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Introduction

• More often than not, players interact in games where at least one of them 
is uninformed about some relevant information.

• In auction, all players are uninformed about some piece of information.
• Every bidder privately observes her valuation for the object on sale…
• but does not observe the valuation that other bidders assign to the object.

• A similar example applies to an industry where firms compete in prices:
• each firm privately observes its marginal production costs but not observes the exact 

cost of its rivals.

• However, players observe probability distribution over this parameters.
• This can come from months of research, or because the player hired a consulting 

company to provide estimates.



Introduction – “types”

• We will refer to the private information a player observes as her 
“type.”

• Every player observes her type (e.g., production cost) but…
• doesn’t observe her rivals’ types.

• For the game to qualify as incomplete information, we must have 
that:

• At least one player does not observe the type of at least one of her rivals.



Introduction – Best responses

• We seek to adapt the NE solution concept to a context of incomplete 
information.

• We start by defining a player’s strategy:
• The action that she chooses as a function of her type.

• We then use this definition of strategy, to identify a player’s best response 
in this context.

• A player’s BR should also be a function of her type.
• Because the player cannot observe her rivals’ types:

• She will need to find her best response in expectation, but conditional on her type.
• Following the same steps as in Chapter 3, we then use BR to describe a NE 

in a context of incomplete information.
• We will obtain Bayesian Nash Equilibrium (BNE).
• We will present two approaches to find BNEs.



Background: 
Players’ types and their associated probability
Discrete types.

• In a game of incomplete information, every player 𝑖𝑖 observes her type, 𝜃𝜃𝑖𝑖 ,
where 𝜃𝜃𝑖𝑖 ∈ Θ𝑖𝑖 .

• This may represent, for instance, a high or low production costs, 𝜃𝜃𝑖𝑖 = 𝐻𝐻 or 𝜃𝜃𝑖𝑖 = 𝐿𝐿
implying that Θ𝑖𝑖 = 𝐻𝐻, 𝐿𝐿 .

• Player 𝑖𝑖, however, does not observe her rivals’ types:
• 𝜃𝜃𝑗𝑗 in a two-player game.
• 𝜃𝜃−𝑖𝑖 = 𝜃𝜃1, 𝜃𝜃2, … ,𝜃𝜃𝑖𝑖−1, 𝜃𝜃𝑖𝑖+1, … ,𝜃𝜃𝑁𝑁 in an N-player game.

• Players, however, know the probability distribution over types.
• Example: 

• Firm 𝑖𝑖 knows that its rival’s type is either:
• 𝜃𝜃𝑗𝑗 = 𝐻𝐻 with probability 𝑞𝑞, where 𝑞𝑞 ∈ 0,1 ,
• or 𝜃𝜃𝑗𝑗 = 𝐿𝐿 with probability 1 − 𝑞𝑞 (and this information is common knowledge).



Background: 
Players’ types and their associated probability
Discrete types.

• More generally, in a setting where player 𝑖𝑖 can have 𝐾𝐾 different types, we write that 
her type space is

Θ𝑖𝑖 = 𝜃𝜃𝑖𝑖1,𝜃𝜃𝑖𝑖2, … ,𝜃𝜃𝑖𝑖𝐾𝐾

• The probability that her type is 𝜃𝜃𝑖𝑖1 can be expressed as 
Pr 𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑖𝑖1 = 𝑝𝑝𝑖𝑖1,

• and similarly for the probability that her type is 𝜃𝜃𝑖𝑖𝐾𝐾 can be written as 
Pr 𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑖𝑖𝐾𝐾 = 𝑝𝑝𝑖𝑖𝐾𝐾 .

• Since, in addition, probabilities of each type, 𝑝𝑝𝑖𝑖1,𝑝𝑝𝑖𝑖2, … ,𝑝𝑝𝑖𝑖𝐾𝐾 satisfy 𝑝𝑝𝑖𝑖𝑘𝑘 ∈ 0,1 for 
every 𝑘𝑘 = 1,2, … ,𝐾𝐾 and ∑𝑘𝑘=1𝐾𝐾 𝑝𝑝𝑖𝑖𝑘𝑘 = 1 , we can omit the probability of the last 
type, writing it, instead, as 

𝑝𝑝𝑖𝑖𝐾𝐾 = 1 − ∑𝑘𝑘≠𝐾𝐾𝐾𝐾 𝑝𝑝𝑖𝑖𝑘𝑘 .
• In a context with three types, for instance, Θ𝑖𝑖 = 𝜃𝜃𝑖𝑖1,𝜃𝜃𝑖𝑖2,𝜃𝜃𝑖𝑖3 , the associated 

probabilities can be expressed as 
𝑝𝑝𝑖𝑖1,𝑝𝑝𝑖𝑖2, 1 − 𝑝𝑝𝑖𝑖1 − 𝑝𝑝𝑖𝑖2 .



Background: 
Players’ types and their associated probability
Continuous Types.

• Our notation can be adapted to a setting where types are continuous.
• A player 𝑖𝑖𝑖𝑠𝑠 type in this setting, 𝜃𝜃𝑖𝑖 , is drawn from a continuous cumulative 

probability distribution, that is,
𝐹𝐹 𝑥𝑥 = Pr 𝜃𝜃𝑖𝑖 ≤ 𝑥𝑥

• Intuitively, 𝐹𝐹 𝑥𝑥 measures the probability that player 𝑖𝑖𝑖𝑖𝑖 type, 𝜃𝜃𝑖𝑖 , lies weakly 
below 𝑥𝑥.

• This representation also helps us find a density function, 𝑓𝑓 𝑥𝑥 , associated above 
𝐹𝐹 𝑥𝑥 , if one exists, by computing its first-order derivative: 

𝑓𝑓 𝑥𝑥 = 𝐹𝐹′ 𝑥𝑥 .
• Recall that density 𝑓𝑓(𝑥𝑥) describes the probability that “player 𝑖𝑖𝑖𝑖𝑖 type, 𝜃𝜃𝑖𝑖 , is 

exactly 𝑥𝑥,” that is, 𝑓𝑓 𝑥𝑥 = Pr 𝜃𝜃𝑖𝑖 = 𝑥𝑥 , which can be quite useful in some games. 



Background: 
Players’ types and their associated probability
Continuous Types.

• Uniform distribution. 
• If player 𝑖𝑖𝑖𝑖𝑖 types are uniformly distributed, 𝐹𝐹 𝑥𝑥 = 𝑥𝑥. 
• The density function is 𝑓𝑓 𝑥𝑥 = 1, meaning that all types are equally likely to occur.

• Exponential distribution. 
• If types are exponentially distributed, 𝐹𝐹 𝑥𝑥 = 1 − exp −𝜆𝜆𝜆𝜆 , its density function is 
𝑓𝑓 𝑥𝑥 = 𝜆𝜆exp −𝜆𝜆𝜆𝜆

• implying that parameter 𝜆𝜆 represents how quickly the density function decreases as we 
increase 𝑥𝑥, and is often known as the “decay rate.”

• Figure.
• Intuitively, a higher 𝜆𝜆 means that 𝑓𝑓 𝑥𝑥 puts most probability weight on low values of 𝑥𝑥.



Strategies under Incomplete Information

• If players operate under incomplete information, we must have that:
• at least one player does not observe the types of at least one of her opponents.

• If player 𝑖𝑖 does not observe any private information:
• The player only has access to the “public information” in the game that everyone 

else also observes.
• In contrast, if player 𝑖𝑖 observes some piece of private information:

• She can condition her strategy on her type, 
• implying that her strategy in this context is a function of 𝜃𝜃𝑖𝑖 , which we express as 
𝑠𝑠𝑖𝑖 𝜃𝜃𝑖𝑖 .

• In some games, we may have:
• Some perfectly informed players, who observe everyone’s types because of their 

experience in the industry or because they get to act before everyone else; 
• Some uninformed players who observe their own types but not their rival’s.



Representing Asymmetric Information as 
Incomplete Information

• Player 1 observes the realization of random variable 𝑥𝑥 before playing the 
game.

• Player 2 only knows that its realization is either 𝑥𝑥 = 20 or 𝑥𝑥 = 12 with 
equal probabilities. This information is common knowledge.

• Matrix 8.1, therefore, suggests that player 2 faces imperfect information 
because she does not observe the realization of 𝑥𝑥, while player 1 does. 

Player 2
L R

Player 1
U x,17 5,10

D 10,0 10,17

Matrix 8.1. Simultaneous move game where player 1 privately observes 𝑥𝑥



Representing Asymmetric Information as 
Incomplete Information
• Player 2 knows, however, that she faces either of the two games depicted 

in Figures 8.1a and 8.1b. 
• We circled the only payoff that differs across both figures, corresponding to 𝑈𝑈, 𝐿𝐿 .

Figure 8.1a. Simultaneous move game 
where 𝑥𝑥 = 20

Figure 8.1b. Simultaneous move game 
where 𝑥𝑥 = 12



Representing Asymmetric Information as 
Incomplete Information
• Alternatively, we can represent 

the above setting as a game of 
incomplete information.

• See figure. 
• Player 2: 

• Instead of not observing the 
realization of random variable x,

• Doesn’t observe the move from a 
fictitious player (“nature”), who 
determines whether:

• 𝑥𝑥 = 20 or 𝑥𝑥 = 12 at the beginning of 
the game.

• We are just connecting the two 
trees in the previous slide, with a 
move of nature.

• This trick is due to Harsanyi (1967).



Best Response under Incomplete Information

Definition. 
Best response under incomplete information. Player 𝑖𝑖 regards 𝑠𝑠𝑖𝑖 𝜃𝜃𝑖𝑖 as a 
best response to strategy profile 𝑠𝑠−𝑖𝑖 𝜃𝜃−𝑖𝑖 , if

𝐸𝐸𝐸𝐸𝑖𝑖 𝑠𝑠𝑖𝑖 𝜃𝜃𝑖𝑖 , 𝑠𝑠−𝑖𝑖 𝜃𝜃−𝑖𝑖 ≥ 𝐸𝐸𝐸𝐸𝑖𝑖 𝑠𝑠𝑖𝑖′ 𝜃𝜃𝑖𝑖 , 𝑠𝑠−𝑖𝑖 𝜃𝜃−𝑖𝑖
for every available strategy 𝑠𝑠𝑖𝑖′ 𝜃𝜃𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖 and every type 𝜃𝜃𝑖𝑖 ∈ Θ𝑖𝑖.

• This means that strategy 𝑠𝑠𝑖𝑖 𝜃𝜃𝑖𝑖 yields a weakly higher expected payoff than 
any other strategy 𝑠𝑠𝑖𝑖′ 𝜃𝜃𝑖𝑖 against 𝑠𝑠−𝑖𝑖 𝜃𝜃−𝑖𝑖 , and this holds for all player 𝑖𝑖′𝑠𝑠
types, 𝜃𝜃𝑖𝑖.

• For instance, if Θ𝑖𝑖 = 𝐻𝐻, 𝐿𝐿 , and player 𝑖𝑖′𝑠𝑠 type is H, player 𝑖𝑖 maximizes her 
expected payoff responding with 𝑠𝑠𝑖𝑖 𝐻𝐻 against her rival strategy; and 
similarly, when 𝑖𝑖′𝑠𝑠 type is L, she maximizes her expected payoff responding 
with 𝑠𝑠𝑖𝑖 𝐿𝐿 .



Best Response under Incomplete Information

Relative to the definition of best response in contexts of complete 
information (chapter 3), this definition differs in two dimensions.
1. Expected Utility. First, player 𝑖𝑖 seeks to maximize her expected, instead of 

certain, utility level.
• That’s because she faces the uncertainty from not observing some private 

information.

2. Best Response as a function of types. In addition, player 𝑖𝑖 finds a strategy 
𝑠𝑠𝑖𝑖 𝜃𝜃𝑖𝑖 , as opposed to the strategy 𝑠𝑠𝑖𝑖 , in the best responses of chapter 3. 
• Intuitively, her choice many now depend on her privately observed type, meaning 

that her strategy may differ for at least two of her types.
• Player i must find an optimal strategy for each of her type, potentially different.



Bayesian Nash Equilibrium

Definition. 
Bayesian Nash Equilibrium (BNE). A strategy profile 𝑠𝑠𝑖𝑖∗ 𝜃𝜃𝑖𝑖 , 𝑠𝑠−𝑖𝑖∗ 𝜃𝜃−𝑖𝑖 is a 
Bayesian Nash Equilibrium if every player chooses a best response (under 
incomplete information) given her rivals’ strategies.

• Therefore, in a two-player game, a strategy profile is a BNE if it is a mutual 
best response, thus being analogous to the definition of NE.

• As a result, no player has unilateral incentives to deviate.
• This definition assumes, of course, that players select best responses in the 

sense defined in section 8.2, where players seek to maximize their 
expected payoffs given the information they observe.



Ex-ante and ex-post stability

• As under complete information:
• In a BNE every player must be playing mutual best responses to each other’s 

strategies, 
• Thus making the strategy profile stable.

• This stability is, in this context, understood from an ex-ante perspective, 
• That is, given the information that every player observes when she is called to move.

• As opposed to ex-post:
• which assumes that at the end of the game, every player gets to observe her rivals’ 

types.
• Players could say 

• “if I had to play the game again, given the (little) information I had, I would not have 
incentives to deviate. I would play in the same way I just did.”



Ex-ante and ex-post stability

• Ex-post stability would, however, imply that, after playing according 
to a BNE, players would say:

• “If I had to play the game again, but given the (rich) information I have now, 
once the game is over and I can observe everyone’s types, I would still play in 
the same way.”

• Ex-post stability is, therefore, more demanding than ex-ante stability: 
• It requires that players have no incentives to deviate from their equilibrium 

strategies for all realizations of type profiles 
• (i.e., regardless of her rival’s types).



Tool 8.1. Finding BNEs using the Bayesian Normal 
Form Representation (two-player game)
1. Write down each player’s strategy set, 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑗𝑗 . Recall that privately 

informed players condition their strategies on their types. Similarly, 
players who observed other players actions before being called to move 
can condition their strategy on the node or information set where they 
are called to move.

2. Building the Bayesian Normal Form representation of the game:
a. Depict a matrix with as many rows as strategies in 𝑆𝑆𝑖𝑖 and as many columns as 

strategies in 𝑆𝑆𝑗𝑗, leaving all cells in this matrix empty.
b. Find the expected utility that player 𝑖𝑖 earns in each cell. 

3. Find each player’s best response against her opponent strategy and 
underline her best response payoffs.

4. Identify which cell/s have all players’ payoff underlined, thus being 
mutual best responses. This cell/s are the BNEs of the game.



Example 8.1. Finding BNEs

• First step. For simplicity, we often start with the uninformed player (player 2 in 
this setting), whose strategy set is 𝑆𝑆2 = 𝐿𝐿,𝑅𝑅 since she cannot condition her 
strategy on player 1’s type. 

• In contrast, player 1 observes her type (the realization of 𝑥𝑥) and can condition her 
strategy on 𝑥𝑥, that is, 𝑠𝑠1 𝑥𝑥 . Therefore, player 1’s strategy set is

𝑆𝑆1 = 𝑈𝑈20𝑈𝑈12,𝑈𝑈20𝐷𝐷12,𝐷𝐷20𝑈𝑈12,𝐷𝐷20𝐷𝐷12

• Strategy 𝑈𝑈20𝑈𝑈12, for instance, prescribes that player 1 chooses 𝑈𝑈 both after 
observing that 𝑥𝑥 = 20 and that 𝑥𝑥 = 12. In 𝑈𝑈20𝐷𝐷12 𝐷𝐷20𝑈𝑈12 , however, player 1 
chooses 𝑈𝑈 only after observing that 𝑥𝑥 = 20 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥 = 12, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 . Finally, 
in 𝐷𝐷20𝐷𝐷12, player 1 selects 𝐷𝐷 regardless of her type.

Player 2
L R

Player 1
U x,17 5,10

D 10,0 10,17

Matrix 8.2. Simultaneous move game where player 1 privately observes 𝑥𝑥



Example 8.1. Finding BNEs
• Second step. From the first step, 

player 1 has four available strategies 
while player 2 only has two, yielding 
the Bayesian normal form 
representation of the game in Matrix 
8.3. Player 2

L R

Player 1

𝑈𝑈20𝑈𝑈12

𝑈𝑈20𝐷𝐷12

𝐷𝐷20𝑈𝑈12

𝐷𝐷20𝐷𝐷12
Matrix 8.3. Player 1 privately observes 𝑥𝑥 −
Bayesian normal form representation

• where
𝐸𝐸𝐸𝐸1 𝑈𝑈20𝑈𝑈12, 𝐿𝐿 = �

1
2

20

𝑖𝑖𝑖𝑖 𝑥𝑥=20

+ �
1
2

12

𝑖𝑖𝑖𝑖 𝑥𝑥=12

= 16

𝐸𝐸𝐸𝐸2 𝑈𝑈20𝑈𝑈12, 𝐿𝐿 = �
1
2

17

𝑖𝑖𝑖𝑖 𝑥𝑥=20

+ �
1
2

17

𝑖𝑖𝑖𝑖 𝑥𝑥=12

= 17

𝐸𝐸𝐸𝐸1 𝑈𝑈20𝐷𝐷12, 𝐿𝐿 = 1
2

20+1
2

10 = 15

𝐸𝐸𝐸𝐸2 𝑈𝑈20𝑈𝑈12, 𝐿𝐿 =
1
2

17+
1
2

0 = 8.5



Example 8.1. Finding BNEs

• Operating similarly for the remaining strategy profiles, we find the 
expected payoffs in 8.3, obtaining matrix 8.4.

Player 2
L R

Player 1

𝑈𝑈20𝑈𝑈12 16,17 5,10
𝑈𝑈20𝐷𝐷12 15,8.5 7.5,13.5

𝐷𝐷20𝑈𝑈12 11,8.5 7.5,13.5

𝐷𝐷20𝐷𝐷12 10,0 10,17

Matrix 8.4. Player 1 privately observes 𝑥𝑥 − Finding expected payoffs



Example 8.1. Finding BNEs

• Third step. Underlining best response payoffs, we obtain Matrix 8.5. 
The two cells where both players’ (expected) payoffs are underlined 
indicate the two BNEs of this game: 𝑈𝑈20𝑈𝑈12, 𝐿𝐿 and 𝐷𝐷20𝐷𝐷12,𝑅𝑅 . 

Player 2
L R

Player 1

𝑈𝑈20𝑈𝑈12 16,17 5,10
𝑈𝑈20𝐷𝐷12 15,8.5 7.5,13.5

𝐷𝐷20𝑈𝑈12 11,8.5 7.5,13.5

𝐷𝐷20𝐷𝐷12 10,0 10,17
Matrix 8.5. Player 1 privately observes 𝑥𝑥 − Best Response payoffs



Tool 8.2. Finding BNEs by focusing on the 
informed player first
1. Focus on the privately informed player 𝑖𝑖. 

• For each of her 𝑘𝑘 ≥ 2 types, find her best response function to her rival’s strategies, e.g., 
𝑠𝑠𝑖𝑖 𝑠𝑠𝑗𝑗|𝜃𝜃𝑖𝑖 .

• You must find 𝑘𝑘 best response functions, one for each type, e.g., 𝑠𝑠𝑖𝑖 𝑠𝑠𝑗𝑗|𝐻𝐻 and 𝑠𝑠𝑖𝑖 𝑠𝑠𝑗𝑗|𝐿𝐿 .
2. If all players are privately informed about their types, simultaneously solve for 

𝑠𝑠𝑖𝑖 𝜃𝜃𝑖𝑖 in best response function 𝑠𝑠𝑖𝑖 𝑠𝑠𝑗𝑗|𝜃𝜃𝑖𝑖 , finding 𝑘𝑘 equilibrium strategies, one 
for each type, that is, 𝑠𝑠𝑖𝑖∗ 𝜃𝜃𝑖𝑖 = 𝑠𝑠𝑖𝑖∗ 𝜃𝜃𝑖𝑖1 , … , 𝑠𝑠𝑖𝑖∗ 𝜃𝜃𝑖𝑖𝑘𝑘 . 
• Therefore, 𝑠𝑠𝑖𝑖∗ 𝜃𝜃𝑖𝑖1 , 𝑠𝑠𝑖𝑖∗ 𝜃𝜃𝑖𝑖2 is the BNE of the game.

3. If one player is uninformed (does not privately observe some information), 
analyze the uninformed player 𝑗𝑗.
a. Find which strategy gives player 𝑗𝑗 the highest expected utility to her rival’s strategies. This 

strategy is her best response function 𝑠𝑠𝑗𝑗 𝑠𝑠𝑖𝑖 , which is not conditional on her rival’s types.
b. Simultaneously solve for 𝑠𝑠𝑖𝑖 𝜃𝜃𝑖𝑖 and 𝑠𝑠𝑗𝑗 in best response functions 𝑠𝑠𝑖𝑖 𝑠𝑠𝑗𝑗|𝜃𝜃𝑖𝑖 , one for each 

player 𝑖𝑖𝑖𝑖𝑖 types, and 𝑠𝑠𝑗𝑗 𝑠𝑠𝑖𝑖 .



Example 8.2. Cournot competition with 
asymmetrically informed firms
• Consider a duopoly market where firms compete à la Cournot and 

face inverse demand function 𝑝𝑝 𝑄𝑄 = 1 − 𝑄𝑄
• Firms interact in an incomplete information context where firm 2’s 

marginal costs are either:
• 𝑐𝑐𝐻𝐻 = 1

2
or 𝑐𝑐𝐿𝐿 = 0, occurring with probability 𝑝𝑝 and 1 − 𝑝𝑝, respectively, where 

𝑝𝑝 ∈ 0,1 .
• Firm 2 privately observes its marginal cost but firm 1 does not 

observe firm 2’s costs.
• Because firm 1 has operated in the industry for a long period, all firms 

observe that this firm’s costs are 𝑐𝑐𝐻𝐻 = 1
2

.



Example 8.2. Cournot competition with 
asymmetrically informed firms
• Privately informed firm, high costs. 

max
𝑞𝑞2𝐻𝐻≥0

𝜋𝜋2𝐻𝐻 𝑞𝑞2𝐻𝐻 = 1 − 𝑞𝑞2𝐻𝐻 − 𝑞𝑞1 𝑞𝑞2𝐻𝐻 −
1
2
𝑞𝑞2𝐻𝐻

Differentiating with respect to 𝑞𝑞2𝐻𝐻, yields

1 − 2𝑞𝑞2𝐻𝐻 − 𝑞𝑞1 −
1
2

= 0
and solving for 𝑞𝑞2𝐻𝐻, we obtain firm 2’s best response function when its costs are high,

𝑞𝑞2𝐻𝐻 𝑞𝑞1 =
1
4
−

1
2
𝑞𝑞1

which originates at  1
4

, decreases in its rival’s output at rate of  1
2
, and becomes zero for 

all 𝑞𝑞1 > 1
2

.



Example 8.2. Cournot competition with 
asymmetrically informed firms
• Privately informed firm, low costs. 

max
𝑞𝑞2𝐿𝐿≥0

𝜋𝜋2𝐿𝐿 𝑞𝑞2𝐿𝐿 = 1 − 𝑞𝑞2𝐿𝐿 − 𝑞𝑞1 𝑞𝑞2𝐿𝐿

Differentiating with respect to 𝑞𝑞2𝐿𝐿, yields
1 − 2𝑞𝑞2𝐿𝐿 − 𝑞𝑞1 = 0

and solving for 𝑞𝑞2𝐿𝐿, we obtain firm 2’s best response function when its costs are low,

𝑞𝑞2𝐿𝐿 𝑞𝑞1 =
1
2
−

1
2
𝑞𝑞1

which originates at  1
2

, decreases in its rival’s output at rate of 1
2
, and becomes zero for 

all 𝑞𝑞1 > 1.



Equilibrium Output under Incomplete 
Information

• Figure 8.3a compares firm 2’s 
best response functions when 
its costs are high and low. 

• We find that 
𝑞𝑞2𝐿𝐿 𝑞𝑞1 > 𝑞𝑞2𝐻𝐻 𝑞𝑞1 , 

• indicating that: 
• for a given output by firm 1, firm 

2 produces more units when its 
own costs are low than high.



Example 8.2. Cournot competition with 
asymmetrically informed firms
• Uninformed firm.

max
𝑞𝑞1≥0

𝜋𝜋1 𝑞𝑞1 = 𝑝𝑝 1 − 𝑞𝑞2𝐻𝐻 − 𝑞𝑞1 𝑞𝑞1

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 2′𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑖𝑖𝑖𝑖𝑖

+ 1 − 𝑝𝑝 1 − 𝑞𝑞2𝐿𝐿 − 𝑞𝑞1 𝑞𝑞1

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 2′𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙

−
1
2
𝑞𝑞1

where the last term indicates firm 1’s high costs, which are certain, and observed by all firms.

Differentiating with respect to 𝑞𝑞1, yields:

𝑝𝑝 1 − 𝑞𝑞2𝐻𝐻 − 2𝑞𝑞1 + 1 − 𝑝𝑝 1 − 𝑞𝑞2𝐿𝐿 − 2𝑞𝑞1 −
1
2

= 0

which leads to firm 1’s best response function:

𝑞𝑞1 𝑞𝑞2𝐻𝐻 , 𝑞𝑞2𝐿𝐿 =
1
4
−
𝑝𝑝𝑞𝑞2𝐻𝐻 + 1 − 𝑝𝑝 𝑞𝑞2𝐿𝐿

2
which originates at 1

4
, and decreases at rate of 1

2
when firm 2’s expected output increases as 

captured by the term 𝑝𝑝𝑞𝑞2𝐻𝐻 + 1 − 𝑝𝑝 𝑞𝑞2𝐿𝐿.



Equilibrium Output under Incomplete 
Information

• Figure 8.3b depicts firm 2’s 
expected output 
𝐸𝐸 𝑞𝑞2 ≡ 𝑝𝑝𝑞𝑞2𝐻𝐻 + 1 − 𝑝𝑝 𝑞𝑞2𝐿𝐿

in the dashed line between
𝑞𝑞2𝐻𝐻 𝑞𝑞1 and 𝑞𝑞2𝐿𝐿 𝑞𝑞1 .
• It also plots firm 1’s best 

response as a function of 
𝐸𝐸 𝑞𝑞2 .

• Only one BRF for the
uninformed firm!



Example 8.2. Cournot competition with 
asymmetrically informed firms
• Finding equilibrium output in the BNE. A common approach is to insert best response functions 
𝑞𝑞2𝐻𝐻 𝑞𝑞1 and 𝑞𝑞2𝐿𝐿 𝑞𝑞1 into 𝑞𝑞1 𝑞𝑞2𝐻𝐻 , 𝑞𝑞2𝐿𝐿 , as follows,

𝑞𝑞1 =
1
4
−
𝑝𝑝 1

4 −
1
2 𝑞𝑞1

𝑞𝑞2𝐻𝐻 𝑞𝑞1

+ 1 − 𝑝𝑝 1
2 −

1
2 𝑞𝑞1

𝑞𝑞2𝐿𝐿 𝑞𝑞1

2
Rearranging, this expression simplifies to

𝑞𝑞1 =
1
4

+
2𝑞𝑞1 + 𝑝𝑝 − 2

8
which, solving for 𝑞𝑞1, yields firm 1’s equilibrium output

𝑞𝑞1∗ =
𝑝𝑝
6

Inserting 𝑞𝑞1∗ into firm 2’s best response functions, we obtain

𝑞𝑞2𝐻𝐻 𝑞𝑞1∗ =
3 − 𝑝𝑝

12
; 𝑞𝑞2𝐿𝐿 𝑞𝑞1∗ =

6 − 𝑝𝑝
12



Example 8.2. Cournot competition with 
asymmetrically informed firms
• Therefore, the BNE of this game is 

given by the triplet of output levels
𝑞𝑞1∗, 𝑞𝑞2𝐻𝐻

∗ ,𝑞𝑞2𝐿𝐿
∗ =

𝑝𝑝
6

,
3 − 𝑝𝑝

12
,
6 − 𝑝𝑝

12

• Figure 8.4 depicts these three output 
levels, showing that:

• firm 1’s equilibrium output, 𝑞𝑞1∗, is 
increasing in the probability that its rival 
has a high cost, 𝑝𝑝, but…

• firm 2’s equilibrium output is decreasing 
in this probability, which holds both its 
costs are both high and low.

Figure 8.4. Cournot competition with asymmetrically 
informed firms – Equilibrium output



Example 8.2. Cournot competition with 
asymmetrically informed firms
• The figure also embodies complete 

information as special cases.
• When 𝑝𝑝 → 0, firm 2 has (almost 

certainly) low costs, thus being very 
competitive. 

• The uninformed firm 1 remains inactive, 
while firm 2 produces ¼ when its cost is 
high and ½ when its cost is low.

• When 𝑝𝑝 → 1, firm 2 has (almost 
certainly) high costs, thus being very 
competitive.

• The uninformed firm 1 produces 1/6, as 
much as firm 2’s output. 

Figure 8.4. Cournot competition with asymmetrically 
informed firms – Equilibrium output



Evaluating BNE as a solution concept

1. Existence? Yes. 
• When we apply BNE to any game, we find that at least one equilibrium exists.
• This result is equivalent to the existence of NEs in complete information games, but extended to 

an incomplete information context.
• We may need to rely on mixed strategies. See exercise 8.17 and auctions in chapter 9.

2. Uniqueness? No.
• Games of incomplete information may have more than one BNE, as illustrated in Example 1 where 

we found two BNEs.
3. Robust to small payoff perturbations? Yes.

• We find that BNE is also robust to small payoff perturbations. 
• This is due to the fact that, if a strategy 𝑠𝑠𝑖𝑖 yields a higher expected payoff than another strategy 
𝑠𝑠−𝑖𝑖 , it must still generate a higher expected payoff than 𝑠𝑠−𝑖𝑖 after we apply a small payoff 
perturbation.

4. Socially optimal? No.
• BNE does not necessarily yield socially optimal outcomes
• Strategy profile 𝐷𝐷20𝐷𝐷12,𝑅𝑅 is a BNE, with equilibrium payoffs 10, 17 , but it is not socially 

optimal because other strategy profiles, such as 𝑈𝑈20𝑈𝑈12, 𝐿𝐿 , provide payoffs 16, 17 , thus 
improving player 1’s payoff without lowering player 2’s. 



What if both players are privately informed?

Example 8.3. Cournot competition with symmetrically uninformed firms. 
• Assume now that every firm 𝑖𝑖 = {1,2} observes its marginal cost. 

• Its marginal cost is either 𝑐𝑐𝐻𝐻 = 1
2

or 𝑐𝑐𝐿𝐿 = 0, occurring with probability 𝑝𝑝 and 1 − 𝑝𝑝, respectively.
• Every firm 𝑖𝑖 doesn’t observe its rival’s (firm 𝑗𝑗𝑗s) marginal cost.

• This means that every firm will have two BRFs, one upon observing its cost is high and 
another after observing its cost is low.

• High costs. If firm 𝑖𝑖 has high marginal costs, 𝑐𝑐𝐻𝐻 = 1
2

, it solves the following problem:

Differentiating with respect to 𝑞𝑞𝑖𝑖 and finding BR function:

𝑞𝑞𝑖𝑖𝐻𝐻 𝑞𝑞𝑗𝑗𝐻𝐻 , 𝑞𝑞𝑗𝑗𝐿𝐿 =
1
4
−
𝑝𝑝𝑞𝑞𝑗𝑗𝐻𝐻 + 1 − 𝑝𝑝 𝑞𝑞𝑗𝑗𝐿𝐿

2

max
𝑞𝑞𝑖𝑖≥0

𝜋𝜋𝑖𝑖𝐻𝐻 𝑞𝑞𝑖𝑖 = 𝑝𝑝 1 − 𝑞𝑞𝑗𝑗𝐻𝐻 − 𝑞𝑞𝑖𝑖 𝑞𝑞𝑖𝑖

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑗𝑗′𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑖𝑖𝑖𝑖𝑖

+ 1 − 𝑝𝑝 1 − 𝑞𝑞𝑗𝑗𝐿𝐿 − 𝑞𝑞𝑖𝑖 𝑞𝑞𝑖𝑖

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑗𝑗′𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙

−
1
2
𝑞𝑞𝑖𝑖



What if both players are privately informed?

Low costs. If firm 𝑖𝑖 has, instead, low marginal costs, 𝑐𝑐𝐿𝐿 = 0 , it solves:
max
𝑞𝑞𝑖𝑖≥0

𝜋𝜋𝑖𝑖𝐿𝐿 𝑞𝑞𝑖𝑖 = 𝑝𝑝 1 − 𝑞𝑞𝑗𝑗𝐻𝐻 − 𝑞𝑞𝑖𝑖 𝑞𝑞𝑖𝑖

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑗𝑗′𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑖𝑖𝑖𝑖𝑖

+ 1 − 𝑝𝑝 1 − 𝑞𝑞𝑗𝑗𝐿𝐿 − 𝑞𝑞𝑖𝑖 𝑞𝑞𝑖𝑖

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑗𝑗′𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙

Differentiating with respect to 𝑞𝑞𝑖𝑖 , yields
𝑝𝑝 1 − 𝑞𝑞𝑗𝑗𝐻𝐻 − 2𝑞𝑞𝑖𝑖 + 1 − 𝑝𝑝 1 − 𝑞𝑞𝑗𝑗𝐿𝐿 − 2𝑞𝑞𝑖𝑖 = 0

which leads to firm 𝑖𝑖’s best response function:

𝑞𝑞𝑖𝑖𝐿𝐿 𝑞𝑞𝑗𝑗𝐻𝐻 , 𝑞𝑞𝑗𝑗𝐿𝐿 =
1
2
−
𝑝𝑝𝑞𝑞𝑗𝑗𝐻𝐻 + 1 − 𝑝𝑝 𝑞𝑞𝑗𝑗𝐿𝐿

2



What if both players are privately informed?

Comparing best response functions:

𝑞𝑞𝑖𝑖𝐿𝐿 𝑞𝑞𝑗𝑗𝐻𝐻, 𝑞𝑞𝑗𝑗𝐿𝐿 =
1
2
−
𝑝𝑝𝑞𝑞𝑗𝑗𝐻𝐻 + 1 − 𝑝𝑝 𝑞𝑞𝑗𝑗𝐿𝐿

2

Relative to 𝑞𝑞𝑖𝑖𝐻𝐻 𝑞𝑞𝑗𝑗𝐻𝐻, 𝑞𝑞𝑗𝑗𝐿𝐿 , the best response function 𝑞𝑞𝑖𝑖𝐿𝐿 𝑞𝑞𝑗𝑗𝐻𝐻 , 𝑞𝑞𝑗𝑗𝐿𝐿 :

• originates at a higher vertical intercept, 1
2
, 

• shares the same slope. 
• Intuitively, firm 𝑖𝑖 produces a larger output, for a given expected output 

from its rival, when its own costs are low than high.



What if both players are privately informed?

• Finding equilibrium output in the BNE. In a symmetric BNE, firms produce the 
same output level when their costs coincide, that is, 𝑞𝑞𝑖𝑖𝐻𝐻 = 𝑞𝑞𝑗𝑗𝐻𝐻 = 𝑞𝑞𝐻𝐻 and 𝑞𝑞𝑖𝑖𝐿𝐿 =
𝑞𝑞𝑗𝑗𝐿𝐿 = 𝑞𝑞𝐿𝐿 .

• Inserting this property in best response functions 𝑞𝑞𝑖𝑖𝐻𝐻 𝑞𝑞𝑗𝑗𝐻𝐻 , 𝑞𝑞𝑗𝑗𝐿𝐿 and 𝑞𝑞𝑖𝑖𝐿𝐿 𝑞𝑞𝑗𝑗𝐻𝐻 , 𝑞𝑞𝑗𝑗𝐿𝐿 ,
yields

𝑞𝑞𝐻𝐻 = 1
4
− 𝑝𝑝𝑞𝑞𝐻𝐻+ 1−𝑝𝑝 𝑞𝑞𝐿𝐿

2
and   𝑞𝑞𝐿𝐿 = 1

2
− 𝑝𝑝𝑞𝑞𝐻𝐻+ 1−𝑝𝑝 𝑞𝑞𝐿𝐿

2
Solving two equations and two unknowns, we obtain

𝑞𝑞𝐻𝐻 = 1+𝑝𝑝
12

and   𝑞𝑞𝐿𝐿 = 4+𝑝𝑝
12

which are both increasing in the probability that its rival’s costs are high, 𝑝𝑝.



Comparison across information settings

• How equilibrium output levels vary from those we found in example 8.2, 𝑞𝑞1∗, 𝑞𝑞2𝐻𝐻
∗ , 𝑞𝑞2𝐿𝐿

∗
, 

where only one player was privately informed about its costs (firm 2), while firm 1’s costs 
were common knowledge.

• Firm 1: it produces more units when its rival does not observe its costs (example 8.3) 
than when its rival does (example 8.2), because

𝑞𝑞𝐻𝐻 − 𝑞𝑞1∗ = 1+𝑝𝑝
12

− 𝑝𝑝
6

= 1−𝑝𝑝
12

> 0, and 

𝑞𝑞𝐿𝐿 − 𝑞𝑞1∗ =
4 + 𝑝𝑝

12
−
𝑝𝑝
6

=
4 − 𝑝𝑝

12
> 0.

since 0 < 𝑝𝑝 < 1 by assumption. 
• Firm 2: In contrast, firm 2’s output satisfies

𝑞𝑞𝐻𝐻 − 𝑞𝑞2𝐻𝐻
∗ = 1+𝑝𝑝

12
− 3−𝑝𝑝

12
= −1−𝑝𝑝

6
< 0, and 

𝑞𝑞𝐿𝐿 − 𝑞𝑞2𝐿𝐿
∗ = 4+𝑝𝑝

12
− 6−𝑝𝑝

12
= −1−𝑝𝑝

6
< 0.

Indicating that firm 2 produces more output when it observes its rival’s cost (example 8.2) 
than when it does not (example 8.3).
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