

Equilibrium Refinements in Strategic-form games (Technical)

- Mixed strategies can help us discard NEs which seem fragile to small strategic mistakes, as if a player's hands could "tremble" when choosing her strategy.

Player 2

	<i>l</i>	<i>r</i>	
Player 1	<i>U</i>	<u>1,1</u>	<u>0,0</u>
	<i>D</i>	0, <u>0</u>	<u>0,0</u>

- The above game has two psNE: (U,l) and (D,r).
- The second one seems more fragile to trembles:
 - if player 1 deviates from D to U, even if U only occurs with a small probability, player 2's BR would change from r to l.
- A similar argument applies if player 2 deviates from r to l, by a small prob.
- The issue, of course, is that in (D,r) players use weakly dominated strategies.
- We next seek to rule out psNEs that aren't robust to trembles.

Equilibrium Refinements in Strategic-form games (Technical)

- Definition. **Totally mixed strategy.**
- Player i 's mixed strategy, σ_i , is “totally mixed” if it assigns a strictly positive probability weight on every pure strategy, that is $\sigma_i(s_i) > 0$ for all s_i .
- Therefore, all pure strategies happen, even with small probability.
- This allows for trembles, where D could occur with 0.001 probability or less.

Equilibrium Refinements in Strategic-form games (Technical)

- Definition. **Trembling-Hand Perfect equilibrium.**
- A mixed strategy profile $\sigma_i = (\sigma_i, \sigma_{-i})$ is a Trembling-Hand Perfect Equilibrium (THPE) if:
 1. There exists a sequence of totally mixed strategies for each player i , $\{\sigma_i^k\}_{k=1}^{\infty}$, that converges to σ_i , and
 2. for which $\sigma_i \in BR_i(\sigma_{-i}^k)$ for every k .
- Informally, these two requirements say that:
 1. Every player i 's totally mixed strategy (which allows for trembles) must converge to σ_i ; and
 2. Strategy σ_i is player i 's BR to her rivals' strategy profile σ_{-i}^k at every point of the sequence (i.e., for all k).
- Second requirement is a bit trickier to show. (Example in a moment.)

Properties of THPE

1. Every THPE must be a NE.
2. Every strategic-form game with finite strategies for each player has a THPE.
3. Every THPE assigns zero probability weight on weakly dominated strategies.

Intuitively, points (1) and (2) show that THPEs are a subset of the set of all NEs in a strategic-form game.

$$\begin{array}{c} \sigma \text{ is a THPE} \Rightarrow \sigma \text{ is a NE} \\ \Leftrightarrow \end{array}$$

And point (3) helps us rule out strategies D for player 1 and r for player 2 in the 2x2 game we used as a motivation. Therefore, (D,r) is a NE but cannot be supported as a THPE.

Example 5.9. Trembling-hand Perfect Equilibrium

		Player 2	
		<i>l</i>	<i>r</i>
Player 1	<i>U</i>	<u>1,1</u>	<u>0,0</u>
	<i>D</i>	0,0	<u>0,0</u>

Matrix 5.14. A Game with two psNEs, but only (U, l) is THPE

- Consider the following sequence of totally mixed strategies

$$\sigma_i^k = \left(1 - \frac{\varepsilon_k}{2}, \frac{\varepsilon_k}{2}\right) \text{ for every player } i, \text{ where } \varepsilon_k = \frac{1}{2^k}.$$

- Example:*

- When $k = 1$, $\varepsilon_1 = \frac{1}{2}$, and σ_i^k becomes $\sigma_i^1 = \left(\frac{3}{4}, \frac{1}{4}\right)$, indicating that every player i makes mistakes with $\frac{1}{4}$ probability.
- When $k = 2$, $\varepsilon_2 = \frac{1}{4}$, and σ_i^k becomes $\sigma_i^2 = \left(\frac{7}{8}, \frac{1}{8}\right)$, representing that mistakes are now less likely.

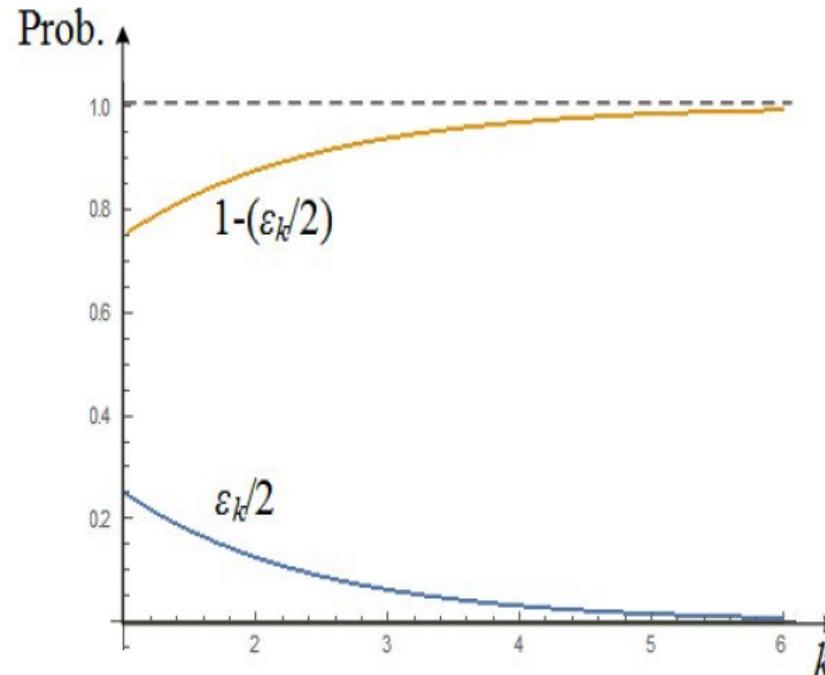
- In the limit, we find that (see figure in next slide)

$$\lim_{k \rightarrow +\infty} \sigma_i^k = (1, 0) \text{ since } \lim_{k \rightarrow +\infty} \varepsilon_k = \lim_{k \rightarrow +\infty} \frac{1}{2^k} = 0$$

- which implies that player 1 (2) chooses U (l , respectively) in pure strategies, yielding strategy profile (U, l) .

Properties

- Generally, as k increase, mistakes become less likely, and the above totally mixed strategy converges to the psNE (U, l) .
- This leads to the following figure:



Example 5.9. Trembling-hand Perfect Equilibrium

- Therefore, the NE (U, l) can be supported as a THPE because:
 1. The totally mixed strategy $\sigma_1^k(\sigma_2^k)$ converges to $U(l)$; and
 2. $U(l)$ is the best response of player 1 (2) to her rival's totally mixed strategy, $\sigma_2^k(\sigma_1^k, \text{respectively})$ for all k .
- To see point (2), note that:
 - When $k=1$, σ_2^k becomes $\sigma_2^1 = \left(\frac{3}{4}, \frac{1}{4}\right)$, where U is player 1's best response because $EU_1(U|\sigma_2^1) = \frac{3}{4}1 + \frac{1}{4}0 = \frac{3}{4}$ and $EU_1(D|\sigma_2^1) = \frac{3}{4}0 + \frac{1}{4}0 = 0$.
 - When $k=2$, σ_2^k becomes $\sigma_2^2 = \left(\frac{7}{8}, \frac{1}{8}\right)$, and U is still player 1's best response because $EU_1(U|\sigma_2^2) = \frac{7}{8}1 + \frac{1}{8}0 = \frac{7}{8}$ and $EU_1(D|\sigma_2^2) = \frac{7}{8}0 + \frac{1}{8}0 = 0$.
 - Same argument applies to every k since $EU_1(U|\sigma_2^k) = \left(1 - \frac{\varepsilon_k}{2}\right)1 + \frac{\varepsilon_k}{2}0 = 1 - \frac{\varepsilon_k}{2} > 0$ and $EU_1(D|\sigma_2^k) = \left(1 - \frac{\varepsilon_k}{2}\right)0 + \frac{\varepsilon_k}{2}0 = 0$.
 - Same argument applies to player 2's best response to σ_1^k being l for every k . (Check as a practice.)

Example 5.9. Trembling-hand Perfect Equilibrium

- In contrast, (D, r) cannot be sustained as THPE.
 - While we can find converging sequences of totally mixed strategies (first requirement)...
 - Choosing D (r) is *not* player 1's (2's) best response to her rival's totally mixed strategy for every k (second requirement).
- To see this point, consider this totally mixed strategy:

$$\sigma_i^k = \left(\frac{\varepsilon_k}{2}, 1 - \frac{\varepsilon_k}{2} \right) \text{ for every player } i, \text{ where } \varepsilon_k = \frac{1}{2^k}.$$

- which assigns the opposite probability weights than that converging to (U, I) .
- It converges to psNE (D, r) . Check!

Example 5.9. Trembling-hand Perfect Equilibrium

- However, U is player 1's BR to σ_2^k for every k.
- To see this point, consider that:
 - When $k=1$, σ_2^k becomes $\sigma_2^1 = \left(\frac{1}{4}, \frac{3}{4}\right)$, and U is player 1's best response.
 - When $k=2$, σ_2^k becomes $\sigma_2^2 = \left(\frac{1}{8}, \frac{7}{8}\right)$, and U is still player 1's best response.
 - Same argument applies for every k.
 - Recall that finding that U is player 1's BR, instead of D, for *at least one value of k* and for *at least one player* would have been enough to show that (D,r) cannot be sustained as THPE.

ε – Proper Equilibrium

- THPE helps us rule out NEs that aren't robust to trembles.
- But, which trembles do we allow?
- Myerson (1978) suggested that a rational player, while making mistakes, should put:
 - Higher probability weight on strategies yielding higher payoffs.
 - Lower probability weight on strategies yielding lower payoffs.
- Alternatively, players are less likely to make costly mistakes.

ε – Proper Equilibrium

- Definition. **ε – proper equilibrium.** For any $\varepsilon > 0$, a totally mixed strategy profile $\sigma = (\sigma_i, \sigma_{-i})$ is the ε – proper equilibrium if, for every player i , and for every two pure strategies s_i , and $s'_i \neq s_i$ such that

$$u_i(s_i, \sigma_{-i}) > u_i(s'_i, \sigma_{-i}),$$

- we must have that probabilities of playing s_i and s'_i , $\sigma_i(s_i)$ and $\sigma_i(s'_i)$ satisfy

$$\varepsilon \times \sigma_i(s_i) \geq \sigma_i(s'_i)$$

- Intuitively, if player i 's expected payoff from choosing s_i is higher than that from s'_i , then...
 - The probability of playing s_i must be at least “ ε times higher” than the probability of playing s'_i .

Example 5.10. ε – Proper Equilibrium

		Player 2	
		<i>l</i>	<i>r</i>
Player 1	<i>U</i>	<u>1,1</u>	<u>0,0</u>
	<i>D</i>	0,0	<u>0,0</u>

Matrix 5.14. A Game with two psNEs, but only (U, l) is THPE

- Consider $\sigma_i = \left(1 - \frac{\varepsilon}{a}, \frac{\varepsilon}{a}\right)$ for every player i , where $a \geq 2$ and $0 < \varepsilon < 1$.
- This mixed strategy is an ε – proper equilibrium because: (1) it is a totally mixed strategy, assigning a positive probability weight to all players' strategies; and (2) for pure strategies U and D , their expected utilities satisfy

$$u_1(U, \sigma_2) = \underbrace{1\left(1 - \frac{\varepsilon}{a}\right)}_{Player 2 chooses l} + \underbrace{0\left(\frac{\varepsilon}{a}\right)}_{Player 2 chooses r} = 1 - \frac{\varepsilon}{a} > 0 = u_1(D, \sigma_2)$$

Player 2
chooses l *Player 2*
chooses r

Example 5.10. ε – Proper Equilibrium Example

And the probabilities of applying U and D are

$$\varepsilon \times \sigma_1(U) = \varepsilon \left(1 - \frac{\varepsilon}{a}\right) = \frac{\varepsilon(a-\varepsilon)}{a} \text{ and}$$
$$\sigma_1(D) = \frac{\varepsilon}{a}$$

which satisfy

$$\varepsilon \times \sigma_1(U) = \frac{\varepsilon(a-\varepsilon)}{a} \geq \frac{\varepsilon}{a} = \sigma_1(D)$$

since, after rearranging, this inequality simplifies to $a \geq \varepsilon$, which holds given that $a \geq 2$ and $0 < \varepsilon < 1$ by assumption.

(Since the game is symmetric, a similar argument applies to player 2's utility from choosing l and r , and its associated probabilities.)

Proper Equilibrium

- Definition. **Proper Equilibrium.** A mixed strategy profile $\sigma = (\sigma_i, \sigma_{-i})$ is a proper equilibrium if there exists:
 1. A sequence $\{\sigma_i^k\}_{k=1}^{\infty}$ that converges to σ_i for every player i
 2. A sequence $\{\varepsilon_i^k\}_{k=1}^{\infty}$ where $\varepsilon^k > 0$ for all k , that converges to zero
 3. $\{\sigma_i^k\}_{k=1}^{\infty}$ is an ε_k –proper equilibrium for every k
- Proper equilibrium are also THPE, but the converse is not necessarily true.
- In other words:
 - If σ is a proper equilibrium, it must be robust to a sequence of decreasing trembles where costly mistakes are less likely to occur;
 - while σ being THPE only requires that it is robust to any sequence of decreasing trembles.

Example 5.11. Proper Equilibrium

		Player 2	
		<i>l</i>	<i>r</i>
Player 1	<i>U</i>	<u>1,1</u>	<u>0,0</u>
	<i>D</i>	0,0	<u>0,0</u>

Matrix 5.14. A Game with two psNEs, but only (U, l) is THPE

- The sequence of totally mixed strategies from example 5.9

$$\sigma_i^k = \left(1 - \frac{\varepsilon_k}{2}, \frac{\varepsilon_k}{2}\right) \text{ for every player } i, \text{ where } \varepsilon_k = \frac{1}{2^k},$$

is a proper equilibrium if it satisfies the three requirements in the above definition:

1. A sequence σ_i^k converges to (U, l)
2. ε^k converges to zero
3. σ_i^k is an ε_k -proper equilibrium for every k (as shown in Example 5.10).