Appendices for
“Strategic Merger Approvals Under Incomplete Information”

Kiriti Kanjilal*, Ana Espinola-Arredondo† and Felix Munoz-Garcia‡

March 19, 2024

Appendix

Appendix 1 - Semiseparating equilibria

In order to check for a semiseparating equilibrium, we consider that the high-type firm randomizes between submitting and not submitting with probability σ_H and $(1 - \sigma_H)$, respectively, while the low-type firm randomizes with probabilities σ_L and $(1 - \sigma_L)$. The CA approves the merger with probability σ_{CA} and blocks it with probability $1 - \sigma_{CA}$. Importantly, note that if the low-type firm is indifferent between submitting and not submitting, then the high-type firm must strictly prefer to submit, that is,

$$\sigma_{CA} \left[\left(\frac{1-c + x_L}{2} \right)^2 - R \right] + (1 - \sigma_{CA})^2 \left(\frac{1-c}{3} \right)^2 = 2 \left(\frac{1-c}{3} \right)^2$$

entails that

$$\sigma_{CA} \left[\left(\frac{1-c + x_H}{2} \right)^2 - R \right] + (1 - \sigma_{CA})^2 \left(\frac{1-c}{3} \right)^2 > 2 \left(\frac{1-c}{3} \right)^2$$

which implies that $\sigma_H = 1$.

* Address: Indraprastha Institute of Information Technology, Address: B-208, Research and Development Block, Delhi 110020, India, E-mail: kanjilal@iiitd.ac.in.
† Address: 101B Hulbert Hall, School of Economic Sciences, Washington State University, Pullman, WA 99164. E-mail: anaespinola@wsu.edu.
‡ Address: 103H Hulbert Hall, School of Economic Sciences, Washington State University, Pullman, WA 99164. E-mail: fmunoz@wsu.edu.
First step. For the CA to mix, his beliefs μ must satisfy

\[
\frac{1 - c + x_H}{2} + (1 - \mu) \frac{1 - c + x_L}{2} = k \frac{1 - c}{3}
\]

where the left side represents the expected output when the CA approves the merger and the right side indicates its certain output when the CA blocks the merger. Rearranging, yields

\[
\frac{\mu x_H + (1 - \mu) x_L}{1 - c} = \frac{1}{3} \equiv \bar{\theta}
\]

which we can also express as

\[
E[\theta] \equiv \frac{\mu x_H}{1 - c} + (1 - \mu) \frac{x_L}{1 - c} = \mu \theta_H + (1 - \mu) \theta_L = \bar{\theta}.
\]

or, after solving for μ, we obtain that the CA’s beliefs must satisfy $\mu = \frac{\bar{\theta} - \theta_L}{\theta_H - \theta_L} \equiv \hat{\mu}$; otherwise, it would not be mixing between approving the merger (if $\mu > \hat{\mu}$) and blocking it (if $\mu < \hat{\mu}$).

Second step. Given the CA’s beliefs, we find from Bayes’ rule that

\[
\mu = \frac{\bar{\theta} - \theta_L}{\theta_H - \theta_L} = \frac{p}{p + (1 - p) \sigma_L}
\]

where the numerator captures the probability that the high-type firm submits a merger request (since $\sigma_H = 1$), while the denominator reflects the probability that the CA receives a merger request from any firm type. Solving for probability σ_L, yields

\[
\sigma^*_L = \frac{p}{1 - p} \frac{\theta_H - \bar{\theta}}{\bar{\theta} - \theta_L} \tag{1}
\]

which is unambiguously positive, and less than 1 if $\frac{p}{1 - p} < \frac{\bar{\theta} - \theta_L}{\theta_H - \bar{\theta}}$.

Third step. Given our above results about μ and σ_L, we can now find σ_{CA}. The low-type firm mixes if and only if

\[
\sigma_{CA} \left[\left(\frac{1 - c + x_L}{2} \right)^2 - R \right] + (1 - \sigma_{CA})2 \left(\frac{1 - c}{3} \right)^2 = 2 \left(\frac{1 - c}{3} \right)^2
\]

where the left (right) side denotes the expected (certain) profit from submitting (not submitting) a merger request, which is approved with probability σ_{CA}. However, after rearranging, we find that

\[
\sigma_{CA} \left[\left(\frac{1 - c + x_L}{2} \right)^2 - R - k \left(\frac{1 - c}{3} \right)^2 \right] = 0.
\]

If $\theta_L > \hat{\theta}$, the term in brackets is positive, entailing that the CA’s probability, σ_{CA}, becomes $\sigma_{CA} = 0$. In other words, the CA blocks all merger requests, implying that no firm type would have incentives to spend R into the submission process, that is, $\sigma_H = \sigma_L = 0$, as in the PE where no firm type submits a merger request (see Proposition 3). Therefore, a semiseparating PBE cannot be sustained when $\theta_L > \hat{\theta}$.

2
If, instead, \(\theta_L < \theta \) holds, the term in brackets is negative, implying that probability \(\sigma_{CA} \) would have to be negative too, which cannot occur, entailing that a semiseparating PBE cannot be supported in this case either.

Finally, if \(\theta_L = \theta \), the term in brackets is exactly zero, implying that probability \(\sigma_{CA} \) is undefined, \(\sigma_{CA} \in [0,1] \). In this context, a semiseparating PBE can be sustained, where the firm randomizes with probability \(\sigma^*_H = 1 \) and \(\sigma^*_L = \frac{p}{1-p} \frac{\theta_H - \theta}{\theta_H - \theta_L} \) and the CA responds approving mergers with any probability \(\sigma_{CA} \in [0,1] \), if and only if \(\theta_H > \theta_L = \theta \) holds.

Appendix 2 - Allowing for more merging firms

No merger. In a case of no mergers, every firm \(i \) solves,

\[
\max_{q_i \geq 0} (1 - q_i - Q_{-i})q_i - cq_i
\]

where \(Q_{-i} \) denotes the aggregate output of firm \(i \)'s rivals. Differentiating with respect to \(q_i \), and solving for \(q_i \), we find firm \(i \)'s best response function

\[
q(Q_i) = \frac{1 - c}{2} - \frac{1}{2}Q_{-i}
\]

In a symmetric equilibrium, \(q_i = q_j = q \) for every two firms \(i \neq j \), which entails \(Q_{-i} = (n - 1)q \). Therefore, the equilibrium output in this setting is

\[
q_{iNM} = \frac{1 - c}{n + 1}
\]

and equilibrium profits become \(\pi_{iNM} = \left(\frac{1 - c}{n+1} \right)^2 = (q_{iNM})^2 \).

Merger. Now consider a merger of \(k \) firms is approved. The merging entity solves

\[
\max_{q^M \geq 0} (1 - q^M - Q_{-i})q^M - (c - x)q^M
\]

where \(q^M \) denotes the merging entity’s output, and \(Q_{-i} \) represents the aggregate output of all outsiders combined. Differentiating with respect to \(q^M \), and solving for \(q^M \), we find the best response function

\[
q^M(Q_{-i}) = \frac{1 - c + x}{2} - \frac{1}{2}Q_{-i}.
\]

Similarly, every outsider firm \(i \) solves

\[
\max_{q^M_i \geq 0} (1 - q^M_i - q^M - Q^M_{-i})q^M_i - cq^M_i
\]

where \(Q^M_{-i} \) denotes the aggregate production level of all other \((n - k) - 1 \) firms that are outsiders in the merger. Differentiating with respect to \(q^M_i \), and solving for \(q^M_i \), we obtain the best response function \(q \)

\[
q^M_i(q^M, Q_{-i}) = \frac{1 - c}{2} - \frac{1}{2} (q^M + Q^M_{-i})
\]
In a symmetric equilibrium, all outsiders produce the same output, \(q^M_i = q^M_j = q^M_O \) for all \(n-k \) firms, implying that \(Q^M_i = [(n-k) - 1]q^M_O \). Inserting this result in the above best response functions, and rearranging, yields equilibrium output levels
\[
q^M = \frac{1 - c + (n-k+1)x}{n-k+2} \quad \text{and} \quad q^M_O = \frac{1 - c - x}{n-k+2}
\]

Finally, equilibrium profits for the merging entity is
\[
\pi^M = (1 - q^M - (n-k)q^M_O)q^M - (c - x)q^M = \left(\frac{1 - c + (n-k+1)x}{n-k+2} \right)^2 = (q^M)^2
\]
whereas every outsider earns
\[
\pi^M_O = (1 - q^M - (n-k)q^M_O)q^M_O - cq^M_O = \left(\frac{1 - c - x}{n-k+2} \right)^2 = (q^M_O)^2.
\]

Cutoff \(\theta(k,n) \). In this setting, an increase in consumer surplus is equivalent to an increase in output. In particular, \(q^M \geq kq^{NM}_i \) holds if and only if
\[
\frac{1 - c + (n-k+1)x}{n-k+2} \geq k\frac{1 - c}{n + 1}.
\]
Rearranging, and solving for yields \(x \geq \left(\frac{1 - c}{n + 1} \right) \left(\frac{1}{k} - \frac{1}{n + 1} \right) \) or, alternatively, \(\theta \equiv \frac{x}{1 - c} \geq k \frac{1}{n + 1} \equiv \theta(k,n) \)

Cutoff \(\tilde{\theta}(k,n) \). A merger between \(k \) out of \(n \) firms is profitable if the post-merger profits exceed the pre-merger profits, that is, \(\pi^M_i - R \geq k\pi^{NM}_i \), which holds if
\[
\left(\frac{1 - c + (n-k+1)x}{n-k+2} \right)^2 - R \geq k\left(\frac{1 - c}{n + 1} \right)^2
\]
After simplifying, we obtain
\[
\frac{1 - c + (n-k+1)x}{n-k+2} \geq \sqrt{k\left(\frac{1 - c}{n + 1} \right)^2 + R}
\]
and upon further rearranging, we find
\[
\theta \equiv \frac{x}{1 - c} \geq \frac{n - k + 2}{(1 - c)(n - k + 1)} \sqrt{k\left(\frac{1 - c}{n + 1} \right)^2 + R - \frac{1}{n - k + 1}} \equiv \tilde{\theta}(k,n)
\]
which increases in \(R \). Comparing cutoffs \(\tilde{\theta}(k,n) \) and \(\theta(k,n) \), we obtain that \(\tilde{\theta}(k,n) > \theta(k,n) \) holds if and only if
\[
\frac{n - k + 2}{(1 - c)(n - k + 1)} \sqrt{k\left(\frac{1 - c}{n + 1} \right)^2 + R - \frac{1}{n - k + 1}} > \frac{k - 1}{n + 1}
\]
or, rearranging, and solving for \(R \),
\[
R > \left(\frac{1 - c}{n + 1} \right)^2 \left[\left(\frac{(n + 1) + (n - k + 1)(k - 1)}{(n - k + 2)} \right)^2 - k \right] \equiv \hat{R}.
\]
Therefore, \(\tilde{\theta}(k,n) > \theta(k,n) \) holds if and only if \(R > \hat{R} \).
Appendix 3 - Uninformed outsiders

No merger. In a case of no mergers, every firm i solves the same maximization problem as in Appendix 2, yielding the same equilibrium output, $q_{i,NM}^M = \frac{1-c}{n+1}$, and profits, $\pi_{i,NM}^M = \left(\frac{1-c}{n+1}\right)^2 = (q_{i,NM}^M)^2$.

Merger. When k out of n firms merge, the merging entity solves
\[
\max_{q^M \geq 0} (1 - q^M - Q_{-i})q^M - (c - x)q^M
\]
where q^M denotes the insiders’ output, and Q_{-i} represents the aggregate output of all outsiders combined. Differentiating with respect to q^M, and solving for q^M, we find the best response function
\[
q^M_H(Q_{-i}) = \frac{1-c+x_H}{2} - \frac{1}{2} Q_{-i}
\]
when the merging entity’s type is high and, similarly, $q^M_L(Q_{-i}) = \frac{1-c+x_L}{2} - \frac{1}{2} Q_{-i}$ when its type is low.

Every outsider (uninformed about the realization of x), chooses its output q_i to solve the following expected profit-maximization problem
\[
\max_{q_i \geq 0} p [(1 - q_H - q_i - Q_{-i})q_i - cq_i] + (1 - p) [(1 - q_L - q_i - Q_{-i})q_i - cq_i]
\]
where q_H (q_L) denotes the merging entity’s output when its type is high (low, respectively); and Q_{-i} represents the aggregate output of all other outsiders (except for firm i). Differentiating with respect to q_i, and solving for q_i^M, we obtain the best response function
\[
q_i^M(q^M_H, q^M_L, Q_{-i}) = \frac{1-c}{2} - \frac{pq^M_H + (1-p)q^M_L + Q_{-i}}{2}
\]
where $pq^M_H + (1-p)q^M_L$ denotes the merging entity’s expected output. In a symmetric equilibrium, all outsiders produce the same output, $q_i^M = q_i^{M*}$ for all $n-k$ firms, implying that $Q_{-i} = [(n-k)-1]q_i^M$. Inserting this result in the above best response function, and rearranging, yields
\[
q_i^M(q^M_H, q^M_L, Q_{-i}) = \frac{1-c}{n-k+1} - \frac{pq^M_H + (1-p)q^M_L}{n-k+1}.
\]
Simultaneously solving for q^M_H, q^M_L, and q_i^M in the above three best response functions, yields Bayesian Nash equilibrium outputs
\[
q^M_H = \frac{2(1-c) + (n-k+2)x_H + (n-k)E[x]}{2(n-k+2)},
\]
\[
q^M_L = \frac{2(1-c) + (n-k+2)x_L + (n-k)E[x]}{2(n-k+2)}, \text{ and}
\]
\[
q_i^M = \frac{1-c + E[x]}{n-k+2},
\]
where $E[x] \equiv px_H + (1-p)x_L$ represents the expected cost-reduction effect.
The outsiders’ equilibrium profit does not affect our results regarding regions 1-3, but the merging entity’s does, becoming
\[
\pi^{M,L}(\beta) = (1 - q_L^M - [(n - k) - 1]q_i^M)q_L^M - (c - x_L)q_L^M
\]
\[
= \left(\frac{2(1 - c) + (n - k + 2)x_L + (n - k)E[x]}{2(n - k + 2)} \right)^2
\]
which collapses to that in the previous section when the merging entity’s type is low with certainty, \(p = 0 \), \(\pi^{M,L} = \left(\frac{1-c+(n-k+1)x_L}{n-k+2} \right)^2 \). Therefore, the profit gain for the low-type entity is
\[
\pi^{M,L}(\beta) - k\pi_i^{NM} = \left(\frac{2(1 - c) + (n - k + 2)x_L + (n - k)E[x]}{2(n - k + 2)} \right)^2 - k \left(\frac{1-c}{n+1} \right)^2
\]
which in the case that \(\beta = 0 \) simplifies to \(\pi^{M,L}(0) - k\pi_i^{NM} = \left(\frac{1-c+(n-k+1)x_L}{n-k+2} \right)^2 - k \left(\frac{1-c}{n+1} \right)^2 \); as in section 6.1.
Setting \(\pi^{M,L}(\beta) - k\pi_i^{NM} \geq R \) and solving for \(\theta_L \), we obtain \(\theta_L \geq \hat{\theta}(p) \). When the merging entity’s type is low with certainty, \(p = 0 \), cutoff \(\hat{\theta}(p) \) simplifies to that in section 6.1, that is, \(\hat{\theta}(0) = \hat{\theta}(k,n) \), where
\[
\hat{\theta}(k,n) \equiv \frac{n - k + 2}{(1-c)(n-k+1)} \sqrt{k \left(\frac{1-c}{n+1} \right)^2 + R - \frac{1}{n-k+1}}.
\]

Appendix 4 - Allowing for continuous responses by the CA

Updated beliefs. In this pooling strategy profile, the CA cannot update its beliefs according to Bayes’ rule. Therefore, upon observing \(R \), where \(R \geq f \), its beliefs are \(\mu(\theta_H|R) = p \) and \(\mu(\theta_L|R) = 1 - p \), whereas upon receiving any off-the-equilibrium message \(R' \neq R \), where \(R' \geq f \), its off-the-equilibrium beliefs are \(\mu(\theta_H|R') = 0 \).

Receiver’s response. Given the above beliefs, upon observing \(R \), in equilibrium, the CA responds exerting a challenging effort \(\alpha \), upon observing \(R \), that solves
\[
\max_{\alpha \in [0,1]} \alpha \left(\frac{2}{3} \frac{1-c}{3} + (1 - \alpha) \left(\frac{p-1-c+x_H}{2} + (1-p) \frac{1-c+x_L}{2} \right) \right) - \frac{1}{2} \lambda \alpha^2.
\]
which, differentiating with respect to \(\alpha \), yields
\[
2 \frac{1-c}{3} - \left(\frac{p-1-c+x_H}{2} + (1-p) \frac{1-c+x_L}{2} \right) - \lambda \alpha = 0
\]
and, solving for \(\alpha \), we obtain the CA’s optimal response after observing the pooling submission cost \(R \),
\[
\alpha^* = \frac{1-c - 3E[\theta]}{6\lambda}
\]
where \(E[\theta] \equiv p\theta_H + (1-p)\theta_L \). In addition, \(\alpha^* \) satisfies \(\alpha^* > 0 \) if \(1-c > 3E[\theta] \) or, after rearranging, \(\frac{1-c}{3} > E[\theta] \), which is incompatible with the initial condition \(E[\theta] > \frac{1}{3} \equiv \tilde{\theta} \) since \(\frac{1}{3} > \frac{1-c}{3} \). Therefore, it is never optimal for the CA to challenge a merger in a pooling equilibrium.
In contrast, upon observing the off-the-equilibrium message R', the CA responds blocking the merger since $\mu(\theta_H|R') = 0$ and $\theta_L < \bar{\theta}$ by assumption.

Sender’s messages. Anticipating these responses, the θ_H-type entity invests R, as prescribed in this pooling strategy profile, if

$$
\alpha(2\pi_i^{NM}) + (1 - \alpha)\left(\pi_i^{M,H} - R\right) \geq 2\pi_i^{NM},
$$

where the right side assumes that the high-type deviates to zero investment (no merger request) because any deviation to $R' \neq R$ guarantees a merger decline and $R' = 0$ minimizes the firm’s submission cost. Inserting the CA’s optimal response, $\alpha^* = 0$ identified above, into this inequality, we obtain

$$
\pi_i^{M,H} - R \geq 2\pi_i^{NM}.
$$

or, after solving for R, we find $R \leq \pi_i^{M,H} - 2\pi_i^{NM}$. Solving for θ_H, we know from Proposition 2 that this inequality yields $\theta_H > \bar{\theta}(R)$.

Similarly, the θ_L-type entity chooses R, instead of deviating to any other $R' \neq R$, which guarantees a merger decline, if and only if

$$
\alpha(2\pi_i^{NM}) + (1 - \alpha)\left(\pi_i^{M,L} - R\right) \geq 2\pi_i^{NM},
$$

(The right side of this inequality follows a similar argument as for the high-type firm.). Inserting $\alpha^* = 0$ into this inequality, yields

$$
\pi_i^{M,L} - R \geq 2\pi_i^{NM}
$$

which simplifies to $R \leq \pi_i^{M,L} - 2\pi_i^{NM}$. Solving for θ_L, we know from Proposition 2 that this inequality yields $\theta_L > \bar{\theta}(R)$. Combining the inequalities we found from the high- and low-type firms, we obtain that a PE can be sustained if $R \leq \pi_i^{M,L} - 2\pi_i^{NM}$. Since $\theta_H > \theta_L$ by definition, a sufficient condition for inequalities $\theta_H > \bar{\theta}(R)$ and $\theta_L > \bar{\theta}(R)$ to hold is $\theta_L > \bar{\theta}(R)$, which is equivalent to $\pi_i^{M,L} - 2\pi_i^{NM} \geq R$.

Therefore, equilibrium behavior coincides with that in the pooling PBEs where the CA faces a binary strategy space (approve or block merger requests), surviving both the Intuitive and Divinity Criteria.