a social choice function.

Figure 11.2. The Revelation Principle

4.3 Revelation Principle - I: BNE Approach

A mechanism M implements SCF f(·) in BNE if and only if f(·) is BIC.

Proof : Since the “if and only if” clause means that: (1) Mechanism M implements f(·) in
BNE ⇒ f(·) is BIC; and (2) f(·) is BIC ⇒ mechanism M implements f(·) in BNE, we next show
both lines of implication.

(⇐) If f(·) is BIC, then it can also be implementable in BNE by the DRM in which we restrict

every player i’s strategy set to coincide with his set of types, Si = Θi.

(⇒) If mechanismM implements f(·) in BNE, then there is a BNE of the IRM (s∗1(θ1), · · · , s∗n(θn))

such that

g (s∗1(θ1), · · · , s∗n(θn)) = f(θ1, · · · , θn) for all θ.

Since strategy profile (s∗1(θ1), · · · , s∗n(θn)) is a BNE, then

Eθ−i
[
ui
(
g
(
s∗i (θi), s

∗
−i(θi)

)
, θi
)
|θi
]
≥ Eθ−i

[
ui
(
g
(
si, s

∗
−i(θ−i)

)
, θi
)
|θi
]

for all si ∈ Si, all θi ∈ Θi, and every player i ∈ N . Note that a deviating strategy si on the

right-hand side of the inequality could be s∗i (θ
′
i) so player i uses the same strategy function as in

the left-hand side but evaluating it at a misreported type θ′i 6= θi.
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Combining the above two results yields

Eθ−i [ui (f(θi, θ−i), θi) |θi] ≥ Eθ−i
[
ui
(
f(θ′i, θ−i), θi

)
|θi
]

for all θ′i 6= θi, all types θi ∈ Θi, and every player i ∈ N , which is exactly the condition that we
need for SCF f(·) to be BIC. (Q.E.D.)

In words, player i prefers to thruthfully report his type when his opponents thruthfully report

their own types.

4.4 Revelation Principle - II: DSIC Approach

A mechanismM implements SCF f(·) in dominant strategy equilibrium if and only if f(·) is DSIC.

Proof : In this case we also need to show both directions of the “if and only if”clause.
The first line of implication, (⇐), is analogous to the first step of the above proof.

The second line of implication, (⇒), is similar to the previous proof, but now every player i

does not take expectations of his opponents’ types, nor we need to fix his opponents’ strategies

in equilibrium, s∗−i(θ−i), where they truthfully reveal their types. Instead, player i considers any

strategy of his opponents, s−i(θ−i).

As a practice, let us develop the premise of the above statement. If mechanism M im-

plements f(·) in dominant strategy equilibrium (DSE), there exists a weakly dominant BNE,

(s∗1(θ1), · · · , s∗n(θn)) such that

g (s∗1(θ1), · · · , s∗n(θn)) = f(θ1, · · · , θn) for all θ.

Since strategy profile (s∗1(θ1), · · · , s∗n(θn)) is a dominant strategy equilibrium of mechanism

M , it must provide every player i with a weakly higher payoff than any other available strategy

si 6= s∗i (θi). That is,

ui (g (s∗1(θ1), s−i(θ−i))) ≥ ui (g (si, s−i(θ−i)) , θi)

for all θi ∈ Θi, all θ−i ∈ Θ−i, all s−i ∈ S−i, and all i ∈ N . In words, player i does not have incentives
to deviate, i.e., of choosing a strategy si 6= s∗i (θi), for any type θi he may have, any profile of types

his opponents may have, θ−i, and for any strategy profile they may choose, s−i(θ−i).5

Combining the above conditions yields

ui (f(θi, θ−i), θi) ≥ ui
(
f(θ′i, θ−i), θi

)
5As an example, the deviating strategy si on the right-hand side of the inequality could be s∗i (θ

′
i) whereby player

i uses the same function as in the left-hand side, s∗i (θi), but evaluated at a misreported type θ
′
i 6= θi. However, it

can generally be any deviating strategy si 6= s∗i (θi). Alternatively, player i could deviate from s∗i (θi) by mapping his
true type θi into a different strategy function, such that s′i(θi) 6= s∗i (θi) for any type θi.

13



which exactly coincides with the condition that we need for the SCF to be DSIC. (Q.E.D.)

In summary, the revelation principle in its two versions tells use that

A mechanism M implements f(·) in BNE⇐⇒ f(·) is BIC

A mechanism M implements f(·) in DSE⇐⇒ f(·) is DSIC

where DSE denotes “dominant strategy equilibrium.”Hence, if a mechanism is not BIC or DSIC

(i.e., telling the truth is not an equilibrium in the DRM), then we cannot find a clever game or

institutional setting (an IRM) that implements such a SCF f(·) in the BNE of the game (or DSE,
respectively). Alternatively, if a mechanism M is BIC, we can find an IRM that implements f(·)
in BNE. Similarly, if a mechanism is DSIC, we can find an IRM that implements f(·) in DSE.

5 Effi ciency

In most of the sections hereafter we consider the following quasilinear preferences

vi(k, θi) = ui(k, θi) + wi + ti

where k ∈ K describes, as usual, the assignment rule. For instance, k = {0, 1} can represent that
a public project is implemented, k = 1, or not, k = 0. In auctions, ki = {0, 1} indicates whether
player i = {0, 1, 2, ..., N} receives the object being sold if ki = 1, or not, if ki = 0. Types are

denoted by θi ∈ Θi; wealth is strictly positive, wi > 0; and ti > 0 denotes that player i receives a

net transfer while ti < 0 indicates that he pays to the system.

5.1 Allocative effi ciency

We say that a SCF f(θ) = (k(θ), t1(θ), · · · , tn(θ)) satisfies allocative effi ciency if, for every profile

of types θ ∈ Θ, the allocation function k(θ) satisfies

k(θ) ∈ arg max
k∈K

∑
i∈N

ui(k, θi)

That is, k(θ) allocates objects in an auction (or public projects in procurement) to maximize

aggregate payoffs for every profile of types, θ.6 The following examples test whether the allocation

function k(θ) in two different SCF satisfies allocative effi ciency.

6Allocative effi ciency is then analogous to Pareto effi ciency. However, since most mechanism design problems deal
with the allocation of property rights (e.g., auctions and procurement contracts) and the implementation of public
projects, we normally use the concept of allocative effi ciency.
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Example 11.8 - Public project with an allocative effi cient SCF. Consider a setting with
two agents, each with two types Θi = {20, 60} for every player i = {1, 2}. Every agent’s utility
function is

ui(k, θi) = k × (θi + ti)

which indicates that if the project is not implemented, k = 0, agents’utilities are zero; but if it

is implemented, k = 1, every agent i bears a cost ti < 0 (that is, a tax) which we discuss below.

Consider the following allocation function

k(θ1, θ2) =

{
0 if θ1 = θ2 = 20

1 otherwise

indicating that, if both individuals’valuations are low (20), the project is not implemented; but if

the valuation of at least one individual is high (60), the project is implemented. In this context,

consider the transfer function

ti(θ1, θ2) =

{
0 if θ1 = θ2 = 20

−25 otherwise

which essentially says that, if the project is implemented, every player i bears the same cost (a tax

of $25); but otherwise every player pays zero.

Table 11.1 considers all type profiles (θ1, θ2) (one per row), and the utilities that agents enjoy

from the above allocation function k(θ) and transfer function ti(θ1, θ2).

(θ1, θ2) k(θ) u1(0, θ1) u2(0, θ2) u1(1, θ1) u2(1, θ2) u1(1, θ1) + u2(1, θ2)

(20, 20) 0 0 0 20− 25 = −5 20− 25 = −5 −10

(20, 60) 1 0 0 20− 25 = −5 60− 25 = 35 30

(60, 20) 1 0 0 60− 25 = 35 20− 25 = −5 30

(60, 60) 1 0 0 60− 25 = 35 60− 25 = 35 70

Table 11.1. Allocations and utility levels for each profile of types.

Hence, the SCF is allocative effi cient. To see this, note that for profile of types (θ1, θ2) = (20, 20)

(in the first row), the total utility of implementing the public project is negative and thus lower

than that of not implementing it (which is zero). The allocation function k(θ) correctly selects

k(θ) = 0 since in this case not implementing the public project is welfare maximizing. In contrast,

for all remaining type profiles (rows 2 to 4), the total welfare from implementing the project is

positive, and thus larger than from not implementing it. In all of these type profiles, the allocation

function selects k(θ) = 1, thus implementing the project. �

Example 11.9 - Public project with an allocative ineffi cient SCF. Consider the same
quasilinear preference as in Example 11.8, but assume now that the project is costless, i.e., ti(θ) = 0
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for all profiles of types θ ∈ Θ and every player i ∈ N . Given such a change in the transfer function,
the SCF is no longer allocative effi cient. For the SCF to be allocative effi cient, it should implement

the project, k(θ) = 1, regardless of the type profile θ. For instance, when (θ1, θ2) = (20, 20),

the allocation function determines that k(θ) = 0, which yields
∑

i∈N ui(0, θ) = 0 + 0. However,

implementing it, k(θ) = 1, would yield in this case a total welfare of
∑

i∈N ui(1, θ) = 20 + 20 = 40.

Intuitively, even if both agent assign a low value to the project, the aggregate value they obtain

is still positive (40), which exceeds its development cost (zero in this case). Since the allocation

function k(θ) described above does not implement the project when both individuals’valuations

are low, i.e., when (θ1, θ2) = (20, 20), we can conclude that allocation function k(θ), and thus the

SCF, are not allocative effi cient. �

6 Examples of common mechanisms

We next present some mechanisms extensively used in the theoretical and applied literature. In

particular, we are interested in showing that the SCF they implement satisfies allocative effi ciency,

i.e., we cannot find alternative outcomes that could increase social surplus; and DSIC, i.e., agents

find it optimal to truthfully reveal their private information θi to the mechanism designer indepen-

dently on what their rivals do.

6.1 Groves mechanism

Let f(θ) = (k(θ), t1(θ), · · · , tn(θ)) be a SCF that satisfies allocative effi ciency. Then f(·) satisfies
DSIC if transfer functions can be represented by

ti(θi, θ−i) =
∑
j 6=i

uj (k(θ), θj) + hi(θ−i)

where hi : Θ→ R is an arbitrary function.

Intuitively, the transfer that player i receives depends on the utility that all other agents j 6= i

experience from the complete profile of announced types, θ, indicating the externality that player

i’s announcement causes on their well-being, plus a function hi(θ−i) which is independent on player

i’s announcement. To see this point, note that, if player i changes his report from θi to θ′i, the

allocation changes from k(θi, θ−i) to k(θ′i, θ−i), changing his transfer by exactly the utility change
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that he imposes on other agents, that is,

ti(θi, θ−i)− ti(θ′i, θ−i) =

∑
j 6=i

uj (k(θi, θ−i), θj) + hi(θ−i)

−
∑
j 6=i

uj
(
k(θ′i, θ−i), θj

)
+ hi(θ−i)


=

∑
j 6=i

uj (k(θi, θ−i), θj)−
∑
j 6=i

uj
(
k(θ′i, θ−i), θj

)
=

∑
j 6=i

[
uj (k(θi, θ−i), θj)− uj

(
k(θ′i, θ−i), θj

)]
Let us now show that such a transfer function entails DSIC.

Proof : By contradiction. Suppose that a SCF f(·) satisfies allocative effi ciency and its transfer
function can be represented à la Groves as stated above, but it is not DSIC. That is, there is at

least one agent i who finds misreporting to be profitable, that is,

ui
(
f(θ′i, θ−i), θi

)
> ui (f(θi, θ−i), θi)

in at least one of his types θi ∈ Θi, and for at least one profile of his rivals’types θ−i ∈ Θ−i, where

θ′i 6= θi. Given quasilinearity, we can expand this inequality yielding

ui
(
k(θ′i, θ−i), θi

)
+ ti(θ

′
i, θ−i) + wi > ui (k(θi, θ−i), θi) + ti(θi, θ−i) + wi

We can now plug the transfer from the Groves theorem,

ti(θ
′
i, θ−i) =

∑
j 6=i

uj
(
k(θ′i, θ−i), θj

)
+ hi(θ−i)

and similarly for ti(θi, θ−i). Hence, the above inequality becomes

ui
(
k(θ′i, θ−i), θi

)
+
∑
j 6=i

uj
(
k(θ′i, θ−i), θj

)
︸ ︷︷ ︸

ti(θ
′
i,θ−i)

> ui (k(θi, θ−i), θi) +
∑
j 6=i

uj (k(θi, θ−i), θj)︸ ︷︷ ︸
ti(θi,θ−i)

which simplifies to ∑
i∈N

ui
(
k(θ′i, θ−i), θi

)
>
∑
i∈N

ui (k(θi, θ−i), θi)

entailing that the SCF f(·) is not allocative effi cient since it doesn’t maximize total surplus, i.e.,
allocation k(θ′i, θ−i) yields a larger social welfare. Hence, if SCF f(·) is AE and transfers can be
expressed à la Groves, the SCF is DSIC. (Q.E.D.)
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6.2 VCG mechanism

Vickrey-Clarke-Groves mechanism (VCG) constitutes a special class of Groves mechanisms de-

scribed in the previous section, in which the function hi(θ−i) takes the form

hi(θ−i) = −
∑
j 6=i

uj (k−i(θ−i), θj) for all θ−i ∈ Θ−i, and for all i ∈ N

where k−i(θ−i) denotes the allocation that the SCF selects when considering all agents j 6= i, i.e., as

if player i’s preferences as captured by parameter θi were ignored when determining the allocation

k.

Hence, the transfer becomes

ti(θ) =
∑
j 6=i

uj (k(θ), θj) + hi(θ−i)

=
∑
j 6=i

uj (k(θ), θj)−
∑
j 6=i

uj (k−i(θ−i), θj)︸ ︷︷ ︸
Clarke hi(θ−i) function

for all i ∈ N

Intuitively, the first term represents the total value that all j 6= i agents obtain when the

seller (mechanism designer) considers player i’s preferences, thus determining allocation k(θ). The

second term, in contrast, describes the total value that they obtain when the seller ignores player

i’s preferences, so the allocation becomes k−i(θ−i). Therefore, the difference between both terms

captures the effect that considering player i’s preferences has on the mechanism’s allocation, and

thus on all other agents’utility. In this sense, the VCG mechanism is pivotal, as the preferences of

individual i’s preferences play a pivotal role at finding the transfer he receives (pays) as a function

of the positive (negative) externality that his preferences impose on all other players.

Example 11.10 - One example of a VCGmechanism. Consider 5 individuals participating
in a DRM in which they are asked to reveal their valuations for a good, which are

v1 = 20, v2 = 15, v3 = 12, v4 = 10, v5 = 6

And consider an allocation function k(θ) that assigns the object to the individual reporting the

highest valuation. If VCG mechanism is used, player 1’s transfer would be

t1(θ) =
∑
j 6=1

uj (k(θ), θj)−
∑
j 6=1

uj (k−1(θ−1), θj)

= 0− 15 = −15

In the first term, the allocation rule considers the valuation of all the bidders. Then, the

object would be assigned to bidder 1 (the individual with the highest valuation), entailing a value

of 0+0+0+0=0 to the other j 6= 1 bidders. The second term, in contrast, ignores bidder 1’s
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preferences (valuation), thus assigning the object to bidder 2 (as he is now the player with the

highest valuation). Bidder 2’s utility from receiving the good is 15, implying that the sum of

valuations is now 15+0+0+0=15. The difference between the two terms yields a transfer of t1(θ) =

0− 15 = −15, thus indicating that player 1 pays 15, i.e., the second largest valuation. Intuitively,

the price that player 1 pays coincides with the negative externality that his presence generates

on player 2, since the latter woudl receive the object should the former not participate in the

mechanism.

A similar argument applies to all other players. However, since their valuations are lower than

that of player 1, their transfers become

ti(θ) = (20 + 0 + 0 + 0)− (20 + 0 + 0 + 0) = 0 for every player i 6= 1.

In words, the object is assigned to player 1 in these settings, thus yielding the same profile of

utilities when individual i 6= 1 participates, 20 + 0 + 0 + 0, and when individual i 6= 1 does not

participate, 20 + 0 + 0 + 0. In particular, player 1 obtains 20 as he receives the object, and all

other individuals i 6= 1 do not receive the object. Intuitively, their decision to participate in the

mechanism does not produce an externality on other players, thus yielding a nil transfer ti(θ) = 0

for all θ and all i 6= 1.

Importantly, the VCG mechanism (which is an example of DRM) leads to the same outcome

(the object is allocated to the bidder with highest valuation) and transfer profile (the individual

receiving the object pays a transfer equal to the valuation of the individual with the second highest

valuation, while everyone else pays zero) as the SPA (which is an IRM). �

Example 11.11 - Another example of VCG mechanisms. Consider the same players as
in Example 11.10, with the same valuations for the good. However, allow for 3 identical items to be

available in the auction. Each bidder wants only one item. In this context, the transfer to player

1 becomes

t1(θ) =
∑
j 6=1

uj (k(θ), θj)−
∑
j 6=1

uj (k−1(θ−1), θj)

= (15 + 12)− (15 + 12 + 10) = −10

When the valuation profiles of all players are taken into account in the allocation rule, k(θ), the

three available items are assigned to the players with the highest valuation: player 1, 2 and 3. The

first term, however, measures the utility that players j 6= 1 obtain from such an allocation, i.e., the

valuations of players 2 and 3, (15 + 12). In the second term, we still measure the utility of players

j 6= 1 but ignoring player 1’s preferences. In this case, the three items go to the three remaining

players with the highest valuations (players 2, 3 and 4) yielding a total utility of (15 + 12 + 10).

As a result, the transfer that player 1 has to pay is −$10, indicating that, if his preferences were

considered he would impose a negative externality of −$10 on the remaining players. Specifically,

this externality captures the utility loss that player 4 suffers as he would get one object when player
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1’s preferences are ignored (when player 4 enjoys a utility of 10) but he does not receive any object

when the preferences of player 1 are considered.7 �

7 Participation constraints

Thus far we assumed that all agents participated in the mechanism, as if participation was com-

pulsory by some government regulation. But what if participation is voluntary? We then need to

add participation constraints (PC) to each agent with type θi.

We next present different approaches to write the PC, depending on the information that the

agent knows when the PC constraint is defined:

• Before he knows his type (ex-ante stage);

• After knowing his type, but without observing his opponents’type θ−i (interim stage); and

• After knowing his type and that of all other individuals (ex-post stage).

Intuitively, you may think of a construction company planning to submit a bid for a procurement

project. Before knowing the details of the project, the company operates at the ex-ante stage since

it does not know its own costs from participating in the project; after receiving more information

about the project and investigating how costly it will be, the firm operates at the interim stage;

and once the project is assigned (and potentially completed) the firm is at the ex-post stage since

at that point the company is likely observing other firms’technologies too.

Let ui (θi) denote agent i’s reservation utility.8 The PC in the above three stages becomes

Ex-ante PC: Eθ[ui(g(θi, θ−i), θi)] ≥ Eθi [ui(θi)]

Interim PC: Eθ−i [ui(g(θi, θ−i)|θi)] ≥ ui(θi) for all θi
Ex-post PC: ui(g(θi, θ−i), θi) ≥ ui(θi) for all (θi, θ−i)

At the ex-ante stage, individual i takes expectations of both his own type, θi, and his rivals’, θ−i,

since he could not observe his own type yet. At the interim stage, he only takes the expectations

of his rivals’types, θ−i; while at the ex-post stage he does not need to take expectations since all

type profiles θ = (θi, θ−i) have been revealed. As you can anticipate, for any SCF

Ex-post PC ⇒ Interim PC ⇒ Ex-ante PC

7For other examples of VCG mechanisms, see Tadelis (2013), pp. 298-299.
8Player i’s reservation utility from not participating in the mechanism is here assumed to be a function of his

type θi (e.g., cost in an alternative market) but is not a function of his opponent’s type, θ−i. In some applications,
however, player i’s reservation utility could be a function of both θi and θ−i, written as u (θi, θ−i), if this player is
affected by externalities originating from other players whose amount (or severity) depends on other players’types
θ−i.
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which occurs because the ex-post definition is more demanding (for all (θi, θ−i) pairs) than the

interim definition (for all θi types), and both are more demanding than the ex-ante definition.9 In

the following subsections we apply the above PC definitions to different settings, such as a VCG

mechanism, and a Groves mechanism, among others.

7.1 Participation constraints in the VCG mechanism

Example 11.14 - PC in a public good project. Consider a society with two individuals

N = {1, 2}. A public project is either implemented or not, k = {0, 1}, and both individuals’
private valuations for the project are drawn from Θ1 = Θ2 = {20, 60}. Finally, the total cost of
building the project is 50.

In this setting, the set of feasible outcomes is

X = {(k, t1, t2) : k = {0, 1}, t1, t2 ∈ R, −(t1 + t2) ≤ 50},

that is, allocation rules k = {0, 1} and transfer rules that guarantee total payments of $50. Consider
the allocation function we considered in Example 11.8 (where the project is implemented if at least

the valuation of one individual is 60), which we reproduce below:

k∗ (θ1, θ2) =

{
0 if θ1 = θ2 = 20

1 otherwise

and define the same valuation function as in Example 11.8,

vi (k∗ (θ1, θ2) , θi) = k∗ (θ1, θ2) · (θi − 25) for all θ1, θ2

where. from previous sections, such allocation rule is allocative effi cient. From the Groves’theorem,

we know that if the transfer function is “à la Groves” then the resulting SCF satisfies DSIC. Let

us now check if, despite being DSIC, such SCF violates ex-post PC. In particular, assume that

reservation utility is ui (θi) = 0 for all types θi and for every player i. Hence, for ex-post PC to

hold, we need

ui (g (θi, θ−i) , θi) ≥ 0 for every θ1 and θ2

In the case that (θ1, θ2) = (20, 60), such condition requires v1 (k∗ (20, 60) , 20) ≥ 0, which in this

case is

k∗ (20, 60) · (20− 25) = 1 · (20− 25) = −5 � 0

9Continuing with the above example about the construction company, we can say that the firm may have incentives
to participate in the procurement project before knowing its costs from the project (its type θi) at the ex-ante stage,
but choose to not participate in the project once it observes its costs (which could be relatively high) at the interim
stage. Using the same argument, a firm choosing to submit a bid in the procurement auction (after observing a
relatively low cost at the interim stage) may ultimately obtain a negative utility level at the ex-post stage once it
observes its rivals’costs.
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entailing that ex-post PC does not hold. �

7.2 Participation constraints in Clarke mechanism

Clarke mechanisms satisfy ex-post PC if they satisfy the following properties:

1. Reservation utility is zero, ui (θi) = 0 for every type θi;

2. The mechanism satisfies “choice set monotonicity”: The set of feasible outcomes X weakly

grows in N . The intuition behind this assumption is that the choice set X becomes wider

(“richer”set of possible outcomes) as more agents enter the population.

3. The mechanism satisfies “no negative externality”: Formally, player i obtains a positive utility

when his preferences θi are ignored, vi
(
k∗−i (θ−i) , θi

)
≥ 0 for every type θi, where allocation

k∗−i (θ−i) is allocative effi cient for all types θi, all θ−i ∈ Θ−i, and every player i. In words,

player i obtains a positive value from the allocation that emerges when his preferences are

ignored. Otherwise, the preferences of all other agents would lead to an allocation k∗−i(θ−i)

that imposes a negative externality on player i.

Let us next show why the above three properties help guarantee that the Clarke mechanism

satisfies ex-post PC.

Proof : Recall that, given the transfer function in the Clarke mechanism, the utility function
ui (g(θ), θ) becomes

ui(g (θ), θ) = vi (k∗(θ), θ) + ti (θi, θ−i)

= vi (k∗(θ), θ) +

∑
j 6=i

vj (k∗(θ), θj)−
∑
j 6=i

vj
(
k∗−i(θ−i), θj

)
︸ ︷︷ ︸

ti(θi,θ−i)

=
∑
j

vj (k∗(θ), θj)︸ ︷︷ ︸
From the first two terms

in the above expression

−
∑
j 6=i

vj
(
k∗−i(θ−i), θj

)
︸ ︷︷ ︸

Last term in above expression

From choice set monotonicity (Assumption 2), the set of possible outcomes considering agent

i’s preferences must be weakly larger than that when ignoring agent i’s preferences, implying that

the choice with agent i, k∗(θ), must generate the same or more total value than the choice without

him, k∗−i(θ−i), that is,
∑

j vj (k∗(θ), θj) ≥
∑

j vj
(
k∗−i(θ−i), θj

)
. Subtracting

∑
j 6=i vj

(
k∗−i(θ−i), θj

)
on both sides, we obtain∑

j

vj (k∗(θ), θj)−
∑
j 6=i

vj
(
k∗−i(θ−i), θj

)
≥
∑
j

vj
(
k∗−i(θ−i), θj

)
−
∑
j 6=i

vj
(
k∗−i(θ−i), θj

)
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In addition, the right-hand side simplifies to vi(k∗−i(θ−i), θi) since the first term,
∑

j vj
(
k∗−i(θ−i), θj

)
,

includes utility of agent i in the summation operator while the second term does not. Therefore,

the above expression reduces to

ui(g (θ), θ) ≥ vi(k∗−i(θ−i), θi) ≥ 0

where the last inequality, “≥ 0”, originates from the “no negative externality”property (Assump-

tion 3). Finally, since the reservation utility is ui (θi) = 0 for every type θi by Assumption 1, we

can write ui(g (θ), θ) ≥ ui (θi) for all θ, as required for the SCF to satisfy ex-post PC. (Q.E.D.)

8 Linear utility

We now consider a special case of the quasi-linear utility environment, where every player i’s utility

function is

ui(x, θi) = θivi(k)︸ ︷︷ ︸
vi(k, θi) in quasilinear

environment

+mi + ti

Indeed, the only difference with respect to the quasilinear environment is that the generic

vi(k, θi) function is now vi(k, θi) = θivi(k). For simplicity, we assume that: (1) Types are drawn

from intervals of real numbers [θi, θ̄i] ⊂ R, where θi < θ̄i, such as [0, 1] in many applications; and

(2) types are i.i.d. with positive densities for all types θi.

In this context, consider a SCF f(θ) ≡ (k(θ), t1(θ), · · · , tN (θ)), and define expected transfers

and valuations as follows:

1. t̄i(θ̂i) ≡ Eθ−i [ti(θ̂i, θ−i)], that is, agent i’s expected transfer when he reports θ̂i and all other
agents truthfully report their types. As a practice, note that agent i’s expected transfer from

thruthfully reporting his type θi is then written as t̄i(θi), since we evaluated t̄i(θ̂i) at θ̂i = θi.

2. v̄i(θ̂i) ≡ Eθ−i [vi(θ̂i, θ−i)], that is, agent i’s expected valuation (in a quasilinear environment

where valuations are defined as vi(k, θi)) when he reports θ̂i and all other agents truthfully

report their types. Again, we can then express his expected value from truthtelling as v̄i(θi).

3. ui(θ̂i|θ−i) ≡ Eθ−i [ui(f(θ̂i, θ−i), θi)|θi] = Eθ−i [v̄i(θ̂i, θ−i)] + Eθ−i [ti(θ̂i, θ−i)] = θiv̄i(θ̂i) + t̄i(θ̂i),

that is, agent i’s expected utility (in a linear environment) when he reports θ̂i while all other

agents truthfully report their types. Finally, if agent i truthfully reports his type θi, i.e.,

θ̂i = θi, his expected utility becomes

ui(θ) ≡ ui(θi|θi) = θiv̄(θi) + t̄i(θi)

We next present under which conditions a SCF in this linear environment satisfies BIC; a result

originally presented by Myerson (1981)̇.
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8.1 Myerson’s Characterization Theorem

In a linear environment, a SCF is BIC if and only if for every individual i,

1. vi(θi) is weakly increasing in his own type θi, and

2. Function ui(θi) can be expressed as

ui(θi) = ui(θi) +

∫ θi

θi

v̄i(s) ds for all θi ∈ Θi

Intuitively, this theorem says that we can identify all SCFs satisfying BIC in two steps: First,

identify allocation functions k(θ) that lead every agent i’s expected valuation function v̄i(θi) to

be weakly increasing in his type θi; second, among these allocation functions, choose the expected

transfer function t̄i(θi) that entails an expected utility which can be expressed in terms of the

second condition of the theorem.

We can rewrite the utility function of agent i as

ui (θi) = ui (θi) +

∫ θi

θi

vi (s) ds

= ti (θi) + θivi (θi)︸ ︷︷ ︸
ui(θi)

+

∫ θi

θi

vi (s) ds

where t̄i(θi) is a constant. Since the utility function is linear, ui (θi) = θivi (θi)+ ti (θi), the transfer

function becomes ti (θi) = ui (θi)−θivi (θi). Inserting the above expression ui (θi) into this transfer

function, we find

ti (θi) = ui (θi)− θivi (θi)

= ti (θi) + θivi (θi) +

∫ θi

θi

vi (s) ds︸ ︷︷ ︸
ui(θi)

− θivi (θi)

Since many studies in auction theory and industrial organization consider linear environments,

Myerson’s characterization result has been applied to problems in many fields. We next present one

of the most famous applications, in auction theory, to show that, under relatively general conditions,

the seller’s expected revenue coincides across different auction formats. For compactness, this result

is often referred to as the “Revenue Equivalence Theorem.”

8.2 Revenue equivalence theorem

Consider N ≥ 2 risk neutral bidders so we operate in an environment of linear utility functions.

Every bidder i’s type θi is drawn from the interval [θi, θ̄i], where θi < θ̄i and φi(·) > 0 for all θi ∈
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[θi, θ̄i] with independent distribution of valuations among buyers. Consider two auction formats,

such as the first- and second-price auction. If the BNE of these two auctions yield, for all profiles

of types θ = (θ1, · · · , θI),

a) The same assignment rule (y1(θ), y2(θ), · · · , yN (θ)), and

b) The same value of u1(θ1), u2(θ2), · · · , uN (θN ), where ui(θi) is the expected utility for buyer

i evaluated at his lowest valuation when every player truthfully reveal his type.

Then the seller’s expected revenue is the same in both auction formats.

Before proving this result, let us briefly discuss what it means. The revenue equivalence theorem

says that, if two auction formats with risk neutral bidders and independent valuations assign the

object to the same bidder (or bidders) and generate the same expected utility for individual i has

the lowest valuation for the object, then they must generate the same expected revenue for the

seller.

Proof : From the Revelation Principle we have that the SCF that implements the BNE of any

auction format is BIC.

The seller’s expected revenue is given by the sum of expected transfers, i.e.,
∑N

i=1E[−t̄i(θi)].
We initially find E[−t̄i(θi)]

E[−t̄i(θi)] =

∫ θ̄i

θi

−t̄i(θi)φi(θi) dθi

Since utility is given by ui(θi) = ȳi(θi)θi+ t̄i(θi) in this linear environment, we can solve for the

expected transfer t̄i(θi), which yields t̄i(θi) = ui(θi) − ȳi(θi)θi. Multiplying by −1 on both sides,

we obtain −t̄i(θi) = ȳi(θi)θi − ui(θi), which implies that the above expression becomes

E[−t̄i(θi)] =

∫ θ̄i

θi

[ȳi(θi)θi − ui(θi)]︸ ︷︷ ︸
−t̄i(θi)

φi(θi) dθi

and since ui(θi) = ui(θi) +
∫ θi
θi
ȳ(s) ds, then E[−t̄i(θi)] becomes

E[−t̄i(θi)] =

∫ θ̄i

θi

ȳi(θi)θi −
ui(θi) +

∫ θi

θi

y(s) ds︸ ︷︷ ︸

ui(θi)

φi(θi) dθi
Taking ui(θi) out of the integral operator, yields

E[−t̄i(θi)] =

∫ θ̄i

θi

ȳi(θi)θi︸ ︷︷ ︸
Term A

−
∫ θi

θi

y(s) ds

φi(θi) dθi − ui(θi) (B)
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Applying integration by parts in Term A, we obtain10:∫ θ̄

θ

∫ θi

θi

[yi(s) ds]φi(θi) dθi =

∫ θ̄i

θi

ȳi(θi) dθi −
∫ θ̄i

θi

ȳi(θi)Φi(θi) dθi

=

∫ θ̄i

θi

ȳi(θi)(1− Φi(θi)) dθi

Substituting this result inside expression (B) yields:

E[−t̄i(θi)] =

∫ θ̄i

θi

[
ȳi(θi)θi − ȳi(θi)

1− Φi(θi)

φi(θi)

]
φi(θi) dθi

=

∫ θ̄i

θi

ȳi(θi)

[
θi −

1− Φi(θi)

φi(θi)

]
φi(θi) dθi − ui(θi)

which represents the expected transfer from bidder i. Finally, summing over all N bidders, we find11

N∑
i=1

E[−t̄i(θi)] =

∫ θ̄i

θi

· · ·
∫ θ̄N

θN

N∑
i=1

ȳi(θi)︸ ︷︷ ︸
Term C

[
θi −

1− Φi(θi)

φi(θi)

] N∏
i=1

φi(θi) dθN · · · dθi︸ ︷︷ ︸
Term D

−
N∑
i=1

ui(θi)︸ ︷︷ ︸
Term E

Therefore, if the BNE of two different auction formats have:

1. the same probabilities of assigning the object to each bidder, (y1(θi), · · · , yN (θN )), as captured

by term C; and

2. the same expected utilities when bidder i has the lowest valuation for the good, ui(θi), for

every player i, as measured by term E,

we can see that the above expression generates the same expected revenue for the seller. Indeed,

by property (1) term C is constant across two auctions formats; and by property (2) so is term E.

Finally, term D is unaffected by the rules of the auction since its is just given by the distribution of

bidders’valuations for the good. For instance, if valuations are uniformly distributed, θi ∼ U [0, 1]

for every player i, term
[
θi − 1−Φi(θi)

φi(θi)

]∏N
i=1 φi(θi) simplifies to (2θi − 1). (Q.E.D.)

Example 11.15. Applying the revenue equivalence theorem in the first- and second-
price auction. Consider the DRM version of the first-price auction presented in Example 1.1,

where every bidder reports his type θi, the seller assigns the object to the bidder reporting the

highest value, and this bidder pays a transfer equal to the value he submitted. Similarly, consider

10 In order to apply integration by parts, a common trick is to first recall the derivative of the product of two
functions h(x) and g(x), that is, (h · g)′ = h′g + hg′, or alternatively hg′ = (h · g)′ − h′g. Integrating both sides
yields

∫
hg′dx = hg−

∫
h′gdx. For our current example, let h(x) =

∫ θi
θi
yi(s)ds, g

′(x) = ϕi(θi)dθi, h
′(x) = yi(θi) and

g(x) = Φi(θi). Plugging these functions and rearranging yields the above result.
11 In this expression, we moved the summation signs inside the integral because types (θ1, ..., θN ) are independently

distributed.
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the DRM version of the second-price auction presented in Example 1.2, where every bidder reports

his type θi, the seller assigns the object to the individual with the highest reported value, but the

latter pays a transfer equal to the second-highest reported value.

Comparing these two DRMs, we can see that they satisfy the conditions in this theorem since:

(1) the allocation rule in both DRMs coincides, i.e., the bidder reporting the highest value receives

the object; and (2) the expected utility of the bidder with the lowest valuation, ui(θi), when

truthfully reporting his type θi, coincides in both auctions (his utility is zero in both auction

formats since this bidder does not win the object). Hence, we can conclude that the DRM version

of the first- and second-price auction generate the same expected revenue for the seller. �

This is a useful theorem. Consider, for instance, the first- and second-price auction. In a context

where bidders’valuations are uniformly distributed, θi ∼ U [0, 1] for every player i, it is easy to

show that the expected revenue in both auction formats coincide and is equal to N−1
N+1 , where N ≥ 2

denotes the number of bidders. In a setting with a more general distribution function, such as

θi ∼ [θi, θ̄i] where θi < θ̄i and φi(·) > 0 for all θi, where densities φi(·) are i.i.d., showing that
the first- and second-price auction generate the same expected revenue for the seller becomes more

technically challenging. A similar issue arises when comparing expected revenues of other auction

formats, such as all-pay auctions or auctions with reservation prices or entry fees. In contrast,

the application of the revenue equivalence theorem is more straightforward than computing the

expected revenue from each auction format and then confirm if they coincide. Instead, we only

need to check if properties (1) and (2) hold in the two auction formats that we seek to compare.

9 Optimal Bayesian Mechanism

Let us now put ourselves in the shoes of mechanism designer, e.g., the seller of an object in an

auction, or a regulatory agency that does not observe the production cost of firms in a regulated

industry. As mechanism designers, we now seek to select a feasible SCF that maximizes a certain

objective function, such as welfare or total revenue. But, what do we mean when we say “feasible

SCF” in the context? We focus on those SCFs satisfying both BIC and PC and denote them as

F ∗.

We next search for optimal mechanisms. That is, SCFs that maximize the mechanism designer’s

objective function (e.g., expected profits or social welfare) subject to feasibility, i.e., f(·) ∈ F ∗, and
thus satisfying BIC and PC. For illustration purposes, we conduct this search in the principal-agent

problem. While we analyzed this problem in Chapter 10 (Contract Theory), we considered that the

principal (firm manager) offers a menu of contracts to the agent (worker), and the agent responds

choosing the contract that maximizes his own utility given his privately observed type, i.e., an IRM.

We next show that the principal can design a DRM in which the agent has incentives to truthfully

report his type to the principal.
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9.1 Solving the Principal-Agent problem using Mechanism Design

Model. Consider the principal-agent problem we discussed in Chapter 10, where the agent’s utility
function is

u(e, t1, θ) = t1 + θg(e)

where t1 denotes the transfer that the principal pays to the agent (e.g., salary); g(e) represents

the agent’s disutility of effort, which originates at zero, and is increasing and convex in effort e,

that is, g(0) = 0, g(e) > 0 for all e > 0, g′(e) > 0 and g′′(e) > 0 for all effort levels e > 0; and

θ ∈ [θ, θ̄] indicates the agent’s type which is a negative number, θ < θ̄ ≤ 0. Intuitively, lower values

of θ reflect a larger disutility of effort while higher realizations of θ denote that the agent suffers a

small disutility from effort (e.g., close to zero). Unlike in Chapter 10, where we mostly considered

discrete types, we allow the agent’s type to be drawn from a continuous cumulative distribution

function Φ(·) with positive density φ(·) > 0 for all θ ∈ [θ, θ̄]. In addition, assume that θ− 1−Φ(θ)
φ(θ) is

weakly increasing in θ (we return to the intuition behind this assumption below).

The principal’s (agent 0) utility is

u0(e, t0) = x(e) + t0

where x(e) represents the profits that the principal obtains from the agent’s effort level e, which is

increasing in effort and concave, that is, x′(e) > 0 and x′′(e) < 0 for all e ≥ 0. Intuitively, a larger

effort by the agent increases the firm’s profits, but a decreasing rate. Transfer t0 denotes the wage

payment that the principal provides to the agent for his effort, and is negative as we show below.

DRM. Since the principal is considering SCFs that satisfy BIC, the agent must be provided
incentives to truthfully reveal his type. We can then invoke the Revelation Principle so that the

principal, rather than designing an IRM, can more easily design a DRM in which the agent is

induced to truthfully announce his type θ, and then the principal maps it into the SCF

f(θ) = (e(θ), t0(θ), t1(θ))

where e(θ) plays the role of the outcome function, thus being analogous to k(θ) in our previous

discussions; while t0(θ) and t1(θ) are transfer functions to the principal and the agent, respectively.

For simplicity, we assume that the mechanism must be budget balanced, entailing that all transfers

to the agent originate from the principal, i.e., −t0(θ) = t1(θ) for all types θ, which helps us reduce

the three elements of the above SCF to only two, i.e., f(θ) = (e(·), t1(·)). Informally, once we
find the transfer that the agent receives, t1(·), we can infer the payment that the principal must
provide, t0(θ), since the two coincide in absolute value. Therefore, the principal’s objective function

is x(e) + t0 and −t0(θ) = t1(θ), we can rewrite it as x(e)− t1.

Symmetric information. As a benchmark, consider that the principal is perfectly informed
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about the agent’s type, θ, his problem would be

max
e(·),t1(·)

x(e(θ))− t1(θ)

subject to t1(θ) + θg(e(θ)) ≥ ū for all θ (PC)

which, as in other models where players are symmetrically informed, is only subject to the voluntary

participation constraint of the agent (PC), but does not require BIC to induce the agent to truthfully

report his type, θ, as the principal now observes this information. The PC constraint must bind

(otherwise the principal could lower the transfer t1(θ) to the agent), implying that we can use

t1(θ) = ū− θg(e(θ)), and insert it into the principal’s objective function as follows

max
e(·)

x(e(θ))− [ū− θg(e(θ))]︸ ︷︷ ︸
−t1(θ)

which only includes one choice variable, e. Differentiating with respect to effort e yields x′(e∗(θ)) +

θg′(e∗(θ)) = 0, or

x′(e∗(θ))︸ ︷︷ ︸
Marginal profit

= −θg′(e∗(θ))︸ ︷︷ ︸
Marginal cost of inducing effort

where e∗(θ) represents the profit-maximizing effort function under symmetric information. Intu-

itively, the principal increases effort until the marginal profit he obtains, x′(e∗(θ)), coincides with

the marginal increase in wages the agent needs to exert this additional effort, −θg′(e∗(θ)). Figure
11.3 separately depicts these two effects as a function of effort, e, on the horizontal axis. First,

the marginal profit from additional effort, x′(e∗(θ)), is decreasing in e since x′′(e) ≤ 0 by assump-

tion. In contrast, the marginal cost of inducing more effort, −θg′(e∗(θ)), is increasing in e because
g′′(e) ≥ 0 by definition. Therefore, x′(e∗(θ)) and −θg′(e∗(θ)) cross only once, at effort level e∗(θ),

29



as depicted on the figure.

Figure 11.3. Equilibrium effort level under

symmetric information.

Asymmetric information. When the principal does not observe the agent’s type, θ, he

maximize his expected utility, Eθ [x(e(θ))− t1(θ)], by choosing a SCF f(·) = (e(·), t1(·)), i.e., he
chooses a pair of effort and wage, that solves

max
e(·),t1(·)

Eθ [x(e(θ))− t1(θ)]

subject to f(·) being feasible, i.e., f(·) ∈ F ∗

Since agent’s utility is linear, we can use the notation presented in the section on linear utility

to simplify our problem. In particular, let e(θ) play the role of k(θ) in previous sections, so that

we can use g(e(θ)) rather than v1(k(θ)). We can then represent the agent’s expected utility from

truthfully reporting his type, θ, as

U1(θ) = t1(θ) + θg(e(θ))

Solving for transfer t1(θ), yields

t1(θ) = U1(θ)− θg(e(θ))

Plugging t1(θ) in the principal’s objective function, we obtain

max
e(·),U1(·)

Eθ

x(e(θ))−

U1(θ)− θg(e(θ))︸ ︷︷ ︸
t1(θ)



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subject to f ∈ F ∗

(Note the change in choice variables below the max operator, from (e(·), t1(·)) to (e(·), U1(·)), since
t1(·) is now absent from the program.)

How can we express the feasibility constraint, f(·) ∈ F ∗, in a more tractable way? Feasibil-

ity entails both BIC and PC. For the first property, recall that, from Myerson’s characterization

theorem, in a linear environment, a SCF f(·) is BIC if and only if:

1. Ū1(θ) is weakly increasing in θ. In our principal-agent context, that entails g(e(θ)) being

weakly increasing in θ. But since g′(e) > 0 by definition, this amounts to the agent’s effort

e(θ) being weakly increasing in his type θ.12

2. Ui(θi) = Ui(θi) −
∫ θi
θi
v̄i(s) ds for all θi, which in our principal-agent context, where effort is

costly, implies that U1(θ) = U1(θ) +
∫ θ
θ g(e(s)) ds for all θ.

From the above conditions, we know how to express BIC, but how can we express PC? That

property is actually easier to represent than BIC. In particular, for PC to hold we need that

U1(θ) ≥ ū for all types θ

That is, the expected utility that the agent (player 1) obtains from participating in the mechanism,

when he truthfully reveals his type θ, is larger than his reservation utility level ū.

Summarizing, the principal’s problem can be expressed as follows

max
e(·),U1(·)

Eθ [x(e(θ))− U1(θ) + θg(e(θ))]

subject to 1) e(θ) is weakly increasing in θ

2) U1(θ) = U1(θ) +

∫ θ

θ
g(e(s)) ds for all θ

3) U1(θ) ≥ ū for all θ

where the first two constraints guarantee BIC (thanks to Myerson’s characterization theorem), and

the third constraint guarantees PC.

Simplifying the principal’s problem. Before taking first-order conditions, a common trick
in this type of problem is simplifying it as much as possible. First, note that if constraint (2) holds,

then U1(θ) ≥ U1(θ) since
∫ θ
θ g(e(s)) ds is positive for all θ. Hence, constraint (3) holds for every

type θ if it holds for the worker with the lowest cost of effort θ, i.e., U1(θ) ≥ ū. We can then replace
12To see this point, you can express g(e(θ)) being weakly increasing in θ as ∂g

∂e
∂e
∂θ
≥ 0. Since g′(e) > 0 by definition,

∂g
∂e

> 0, entailing that the second term in the above derivative must satisfy ∂e
∂θ
≥ 0, i.e., effort must be weakly

increasing in the agent’s type θ. Intuitively, workers with a value of θ closer to zero (from below) experience a smaller
disutility from effort and thus exert a larger effort level in equilibrium.
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constraint (3) for its version evaluated at the lowest type θ = θ,

U1(θ) ≥ ū

which we denote as constraint (3)’. Second, we can substitute U1(θ) in the objective function from

constraint (2), as such constraint holds with equality, yielding a slightly reduced program:

max
e(·),U1(θ)

Eθ

x(e(θ))−U1(θ)−
∫ θ

θ
g(e(s)) ds︸ ︷︷ ︸

−U1(θ)

+θg(e(θ))


subject to

1) e(θ) is weakly increasing in θ

3)′ U1(θ) ≥ ū

(Note the change in choice variables below the max operator, from U1(θ) to U1(θ) since now U1(θ)

is absent from objective function and constraints.)

Expanding the integral in the objective function yields

max
e(·),U1(θ)

∫ θ̄

θ
[x(e(θ)) + θg(e(θ))]φ(θ) dθ −

∫ θ̄

θ

∫ θ

θ
[g(e(s)) ds]φ(θ) dθ︸ ︷︷ ︸
Term A

−
∫ θ̄

θ
U1(θ)φ(θ) dθ︸ ︷︷ ︸
Term B

subject to

1) e(θ) is weakly increasing in θ

3)′ U1(θ) ≥ ū

Note that U1(θ) is a constant, and thus the last term of the objective function (Term B) becomes

∫ θ̄

θ
U1(θ)φ(θ) dθ = U1(θ)

Likewise, we can use integration by parts to simplify the second term of the principal’s objective
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function (Term A), which yields13

∫ θ̄

θ

∫ θ

θ
[g(e(s)) ds]φ(θ) dθ =

∫ θ̄

θ
[g(e(θ))− Φ(θ)g(e(θ))] dθ

=

∫ θ̄

θ
[g(e(θ))(1− Φ(θ))] dθ

We can now substitute our simplification back into the second term of the principal’s objective

function, to obtain

max
e(·),U1(θ1)

∫ θ̄

θ
[x(e(θ)) + θg(e(θ))]φ(θ) dθ −

∫ θ̄

θ
[g(e(θ))(1− Φ(θ))] dθ︸ ︷︷ ︸

Term A

− U1(θ)︸ ︷︷ ︸
Term B

=

∫ θ̄

θ
{[x(e(θ))− θg(e(θ))]φ(θ) dθ − g(e(θ))(1− Φ(θ))} dθ − U1(θ)

subject to

1) e(θ) is weakly increasing in θ

3)′ U1(θ) ≥ ū

and factoring out g(e(θ)) from the objective function yields

max
e(·),U1(θ)

∫ θ̄

θ

[
x(e(θ)) +

(
θ − 1− Φ(θ)

φ(θ)

)
g(e(θ))

]
φ(θ)dθ − U1(θ)

subject to

1) e(θ) is weakly increasing in θ

3)′ U1(θ) ≥ ū

Finally, note that the PC constraint (3)’must hold with equality; otherwise the principal could

still reduce U1(θ) further, still extracting more surplus from the agent with the lowest θ. We can

13Recall that the formula for integrations by parts: Starting from the derivative of the product of two functions
f(x) and h(x), i.e., (fh)′ = f ′h + fh′, we rearrange it as fh′ = (fh)′ − f ′h. Hence, integrating on both sides, we
obtain

∫
f(x)h′(x) dx = f(x)h(x) −

∫
f(x)h′(x) dx. Let f(x) =

∫ θ̄
θ

[g(e(θ)) dθ], f ′(x) = g(e(θ))dθ, h(x) = Φ(θ), and
h′(x) = φ(θ)dθ.where Φ(θ) represents the cdf of the distribution. Applying integration by parts on the second term
of the objective function, yields∫ θ̄

θ

∫ θ

θ

[g(e(s)) ds]︸ ︷︷ ︸
f

φ(θ) dθ︸ ︷︷ ︸
h′

=

(∫ θ

θ

[g(e(s)) ds]

)
︸ ︷︷ ︸

f

Φ(θ)|θ̄θ︸ ︷︷ ︸
h

−
∫ θ

θ

Φ(θ)︸︷︷︸
h

g(e(θ))︸ ︷︷ ︸
f ′

dθ
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then use U1(θ) = ū into the objective function to obtain the following reduced program:

max
e(·)

∫ θ̄

θ

[
x(e(θ)) +

(
θ − 1− Φ(θ)

φ(θ)

)
g(e(θ))

]
φ(θ)dθ − ū︸︷︷︸

=U1(θ)

subject to 1) e(θ) is weakly increasing in θ

which has only one choice variable, e(·), since neither the objective function nor the (single) con-
straint depends on U1(θ) any more.

As in similar applications, we can now solve the unconstrained program, i.e., ignoring constraint

(1), and later on show that our results indeed satisfy constraint (1).

Results. Differentiating with respect to e yields

x′(e(θ)) +

(
θ − 1− Φ(θ)

φ(θ)

)
g′(e(θ)) = 0

or, rearranging,

x′(e(θ))︸ ︷︷ ︸
Marginal profits

= −
(
θ − 1− Φ(θ)

φ(θ)

)
g′(e(θ))︸ ︷︷ ︸

Marginal cost of inducing effort

as depicted in figure 11.4. First, x′(e(θ)) is decreasing in e since x′′(e) < 0 by definition; as in figure

11.3. Second, term −
(
θ − 1−Φ(θ)

φ(θ)

)
is positive given that θ < 0 by assumption, and g′(e(θ)) is

increasing in e since g′′ > 0 by definition (cost of effort is increasing and convex). Hence, the right-

hand side of the above first-order condition is increasing in effort. Intuitively, curve x′(e(θ)) depicts

the principal’s marginal increase in profits from inducing a larger effort from the agent, while curve

−
(
θ − 1−Φ(θ)

φ(θ)

)
g′(e(θ)) denotes the marginal cost that principal must bear from inducing more

effort. This cost includes the compensation to the agent, as the latter experiences a larger disutility

from effort that needs to be compensated with a higher wage, as captured by g′(e(θ)). However,

this cost also includes the “information rent” that the principal needs to pay to all agents with

type θ ≥ θ in order for them to truthfully report their types. (We discuss this point in more detail
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below.)

Figure 11.4. Equilibrium effort level under symmetric and

asymmetric information.

Comparison: Symmetric vs. Asymmetric information. For comparison purposes, the
figure plots the right-side of the first-order condition under symmetric information, −θg′(e), and
that under asymmetric information, −

(
θ − 1−Φ(θ)

φ(θ)

)
g′(e).14 In particular,

−
(
θ − 1− Φ(θ)

φ(θ)

)
> −θ

which simplifies to 1−Φ(θ)
φ(θ) > 0 given that φ(θ) > 0 and Φ(θ) ∈ [0, 1] for all θ. Therefore, the effort

level that the principal induces under asymmetric information is smaller than under symmetric

information. This is true for all agents with types θ < θ̄, but not for the most effi cient type of

worker, θ = θ̄, since evaluating the first-order condition under incomplete information at θ = θ̄

yields

x′(e(θ̄))−
(
θ̄ − 1− Φ(θ̄)

φ(θ̄)

)
g′(e(θ̄)) = 0

where θ̄− 1−Φ(θ̄)

φ(θ̄)
= θ̄− 1−1

φ(θ̄)
= θ̄ since Φ(θ) = 1 (i.e., full cumulated probability at the highest type).

Therefore, the first-order condition simplifies to

x′(e(θ̄)) = −θ̄g′(e(θ̄))
14Recall that the left-hand side of the first-order condition under symmetric and asymmetric information coincide,

as depicted in the decreasing curve in figure 11.3. The right-hand side of these first-order conditions differ, as
illustrated in the two upward sloping curves in this figure.
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which coincides with that under symmetric information for θ = θ̄. This is a usual result in principal-

agent and screening problems:

• “No distortion at the top”: The “top”agent (in this context, the worker with the smallest
disutility of effort, θ = θ̄), suffers no distortion relative to his symmetric information. His

utility in equilibrium also coincides with that in the symmetric information context.

• “Downward distortion” for all other types of agents, θ < θ̄, since their efforts are lower

under asymmetric information than under symmetric information, e∗(θ) < e(θ). We already

discussed this downward distortion in previous chapters, where the principal sought to reduce

the incentives of the top worker to choose the contract meant for other workers. That is, in the

IRMs considered in Chapter 10, the principal designed the menu of contracts to guarantee that

incentive compatibility conditions hold for every type of worker. In the DRM we examined

now, the principal also seeks to guarantee that the BIC condition holds, which entails inducing

all types of workers (including the top worker) to truthfully report their types. In this context,

the principal decreases the effort for workers with types θ < θ̄, and reduces the transfer they

receive, making misreporting unprofitable for the top worker (with θ = θ̄), ultimately reducing

the information rents that agents with θ < θ̄ retain.

Effort increases in θ (Monotonicity of effort). Before claiming that, for a given θ, the
effort level e(θ) that solves the above first-order condition is a solution of the principal’s problem,

we still need to check if it satisfies the (so far ignored) constraint (1). Recall that, to check if this

constraint holds, we only need to confirm that the agent’s effort e(θ) weakly increases in his type

θ. We check this constraint by using the above first-order condition, which we start by rewriting it

as follows:

x′(e(θ)) + J(θ)g′(e(θ)) = 0

where, for compactness, we denote J(θ) ≡ θ − 1−Φ(θ)
φ(θ) . We can now differentiate with respect to θ,

and apply the chain rule to obtain

x′′(e(θ)) · e′(θ) + J ′(θ)g′(e(θ)) + J(θ)g′′(e(θ))e′(θ) = 0

where J ′(θ) ≡ ∂J(θ)
∂θ . Factoring out e

′(θ) we find

e′(θ)
[
x′′(e(θ)) + J(θ)g′′(e(θ))

]
= −J ′(θ)g′(e(θ))

or,

e′(θ) = − J ′(θ)g′(e(θ))

x′′(e(θ)) + J(θ)g′′(e(θ))
= − (+)(+)

(−) + (−)(+)
= −(+)

(−)
= (+)

In the numerator, J ′(θ) > 0 holds by assumption, as well as g′ > 0. In the denominator, x′′ < 0,

J(θ) < 0, θ < 0, and g′′ > 0 all hold by definition. Therefore, the agent’s effort e(θ) weakly

increases in his type θ.
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Example 11.16 - Finding equilibrium effort in the principal-agent problem. Consider
the above principal-agent model, and assume that types are uniformly distributed, θ ∼ U [−1, 0].

The cumulative distribution function is then Φ(θ) = θ and its density is φ(θ) = 1, yielding a virtual

valuation of

J(θ) = θ − 1− Φ(θ)

φ(θ)
= θ − 1− θ

1
= 2θ − 1

which is increasing in θ. In addition, assume that the principal’s profits from effort are given by

concave function x(e) = ln e, where x′(e) = 1
e ; and that the agent’s disutility of effort is represented

by a (weakly) convex function g(e) = 2e, where c′(e) = 2.

Symmetric information. We can then evaluate the above first-order condition under symmetric

information, obtaining
1

e
= −2θ

which, solving for e, yields an optimal effort of eSI (θ) = − 1
2θ , which is positive since θ < 0 by

definition; where superscript SI denotes “symmetric information.”In addition, eSI (θ) is decreasing

in θ, i.e., when the disutility from effort becomes closer to zero the agent exerts more effort, but

the worker’s effort decreases as his disutility increases (i.e., as θ approaches −1).

Asymmetric information. Similarly operating, we can evaluate the first-order condition under

asymmetric information to find
1

e
= −(2θ − 1)2

which, solving for e, yields an optimal effort of eAI(θ) = − 1
4θ−2 , which is also positive since θ < 0

by definition; and where superscript AI denotes “asymmetric information.” In this case we also

find that effort eAI (θ) is decreasing in θ. In addition, effort under asymmetric information is lower

than under symmetric information, eAI(θ) < eSI(θ) since − 1
4θ−2 < −

1
2θ simplifies to θ < 1, which

is true given that θ ∼ U [−1, 0]. �

9.1.1 Virtual valuations and information rents

The term J(θ) = θ− 1−Φ(θ)
φ(θ) , or more often represented as J(θ) = θ− 1−F (θ)

f(θ) is commonly known as

the principal’s “virtual valuation”of assigning more effort to an agent with type θ. Consider the

effect of increasing more effort to agent θ. On one hand, such higher effort allows the principal to

increase his profits by x′(e). However, in order to induce such additional effort the agent must now

receive a larger transfer to compensate for his larger disutility of effort, θ ·g′(e). Until this point, we
just described the trade-off that the principal experiences under a symmetric information setting.

Under asymmetric information, however, a new effect emerges. In particular, from constraint (2),

an increase in the effort from agent θ entails a larger transfer to all types above θ for them to

truthfully report their types (rather than reporting a type equal to θ, as this agent now receives a

more generous transfer). Specifically, since their probability mass is 1 − F (θ), the total expected
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cost of increasing the effort from agent θ is

[θf(θ)− (1− F (θ))] g′(e(θ))

which, dividing by f(θ), can be expressed as(
θ − 1− F (θ)

f(θ)

)
g′(e(θ))

as in our above results.

9.1.2 Increasing or decreasing virtual valuations

Our previous discussion assumed that the virtual valuation J(θ) = θ − 1−F (θ)
f(θ) is weakly increasing

in θ. This assumption holds as long as the hazard rate

f(θ)

1− F (θ)

is weakly increasing in θ. Intuitively, the probability of drawing an agent with type θ, given that

we previously drew agents with types larger than θ, is increasing in θ. As we saw in the previous

example where θ was uniformly distributed, the virtual valuation J(θ) became J(θ) = 2θ − 1, and

thus was increasing in θ. A similar argument applies to other typical distributions such as the normal

and exponential. For instance, in the case of the exponential distribution, F (θ) = 1 − exp(−λθ)
where λ > 0, we obtain a density of f(θ) = λ exp(−λθ), which yields a virtual valuation of

J(θ) = θ − 1− [1− exp(−λθ)]
λ exp(−λθ) = θ − 1

λ

which is increasing in θ for all values of parameter λ. Similarly, if F (θ) = θα where α ≥ 1, then

f(θ) = αθα−1, entailing that the virtual valuation becomes

J(θ) = θ − 1− θα

αθα−1 =
θ(α+ 1)− θ1−α

α

with first-order derivative J ′(θ) = α+1−(1−α)θ−α

α , which is positive for all θ since α ≥ 1 by definition.

In other settings, however, J(θ) could have strictly decreasing segments. This occurs, for example,

if types are drawn from F (θ) = θα but parameter α satisfies α < 1, since the derivative J ′(θ)

found above is not necessarily positive for all types θ.15 When J(θ) is strictly decreasing for some

values of θ, we can apply “ironing”techniques, which intuitively uses a monotonic transformation

of virtual valuation J(θ) that is either flat or increasing in θ rather than using the original virtual

15For instance, if α = 1/3, the virtual valuation becomes J(θ) = 4θ − 3 (θ)2/3, with derivative J ′(θ) = 4 − 2

θ1/3
.

Setting J ′(θ) = 0 and solving for θ, we find θ = 1/8. Hence, J(θ) is first decreasing in θ, reaches a minimum at
θ = 1/8, and then becomes increasing in θ, i.e., J ′(θ) > 0 for all θ > 1/8.

38



valuation (which can have strictly decreasing segments).16

10 Exercises

1. Grobes-Loeb mechanism. Consider a divisible public good y. For simplicity, assume that
the cost function is linear in y, c (y) = y. Every agent i ∈ N enjoys a benefit bi (y, θ) = θi

√
y

from y units of the public good, and θi > 0 denotes agent i’s valuation for the public good.

(a) Find the socially optimal amount of the public good, ySO.

(b) Consider a DRM where every agent reports his valuation of the public good θi, and then

outcome (ySO, c1, c2, ..., cN ) is implemented, where ci = 1
4θi

N∑
i=1

θi represents agent i’s

cost share. Show that this DRM is not strategyproof.

(c) Let us now consider an alternative DRM, suggested by Groves and Loeb, with the

following transfer function

ti =
1

4
θ2
i +

1

2(N − 2)

∑
j,k 6=i, j<k

θjθk

In this context, every individual i’s utility function is

ui(y, θ) = bi(y, θ)− ti = θi
√
y − ti

where the firm term, θi
√
y, represents the benefit that agent i enjoys from the public

good (as in previous sections of the exercise); while the second term, ti, denotes the tax

he pays when ti > 0 or the transfer he receives when ti < 0. Assume that the public

project must be budget balanced, so that total tax collection is weakly larger than the

cost of the project,
N∑
i=1

ti ≥ c(y). Answer the following questions about this mechanism.

i. Show that, with the transfer function defined above, the cost of the project is exactly

covered by tax collection, that is,
N∑
i=1

ti = c (y).

ii. Show that the above mechanism satisfies DSIC. In words, every agent i has incentives

to truthfully report his type θi regardless of the reported types of all other players,

θ−i.

iii. Analyze if the mechanism satisfies ex-post participation constraint.

2. Asymmetric virtual valuations. Consider two agents with cdfs F1(θ1) = a1 (θ1)2 for agent

1, and F2(θ2) = a2 (θ2)2 for agent 2, and where coeffi cients satisfy a1 6= a2.

(a) Find the virtual valuation of every agent i and check if it is increasing or decreasing in

θi.
16For more details on this ironing technique, see Bolton and Dewatripont (2005, pp. 88-93).
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(b) Compare virtual valuations J1(θ1) and J2(θ2) in the case that a1 = a2 = a, and in the

case that a1 = 4 and a2 = 2.

3. Regulating two utility companies A regulator is responsible for two public utility compa-
nies located in separate geographic areas, e.g., two plants of water distribution. Each utility

produces a fixed amount of output (normalized at q = 1) and has a cost function

Ci = α+ βi − ei

where α can be interpreted as a common shock affecting both firms’ costs, and βi is an

idiosyncratic shock only affecting firm i’s costs (e.g., rainfall in the area where firm i is

located). Assume that the realization of βi is independent of βj . Furthermore, the effort that

firm i exerts, ei ≥ 0, helps reduce its total cost.

In addition, social welfare is ∑
i

[S − (1 + λ) (Ci + ti) + πi]

where S is a constant surplus that the regulator obtains from the fixed amount of output

produced by each plant; ti is the net transfer paid by the regulator to firm i; πi = ti − g (ei)

is firm i’s rent; and λ > 0 is the shadow cost of raising public funds (since the transfer paid

to firm i originates from setting distortionary taxes in other markets). The reservation utility

of each firm is 0. The effort function g (ei) originates at zero, g (0) = 0, and it is strictly

increasing and convex in effort, i.e., g′ > 0 and g′′ > 0. The firm observes both α and βi
when signing the contract with the regulator.

(a) Complete information. Assume the regulator observes all components of each cost func-

tion, i.e., the realization of parameters α and βi. Determine the optimal efforts, rents,

and transfers.

(b) Idiosyncratic shocks. Suppose that there are no common shocks, i.e., α = 0, and that

both firms and regulator know this (i.e., it is common knowledge among all players).

However, the regulator does not observe the realization of the idiosyncratic shock βi.

Instead, the regulator has prior beliefs that the realization of βi is low, i.e., βi = βL, with

probability p and high, βi = βH , with probability 1−p, where βH > βL. In this setting,

the regulator offers a menu of contracts
(
tH , CH

)
and

(
tL, CL

)
that maximize expected

social welfare (as in a standard two-type screening problem). Write the social planner’s

problem, subject to the firm’s incentive compatibility conditions and the participation

constraints. Identify which of these four constraints are binding at the optimum. [Hint :

It might be useful to start writing the ICs and PCs before writing the social planner’s

objective function. In addition, you may want to recognize that the cost function in this

case is Ci = βi − ei, which helps us write effort as ei = βi − Ci.]
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(c) Differentiate with respect to CL and CH in the regulator’s program that you described

in part (b), and obtain the optimal contract that the regulator offers to the firm.

(d) Common shock. Consider now the opposite case as in part (b). That is, suppose that

βi = 0 is common knowledge, i.e., idiosyncratic shocks are absent, but that α is known

only to the firms and unobserved the regulator. In addition, assume that the regulator

offers the following transfer

ti = − (Ci − Cj) + g (e∗) ,

where every firm exerts the effort level that solves g′ (e∗) = 1. Show that under this

transfer every firm is induced to choose the effort level that solves g′ (e∗) = 1 in the

Nash equilibrium of the game. Then, find the equilibrium rents. [Hint : You don’t need

to solve the regulator’s problem again. Instead, the transfer from the regulator is already

given in the above expression, so you only need to solve the firm’s problem of choosing

an optimal effort level.]

(e) Argue that if the regulator uses the transfer in part (c), social welfare coincides with

that under full information. Explain. [Hint : No math is necessary, and your explanation

can be really short.]

4. DRM between a government offi cial and an expert. Consider the president of a

country (P) facing a binary decision k ∈ {−1, 1}, e.g., whether to sign a bill (k = 1) or

not (k = −1). Similarly as in cheap-talk games, his utility depends on whether his decision

coincides with the state of nature (so he deviates as little as possible from the true state of

nature, θ). In particular, considering that the state of nature is also binary, θ ∈ {−1, 1}, the
president’s utility is

uP (k, θ) =

{
0 if k = θ, and

−1 otherwise

For simplicity, assume that both states of nature are equally likely. Before choosing k, the

president talks to an expert (E). Specifically, the expert privately observes a noisy signal s

of the true state of nature θ, where s ∼ N(θ, 1), and given that signal s, the expert sends a

message m ∈ R to the president. Hence, the president’s choice can be described as a function
of the message he receives from the expert, k(m). The expert’s utility is

uE(k, θ) =


0 if k = θ,

−q if θ = 1 but k = −1, and

−(2− q) if θ = −1 but k = 1

where parameter q ∈ (0, 2) can be interpreted as the expert’s bias towards one type of error.

For instance, when q = 0.1, the expert’s utility is relatively high (low) when the president

chooses k = −1 (k = 1) when the true state of nature was θ = 1 (θ = −1, respectively). The
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opposite argument applies when q → 2.

Finally, note that the above description represents an indirect revelation mechanism, in which

the expert sends a message m ∈ R to the president, and the president responds with alloca-
tion function k(m) ∈ {−1, 1}, entailing the above utilities for the president and the expert
depending on the profile of (k, θ)-pairs.

(a) Consider a direct revelation mechanism in which the expert announces his privately

observed signal s, and for each signal s, the effi cient allocation function k∗(s) ∈ {−1, 1}
that maximizes the president’s expected utility, Eθ[uP (k, θ)]. That is, k∗(s) = 1 if and

only if Eθ[uP (1, θ)|s] ≥ Eθ[uP (−1, θ)|s]. Find under which conditions on the signal s,
k∗(s) = 1. [Hint: This should be short.]

(b) Assume in this part of the exercise that the expert’s bias is exactly q = 1. Show that

the above allocation rule k∗(s) is incentive compatible. [Hint: This is easy, you don’t

need to do any math.]

(c) For the remainder of the exercise, assume that the expert’s bias is exactly q = 1
2 . Con-

sider an indirect revelation mechanism in which the expert sends a message m to the

president, and that the president responds using the following allocation rule

k(m) =

{
1 if m ≥ K, and
−1 otherwise

This is actually a simple cutoff rule: If the messagem that the expert sends is suffi ciently

high (i.e., it is higher or equal to a cutoff K ∈ R), the president responds signing the
bill; but if the message is lower than cutoff K the president responds not signing the

bill.

i. Show that this mechanism is incentive compatible if and only if the cutoff is exactly

K = log 3
2 . [Hint: Recall that signals are normally distributed, implying a density

function of f(s) = 1√
2π

exp
(
− s2

2

)
. Then, Pr{s|θ} = f(s−θ), which entails f(s−θ)

f(s+θ) =

exp(2s).]

ii. Provide a short verbal explanation of your result.

5. Procurement auction with/without external effects Consider a town mayor inviting
N firms to bid in a procurement contract that will allocate to the selected firm the right of

water distribution for all town residents. The effi ciency in implementing the project, θi, is

observable to bidder i, but not other bidders or the procurer. Its distribution, θi ∼ U [0, 1], is

common knowledge. Bidders are regarded as more effi cient when their effi ciency parameter,

θi, increases.

The cost of bidder i to implement the contract is Ci (qi, θi), which is increasing and convex

in output qi, and decreasing and convex in effi ciency θi. Each bidder has a quasilinear utility
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function,

U (qi, θi) = ti (qi)− Ci (qi, θi) ,

where ti (qi) represents the transfer that the bidder receives from the procurer when the

bidder produces qi units of output (i.e., water). For simplicity, assume that bidders have zero

reservation utility. The procurer’s welfare function is

V (qi)− (1 + λ) ti (qi)

where V (qi) denotes the value that the procurer assigns to qi units of output, while λ captures

the shadow cost of raising public funds (as the procurer needs to raise distortionary taxes in

order to pay for the transfer ti (qi) to bidder i).

(a) No Externalities. Let us assume that a bidder’s (i.e. firm) output decision has no
effects on the costs of other firms. Answer the following questions.

i. In your opinion, what is the sign of the cross partial derivative, ∂
2Ci(qi,θi)
∂qi∂θi

? Justify.

ii. Setup the procurer’s program that induces participation and revelation of the bid-

ders.

iii. Solve for the optimal output and transfer of bidder i.

(b) With Externalities. Let us now assume that bidder i’s cost depends on the output of
other bidders. Specifically, consider Ci (qi, q−i, θi), where vector q−i = (q1, · · · , qi−1, qi+1, · · · , qN )

can be understood as the externalities from other bidders on bidder i, which can be pos-

itive or negative. Also, assume that ∂2Ci(qi,q−i,θi)
∂q−i∂θi

≥ 0 such that the effi ciency of bidder

i attenuates the effect of positive externalities other bidders impose on him.

i. Write down the welfare maximization program of the procurer. (You may assume

that the ICi and IRi conditions still hold so that you need not repeat them again.)

ii. Solve for the optimal output and transfer of bidder i.

(c) Compare the results between parts (a) and (b) of the exercise. Also draw a figure

to illustrate the difference in optimal output. (For simplicity, you may assume that

externalities are positive).

(d) Parametric example. Let us now assume a parametric form for the value and cost

functions in a setting with 2 bidders. In particular, assume that the cost function of

bidder i is

Ci(qi, qj , θi) =
(qi)

2

2 (r + θi)
− αqj (4)

where r > 0 is a constant to make sure that cost will not diverge when effi ciency ap-

proaches zero, and α calibrates the degree of externality the other bidder j impose on

bidder i. We normalize this parameter, α ∈ [−1, 1], such that if (i) α ∈ (0, 1], externality

is positive thus reducing the cost of bidder i; (ii) α = 0, no externality on bidder i;
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and (iii) α ∈ [−1, 0), the externality is negative thus increasing the cost of bidder i.

Furthermore, the value that the procurer assigns to the output of bidder i is V (qi) = qi.

To facilitate your calculations, let us assume that r = 1
2 and λ = 1

10 , and solve for the

optimal output and transfer of bidder i, considering two cases: (1) α = 0, and (2) α = 1
3 ,

and afterwards we will compare our results.

6. Optimal Auction of Monopoly Rights Consider the following model based on the article
by Dana and Spier (1994)17. A regulator sells the monopoly right in an industry among two

firms, i = {1, 2}. Assume that the social planner’s objective is to maximize social welfare:

W = CS +
∑
i

(πi − ti) + λ
∑
i

ti

= CS +
∑
i

πi − (1− λ)
∑
i

ti

where CS denotes consumer surplus; PS =
∑

i (πi − ti) is the producer surplus net of trans-
fers, where πi represents the profit of firm i before paying a transfer ti to the regulator; and

λ represents the shadow cost of raising public funds through distortionary taxation, where

λ > 1. Intuitively, a larger transfer allows the regulator to reduce taxes in other markets,

thus reducing their distortionary effects.

The regulator determines which firm (or firms) obtain the production license, and the transfer

from every firm i to the regulator, ti for all i = {1, 2}. Once one (or both) firms obtain a
production license it freely determines its profit-maximizing output. Each firm privately

observes its fixed cost of production, θi, which is drawn from [θ, θ] with cdf Φ(.) and positive

density φ(θi) for all θi and all i = {1, 2}. For simplicity, assume that Φ(θi)
φ(θi)

is increasing in θi.

Both firms face a common marginal cost c < 1, and a demand function p(x), where p′(x) < 0

and p′′(x) ≤ 0,, which is common knowledge among all players.

(a) Complete Information. Assuming that the regulator observes the profile θ = (θ1, θ2),

describe the optimal contract.

(b) Incomplete Information. Consider now a setting in which the regulator cannot observe

the profile θ = (θ1, θ2). Using the Revelation Principle we can restrict attention to truth-

telling equilibrium in direct-revelation mechanisms. Hence, the government’s mechanism

{t, p} including:

(i) A transfer from each firm ti(θ̂1, θ̂2) for all i = {1, 2}; and
(ii) A probability of implementing each market structure pi(θ̂1, θ̂2), where i = {1, 2, d}

denotes each of the three possible market structures, θ̂1 and θ̂2 are the announce-

ments made by each firm to the regulator in the direct-revelation mechanism, and

p = (p1, p2, pd) indicates the probability that firm 1, 2, or both, obtain the license.
17Dana, J.D. and Spier, K.E. 1994. "Designing a private industry: Government auctions with endogenous market

structure." Journal of Public Economics. 53 (1). 127-147.
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Analyze the optimal contract in this incomplete information context.

(c) Parametric example. Your above analysis left results in a relatively general format.

Assume now that the inverse demand function is p(x) = 1 − x, total costs are TC =

θi + cx, where c < 1 represents marginal costs. Evaluate your above results using these

parametric functions.

(d) Numerical Example. Consider that the marginal cost is c = 1
4 , and that types are

uniformly distributed in [0, 1], so that Φ(θ1) = θ1 and Φ(θ2) = θ2. (Densities are,

therefore, φ(θ1) = 1 and φ(θ2) = 1.) In addition, assume that the realization of θ1 is

θ1 = 1
2 and that of θ2 is θ2 = 1

3 . Evaluate your previous results using these numerical

values.

7. [Pollution abatement as a mechanism] Consider a polluting firm and a regulator, such

as the Environmental Protection Agency (EPA) in the U.S., designing policies to reduce such

pollution. In particular, assume that pollution, x, causes a damage measured by the damage

function D(x), which is strictly increasing and convex in pollution, i.e., D′ > 0 and D′′ ≥ 0.

The firm’s cost function is represented by C(x, θ), being strictly decreasing and convex in

pollution, Cx < 0 and Cxx ≥ 0, (i.e., the firm invests less in clean technologies as its pollution

increases) and increasing in the firm’s ineffi ciency parameter θ, Cθ > 0; alternatively, a

lower value of θ represents a lower total cost. The firm privately observes the realization of

parameter θ, but the regulator does not. Finally, assume that costs satisfy the single-crossing

property Cxθ < 0, and Cθxx ≥ 0.

(a) Show that if the government has coercive power, it can obtain the socially optimal

amount of pollution x∗(θ) by giving the firm a transfer equal to a constant minus the

damage cost D(x). How does this scheme link with the Groves mechanism?

(b) Suppose that the firm can refuse to participate (it has property rights and is free to

pollute if it wants to). Can the first-best outcome described in part (a) still be im-

plemented if the government cares about the sum of consumer and producer surplus?

Next, suppose that the government faces a shadow cost of public funds λ > 0, so that

its objective function is

W = −D(x)− (1 + λ)t+ (t− C(x, θ))

(up to a constant).Derive the optimal incentive scheme (Note: The IR level may be

type-dependent.) Perform the analysis as if it were type independent and check ex post

that everything is fine.

(c) Parametric example. Assume a damage function D(x) = x2, where D′ = 2x > 0

and D′′ = 2 > 0 as required; and a cost function C(x, θ) = θ
x2 where Cθ = 1

x2 > 0,

Cxθ = − 2
x3 < 0, Cx = − 2θ

x3 < 0, Cxx = 6θ
x4 > 0, and Cθxx = 6

x4 > 0, as required.
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Evaluate the FOC you found in part (b) using these D(x) and C(x, θ) functions, and

find the optimal pollution level x∗(θ), and the optimal transfer t∗i (θ).

8. Applying mechanism design in a monopoly problem Consider a monopolist facing a

single consumer with utility function u = θq−t, where q denotes units of the good sold by the
monopolist and t is the transfer to the monopolist (i.e., lump-sum payment to the monopolist

for the q units that the consumer receives, rather than a price per unit). Intuitively, parameter

θ > 0 represents the marginal utility that the consumer obtains from every additional unit of

the good he consumes. The monopolist has cost function cq2

2 , where c > 0, and offers a sales

contract to the consumer. For simplicity, assume that the consumer has reservation utility 0.

(a) Complete information. Let us start considering that the monopolist observes the re-

alization of parameter θ. Find the optimal transfer and consumption under complete

information, (t (θ) , q (θ)).

(b) Incomplete information. Suppose from now on that the monopolist has incomplete in-

formation about θ, which takes the value θL with probability pL and θH with probability

pH . Assume that θL > pHθH . The monopolist’s expected profit is

pL

(
tL − c

(
qL
)2

2

)
+ pH

(
tH − c

(
qH
)2

2

)

Compute the optimal contract. Show that the equilibrium utility of type-θH consumer

is S = (θH−θL)(θL−pHθH)
cpL

.

(c) Suppose now that the consumer can purchase at the fixed cost f an alternative (bypass)

technology that allows him to produce any amount q of the same good at cost c̃q2

2 .

Suppose for simplicity that the consumer can consume only the monopolist’s good or

the alternative good (but not a mix of both), and that(
θH
)2

2c̃
− f > S > 0 >

(
θL
)2

2c̃
− f

Is the transfer that you found in part (b) still optimal for the monopolist? Discuss what

may be optimal for monopolist. In particular, why it may be optimal to have cqH > θH .

For example, consider what happens when f decreases from θH2

2c̃ − S.

9. Designing optimal taxation. Consider a government needing to raise a fixed sum $S

through income tax. There are two types of workers, high productivity (H) and low produc-

tivity (L), and the output (gross income) produced by each is given by

qk = θkek, where k = H,L

where ek is the amount of effort exerted by a worker of type k and the productivity parameter
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satisfies θH > θL. Hence, for a given effort level, the high-productivity worker generates a

larger amount of output than the low-productivity worker. The utility function of a worker

with type k is

vk = qk − tk − g(ek)

where tk is the tax on a worker of type k, and g(·) is a strictly increasing and convex function
in effort, i.e., g′ > 0 and g′′ > 0. The government has no interest in the inequality of utility

outcomes and so just seeks to maximize the expected social welfare

W = pvH + [1− p]vL

where p is the proportion of H-type workers.

(a) Complete information. If the government was perfectly informed about the worker’s

type, find the socially optimal taxes, and the associated output levels.

(b) Parametric example (Complete information). Assume that the cost of effort function

is g(ek) = (ek)2, so its derivatives are g′ = 2ek ≥ 0 and g′′ = 2 > 0; as required.

Evaluate the FOCs found in part (b) for the complete information context assuming

that productivity parameters are θH = 1 and θL = 1
2 . Find the optimal values of q

H

and qL.

(c) Incomplete information. Assuming that the government cannot observe the worker’s

type, write the government’s objective function in terms of qH , qL, p, and S.

(d) Using the government’s objective function you identified in part (d), write down the

government’s optimization problem.

(e) Find the solution to the government’s problem in part (d). Compare your answer to the

complete information solution found in part (b).

(f) Parametric example (Incomplete information). Assume the same cost of effort function

as in the parametric example developed in part (c), g(ek) = (ek)2, and the same set

of productivity parameters θH = 1 and θL = 1
2 . In addition, consider that both types

of workers are equally likely, i.e., p = 1
2 . Find the optimal values of q

H and qL in the

incomplete information setting. Then, find the optimal yH and yL, where yk ≡ qk − tk.

10. Virtual valuations. Consider an auction between two bidders, 1 and 2; and let θi denote
bidder i’s privately observed valuation for the good

(a) Symmetric distributions. Assume that θi is drawn from a uniform distribution, θi ∼
U [0, 1]. Find the virtual valuation Ji(θi) of every bidder i, and determine which bidder

(if any) receives the object in an optimal auction (i.e., an auction maximizing the seller’s

expected revenue).

47



(b) Asymmetric distributions. Let us now assume that the valuation of bidder 1, θ1, behaves

according to cdf F1 (θ1) = (θ1)2, whereas that of bidder 2 is F2 (θ2) = 2θ2 − (θ2)2; and

θi ∈ [0, 1] for every bidder i. Find the virtual valuation Ji(θi) of every bidder i, and

determine which bidder (if any) receives the object in an optimal auction.

11. Virtual valuations-II. Consider a mechanism with virtual valuation J(θi) = θi − 1−F (θi)
f(θi)

.

Show that if the density function f(θi) is increasing in θi, then the virtual valuation J(θi)

must also be increasing in θi.

12. Virtual valuations-III. Show that if the distribution of types for agent i dominates that
agent j in hazard rate terms, then agent i also dominates agent j in terms of their virtual

valuations.

13. Public Good Provision. Imagine that you and your colleagues want to buy a coffee machine
for your offi ce. Suppose that some of you may be heavily addicted to coffee and are willing

to pay more for the machine than the others. However, you do not know your colleagues’

willingness to pay for the machine. The cost of the machine is C. We would like to find a

decision rule in which (i) each individual reports a valuation (i.e., direct mechanism), and (ii)

the coffee maker is purchased if and only if it is effi cient to do so. Let us next analyze if it is

possible to find a cost-sharing rule which gives incentive for everyone to report his valuation

truthfully.

In particular, assume n individuals, each of them with private valuation θi ∼ U(0, 1). The

allocation function is binary y ∈ {0, 1}, i.e., the coffee machine is purchased or not. Let ti be
the transfer from individual i, implying a utility of

ui(y, θi, ti) = yθi − ti

Let i ∈ {1, ..., n} denote the individuals, and let i = 0 denote the original owner of the good.

(a) What is the effi cient assignment rule, y∗(θ1, ..., θn)?

(b) Equal-share rule. Consider the following equal-share rule: When the public good is

provided, the cost is equally divided by all n individuals.

i. Before starting any computation, what would you expect - whether each individual

would overstate or understate their valuation?

ii. Confirm that the transfer rule is written by:

ti(θ) =
C

n
y∗(θ)

iii. Let Vi(θ̃i|θi, θ−i) be individual i’s payoff when i reports θ̃i instead of his true valu-
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ation θi, while the others truthfully report their valuations θ−i. Show that

Vi(θ̃i|θi, θ−i) =

(
θi −

C

n

)
y∗(θ̃i, θ−1)

iv. Let Ui
(
θ̃i|θi

)
be individual i’s expected payoff when he reports θ̃i instead of the

true valuation θi. Show that

Ui

(
θ̃i|θi

)
=

(
θi −

C

n

)
Eθ−i

[
y∗(θ̃i, θ−1)

]
v. Suppose that i’s private valuation θi satisfies θi > C

n . Assuming that the others are

telling the truth, what is the best response for i? What if θi < C
n ? Is this mechanism

strategy-proof? Is this mechanism Bayesian incentive compatible?

(c) Proportional payment rule. Consider now the proportional payment rule:

ti(θ) =
θiC∑
j θj

y∗(θ)

where every individual i pays a share of the total cost equal to the proportion that his

reported valuation signifies out of the total reported valuations.

i. Under this rule, what would you expect - whether each individual would overstate

or understate the valuation?

ii. Show that the utility of reporting θ̃i is now

Vi(θ̃i|θi, θ−i) =

(
θi −

θ̃iC

θ̃i +
∑

j 6=i θj

)
y∗(θ̃i, θ−1)

iii. For simplicity, suppose two individuals, n = 2 and a total cost of C = 1. Show that

Ui

(
θ̃i|θi

)
= θ̃i

(
θi − log

(
θ̃i + 1

))
iv. Is this mechanism strategy-proof? Is it Bayesian incentive compatible?

v. Which way is everyone biased, overstate or understate? What is the intuition?

(d) VCG mechanism. Let us consider now the VCG mechanism. Recall that the effi cient

rule y∗(θ) determines that the coffee machine is bought if and only if total valuations

satisfy
∑

i θi ≥ C. Remember that we need to include the original owner of the public

good; i = 0. Then, the total surplus when the valuation of individual i is considered in

θ = (θ1, θ2, ..., θn) is

∑
j 6=i

vj (y∗(θ), θj) =

{∑
j 6=i θj if

∑
j θj ≥ C

C if
∑

j θj < C
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while total surplus when the valuation of individual i is ignored, θ−i, is

∑
j 6=i

vj (y∗(θ−i), θj) =

{∑
j 6=i θj if

∑
j 6=i θj ≥ C

C if
∑

j 6=i θj < C

The only difference in total surplus arises from the allocation rule which specifies that,

when θi is considered, the good is purchased if and only if
∑

j θj ≥ C, whereas when θi
is ignored, the good is bought if and only if

∑
j 6=i θj ≥ C. Hence, the VCG transfer is

t∗i (θ) = −

∑
j 6=i

vj(y
∗(θ), θj)−

∑
j 6=i

vj(y
∗(θ−i), θj)


=

{
C −

∑
j 6=i θj if

∑
j 6=i θj < C ≤

∑
j θj

0 otherwise

Intuitively, player i pays the difference between everyone else’s valuations,
∑

j 6=i θj , and

the total cost of the good, C. Such a payment, however, only occurs when aggregate

valuations exceed the total cost,
∑

j θj ≥ C, and thus the good is purchased, and

when the valuations of all other players do not yet exceed the total cost of the good,∑
j 6=i θj < C, so the difference C −

∑
j 6=i θj is paid by player i in his transfer.

i. Show that in this mechanism player i’s utility from reporting a valuation θ̃i 6= θi is

Vi(θ̃i|θi, θ−i) = vi

(
y∗
(
θ̃i, θ−i

)
, θi

)
− t∗i

(
θ̃i, θ−i

)
=


0 if θ̃i +

∑
j 6=i θj < C∑

j θj − C if
∑

j 6=i θj < C ≤ θ̃i +
∑

j 6=i θi

θi if C ≤
∑

j 6=i θj

ii. Is this mechanism strategy-proof? Is this Bayesian incentive compatible?

iii. For simplicity, suppose two individuals, n = 2, and a total cost of C = 0.5. Compute

y∗, t∗1 and t
∗
2 for the following (θ1, θ2) pairs.

θ1 θ2

0.1 0.3

0.3 0.3

0.3 0.8

0.8 0.8

iv. Show that the expected revenue from this mechanism is E [t∗1(θ1, θ2) + t∗2(θ1, θ2)] =
1
6 ' 0.167. Based on what you calculated in part (iii), is this problematic?

14. [Implementation of Effi cient Public Good Provision by Charging Pivotal Agents]
Suppose that agent i’s value for a good being auctioned, θi, is a random variable with support
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[0, βi]. Each agent submits a bid θ̃i. The public good (which costs C to produce) is produced

if total bids are larger than the production cost,
∑

j θ̃j ≥ C. If this condition is not satisfied
the agents pay nothing. If C −

∑
j 6=i θ̃j − βi ≤ 0 < C −

∑
j 6=i θ̃j the public good is produced

if and only if agent i’s value is suffi ciently high. Such an agent is said to be “pivotal.”Define

a transfer

t(θ̃−i) = max

0, C −
∑
j 6=i

θ̃j


If agent i is pivotal and has submitted a bid above this transfer he pays ti. Otherwise agent

i pays nothing.

(a) Show that if agent i bids his value, his payoff is a function of
∑

j 6=i θj .

(b) Draw the payoff graph considering that: (i) θ̃i < θi, and (ii) θ̃i > θi.

(c) Explain why it is a dominant strategy for agent i to bid his value.

15. Using mechanism design in monopoly pricing Consider a monopolist with costs c > 0

and multiple consumers with types θ > 0. The consumers have utility functions θv(x) − t
where x is the amount of the good consumed and v′(·) > 0 v′′(·) < 0. θ is distributed across

the support [θ, θ̄] with θ̄ > θ > 0 distributed with a cdf Φ(·) with positive density φ(·) > 0.

In addition, consider the buyer, who we will denote as agent i = 1. His utility function is

u1(θ, x, t) = θv(x)− t

Hence, its first-order derivative with respect to θ is u1
θ(θ, x, t) = v(x) and its second order

derivative with respect to xθ is u1
xθ(θ, x, t) = v′(x) > 0. We thus have that the single-crossing

property is satisfied, i.e., the marginal utility of additional units of x is increasing in the

buyer’s type θ.

Next, consider the seller, who we will denote as agent i = 0. His utility function is

u0(θ, x, t) = t− c · x

Using the Revelation Principle we can focus only on Direct Revelation Mechanisms f(θ) =

(x(θ), t(θ)) that solves the seller’s maximization problem:

max
x(θ),t(θ)

E[t(θ)− c · x(θ)]

subject to the SCF f(θ) = (x(θ), t(θ)) being Bayesian Incentive Compatible (BIC) and In-

dividually Rational (IR). Let’s denote by U(θ) = θv(x(θ)) − t(θ) the expected utility of the
buyer when truthfully revealing his type θ.

(a) Set up the monopolist’s constrained maximization problem.
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(b) Solve the monopolist’s problem, i.e., find an optimal output function x(θ).

(c) If you did not check for suffi ciency of the optimal x(θ) in part (b), check for it now.

(d) Interpret the first-order condition for the optimal x(θ) found in part (b), evaluating them

for the individual with the highest valuation and all other individuals.

(e) Parametric example. Assume that valuations are distributed according to a uniform

distribution, θ ∼ U [0, 1], that v(x) = lnx, and that c = 1/4. Evaluate the first-order

condition for the optimal x(θ) found in part (b).

16. Mutual insurance system, from Cabrales et al., 2003.18 Consider that there are N
farms in the country of Andorra (a small country in the Pyrenees, between Spain and France).

Farms have historically participated in a mutual insurance system called La Crema. Each

farm has an initial wealth, wi, which is a one-dimensional aggregator of insurable assets such

as farm, barn, cowshed, stable, etc. For simplicity, assume that when an insurable event,

such as fire, occurs, all the insurable assets are consumed so that farm i ends up with zero

wealth in the absence of insurance. Therefore, there are two states of nature associated with

each farm i, si = 1 corresponding to a fire outbreak and si = 0 corresponding to no outbreak,

respectively. As a consequence, there are S = 2N possible states for different combination of

fire outbreaks, where s ∈ S denotes the list of farms in which a fire breaks out. For example,
if s = {6, 8, 9}, then farms 6, 8 and 9 are burnt, while the other farms remain intact.

Farm owners can insure themselves against fire outbreak by participating in La Crema. The

mechanism works as follows. Each farm announces an amount to be insured, qi, and the sum

of reported values across all farms is Q =
∑N

i=1 qi. When a fire occurs with a list of farms s,

let Qs be the residual value of remaining farms whose assets are not consumed by fire. For

example, Qs = Q{6,8,9} represents the sum of reported values of all farms but 6, 8 and 9,

such that the total value consumed by fire is Q − Q{6,8,9}. In such case, farm i ∈ s receives
a compensation of the reported value of his assets as a fraction of the residual value, that is,

qi
Qs
Q . For the other farms that remain intact, farm j /∈ s pays a contribution of the reported

value of his assets as a fraction of the value lost, that is qj
Q−Qs
Q . In the case that no farms

are burnt, s = ∅, no transfers are made across farms. Also, when all farms are burnt, s = N ,

all farms are burnt, no residual value Q−Qs is left for re-distribution among farm owners.

(a) Show that the above mechanism satisfies budget balance.

(b) Let pi be the probability of a fire outbreak for farm i, which is assumed to be indepen-

dently and identically distributed across all farms. Also assume that farms have the same

initial wealth, that is, wi = wj = w for all i 6= j, i, j ∈ N , which is common knowledge
among all farms. Assuming that at most one farm will be burnt, does a risk-adverse

farm i participate?

18Cabrales A., Calvó-Armengol A. and Jackson M. (2003). La Crema: A Case Study of Mutual Fire Insurance.
Journal of Political Economy, 111(2), pp. 425-58.
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(c) Let ui (w) =
√
w. Will N = 3 farms with an initial wealth of w = 1 and probabilities of

fire outbreak, p1 = 1
12 , p2 = 1

4 and p3 = 1
3 respectively, participate?

(d) Assume that wi 6= wj , and that the initial wealth is private information for farm i

only. However, every farm i knows the common distribution of initial wealth, that is,

wj ∼ F (w) where w ∈ [0,W ], such that the expected wealth of farm j 6= i is given by

w =
∫W

0 wdF (w). Assuming all farm participate, is it incentive compatible for every

risk-neutral farm i, where ui (wi) = wi, to report its wealth, that is, qi = wi? (For

simplicity, you may assume that N is suffi ciently large so that any reporting by farm i

has no impact on the aggregate reported wealth, Q.)

(e) Let w1 = 4, w2 = 3 and w3 = 2, will farm i over-report or under-report its wealth?

(f) Let us allow any number of farms to be burnt. Assume symmetry in wealth wi = wj = w

and also in the probabilities of fire outbreak pi = pj = p, and that both parameters are

observable. Does a risk-neutral farm i participate? Show your results.

i. What is the expected wealth of farm i without insurance?

ii. Assume that k farms are burnt that do not include farm i. How much is farm i

expected to contribute?

iii. Assume that k farms are burnt that include farm i. How much is farm i expected

to be compensated?

iv. What is the expected wealth of farm i with insurance?

v. Compare the expected wealth with and without insurance. Does this system work?

vi. Assume a probability p = 1
6 . Will farm i participate?

17. Emission fees and mechanisms, Duggan and Roberts, 2003.19. Consider an industry
with N polluting firms producing a homogenous good. Let the profit function of firm i be

πi (qi) = ln qi, which is increasing and concave in its pollutants qi. The social cost from

pollution is

C (q1, · · · , qn) =
n∑
i=1

γi
2
q2
i ,

which is also increasing but convex in the pollutants qi emitted by firm i. Finally, a regulator

(e.g., government agency) considers the following welfare function

W (q1, · · · , qn) =

n∑
i=1

πi (qi)− C (q1, · · · , qn)

(a) Complete information. Assume that the regulator can observe pollution levels and sets

an emission fee ti per unit of emissions. Find the following:

i. Firm i’s profit-maximizing pollution level as a function of fee ti, qi(ti).

19Duggan J. and Roberts J. (2003). Implementing the Effi cient Allocation of Pollution. American Economic
Review, 92(4), pp. 1070-78.
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ii. The socially optimal pollution from firm i, qSOi .

iii. The emission fee ti that induces firm i to produce qSOi , i.e., the fee ti that solves

qi(ti) = qSOi .

(b) Incomplete information. Assume that the level of pollution is unobservable to the regula-

tor but observable among all firms. Then, the regulator can devise a circular monitoring

mechanism, in which firm i reports the observed pollution level of firm i− 1, qi−1, firm

i − 1 reports the observed pollution of firm i − 2, qi−2, and firm 1 reports that of firm

n, qn. This allows the regulator to set an emission fee per unit of pollution

ti =
∂C (qi, q−i)

∂qi
,

where qi denotes firm i’s pollution (reported by firm i+ 1), and q−i represents the true

pollution level of all other firms. In addition, firm i faces a penalty of
(
qi−1 − qi−1

)2 for
misporting his neighbor’s pollution level not at qi−1.

i. Will firm i misreport the output of firm i− 1? Why or why not?

ii. Write down firm i’s profit-maximization problem and solve for its optimal output.

iii. Find the tax revenue generated by the mechanism, and the social cost of pollution.

(c) Numerical example. Consider the case of three firms, where γ1 = 1
4 , γ2 = 1

9 and γ3 = 1
16 ,

respectively. What are the socially optimal levels of pollution and the corresponding

optimal emission fees? What are the social costs of pollution from each firm? And the

total taxes paid by each firm?

18. Procurement auctions with perfect monitoring. Consider N bidders bidding for a

procurement contract, for example, a conservation project that restores the wetland to pro-

vide a habitat for migratory birds. Each bidder i, where i ∈ {1, · · · , n}, is endowed with a
certain acreage of farmland available for conservation. We summarize the expertise of bidder

i in implementing the conservation project and the biodiversity value of his farmland into a

uni-dimensional measure of effi ciency, θi, which is observable to bidder i but not to the other

bidders or the procurer. This effi ciency parameter is uniformly distributed, θi ∼ U [0, 1], is

common knowledge among bidders. Bidder i’s cost of implementing the project is deter-

mined by the acreage of farmland dedicated to wetland conservation qi (herein denoted as

the “input”) and his effi ciency θi, that is,

Ci (qi, θi) =
(qi)

2

2 (1 + θi)

where the cost of conserving zero units of land is Ci (0, θi) = 0, for there is no fixed cost. The

cost of conservation is decreasing in the effi ciency parameter, θi.
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Each bidder i has a quasilinear utility function,

U (qi, θi) = ti (qi)− Ci (qi, θi) ,

where ti (qi) represents the transfer he receives from the procurer. For simplicity, we assume

a zero reservation utility for bidder i. The procurer’s valuation of bidder i’s conservation is

V (qi) = A ln qi, where A > 0 indicates the intensity of the procurer’s valuation.

(a) First, we examine the properties of the cost function Ci (qi, θi). Show that conversion

cost is: (1) increasing and convex in the input qi; (2) decreasing and convex in effi ciency

θi; and (3) that it satisfies the Spence-Mirrlees sorting condition (also known as the

single-crossing condition).

(b) Second, we investigate the properties of the procurer’s valuation function Vi (qi). Show

that the valuation function is increasing and concave in input qi.

(c) Case 1. Perfect monitoring and observable effi ciency. In case 1, assume that both

effi ciency and input are observable. Write down the individual rationality constraint for

bidder i to participate. Let λ, where 0 ≤ λ ≤ 1, be the shadow cost of raising public

funds. What is the procurer’s welfare function? Solve for the optimal input and transfer

of bidder i.

(d) Case 2. Perfect monitoring, unobservable effi ciency. In case 2, assume that input is

observable but effi ciency is not. That is, the procurer can perfectly observe the amount

of land being conserved by every bidder, but cannot observe each bidder’s effi ciency

parameter. Write down the procurer’s problem in this setting, and solve for the optimal

input and transfer of bidder i.

19. Procurement auctions with imperfect monitoring. Consider the procurement auction
analyzed in Exercise #18. However, we will now allow for monitoring to be imperfect, that

is, the procurer cannot perfectly observe the amount of land they conserve (i.e., whether

bidder i fully implements the contract by conserving qi or a smaller amount q̂i < qi). In this

context, the procurer needs to monitor every bidder i to deter him from investing less than

the contracted level of input, or not investing at all. In particular, let αi be the probability

of monitoring, where 0 ≤ αi ≤ 1. For simplicity, we assume that bidder i will be detected

with 100% certainty if he is monitored, and will not be detected if not monitored. Hence,

if bidder i cheats, he is detected with probability αi, receiving a transfer ti (q̂i) which is a

function of his level of under-investment q̂i, where q̂i < qi. Last, assume that the monitoring

cost is mi (qi) = γ
2 (qi)

2, where γ ∈ [0, 1], implying that the cost of monitoring is increasing

and convex in qi, that is, ∂mi∂qi
= γqi ≥ 0 and ∂2mi

∂(qi)
2 = γ ≥ 0.

(a) Case 3: Imperfect monitoring, observable of effi ciency. Consider the opposite scenario of

Case 2 in Exercise #18, that is, the procurer can observe bidders’effi ciency but cannot

perfectly observe the amount of land they conserve.
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i. What is the expected utility of bidder i if he cheats?

ii. What is the expected utility of bidder i if he does not cheat?

iii. What is the incentive compatibility condition for bidder i not to cheat?

iv. What is the individual rationality condition for bidder i not to refrain from partic-

ipation?

v. What conditions do we need on probability αi so that bidder i participates and does

not cheat?

vi. Write down the procurer’s welfare maximization problem and the constraints.

vii. What is the transfer function of the procurer? And, what is the optimal level of

bidder i’s cheating?

viii. What is the procurer’s optimal monitoring probability αi?

ix. Using your above results, solve for the optimal input and transfer of bidder i.

(b) Case 4. Imperfect monitoring, unobservable effi ciency. We finally assume that both

effi ciency and input are not observable by the procurer.

i. Write down the procurer’s welfare maximization problem and the constraints.

ii. What is the optimal level of bidder i’s cheating?

iii. What is the procurer’s optimal monitoring probability?

iv. Find the optimal input and transfer of bidder i.

(c) Numerical example. Consider parameter values A = 3, λ = 1
10 , and γ = 1

20 . Solve

for the optimal input, transfer and stochastic monitoring probability in Cases 1-4 when

effi ciency is low at θi = 1
4 and high at θi = 3

4 respectively. Compare your results.
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