Chapter 8: Bayesian Nash Equilibrium

Game Theory:

An Introduction with Step-by-Step Examples
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Introduction

* More often than not, players interact in games where at least one of them
is uninformed about some relevant information.

* |[n auction, all players are uninformed about some piece of information.
* Every bidder privately observes her valuation for the object on sale...
* but does not observe the valuation that other bidders assign to the object.

* A similar example applies to an industry where firms compete in prices:
» each firm privately observes its marginal production costs but not observes the exact
cost of its rivals.
 However, players observe probability distribution over this parameters.

* This can come from months of research, or because the player hired a consulting
company to provide estimates.



Introduction — “types”

* We will refer to the private information a player observes as her
”type.”
* Every player observes her type (e.g., production cost) but...
* doesn’t observe her rivals’ types.

* For the game to qualify as incomplete information, we must have
that:

* At least one player does not observe the type of at least one of her rivals.



Introduction — Best responses

* We seek to adapt the NE solution concept to a context of incomplete
information.

* We start by defining a player’s strategy:
* The action that she chooses as a function of her type.

* We then use this definition of strategy, to identify a player’s best response
in this context.

* A player’s BR should also be a function of her type.

* Because the player cannot observe her rivals’ types:
* She will need to find her best response in expectation, but conditional on her type.

* Following the same steps as in Chapter 3, we then use BR to describe a NE
in a context of incomplete information.

* We will obtain Bayesian Nash Equilibrium (BNE).
* We will present two approaches to find BNEs.



Background:
Players’ types and their associated probability

Discrete types.

* In a game of incomplete information, every player i observes her type, 6;,
where 8; € 0;.

* This may represent, for instance, a high or low production costs, 8; = Hor 6; = L
implying that ©; = {H, L}.

* Player i, however, does not observe her rivals’ types:
* 0; in a two-player game.
« 0_; =(64,0,,..,0;_1,0,+1, ...,0y) in an N-player game.

* Players, however, know the probability distribution over types.

* Example:
* Firm i knows that its rival’s type is either:
* 6; = H with probability g, where ¢ € [0,1],
* or 8; = L with probability 1 — g (and this information is common knowledge).



Background:
Players’ types and their associated probability

Discrete types.

More generally, in a setting where player i can have K different types, we write that
her type space is

0, =1{0},67, .., 0%}
The probability that her type is Hll can be expressed as
Pr(6; = 6;) = p{,
and similarly for the probability that her type is GiK can be written as
Pr(@ = HK) pX.
Since, in addition, probab|I|t|es of each type, (pl,pl , s i ) satisfy pX € [0,1] for

everyk = {1,2,...,K} and Zk 1pl = 1, we can omit the probability of the last
type, writing it, mstead as

pl =1- ZkiK pl .

In a context with three types, for instance, ®; = {6}, 67, 0;'}, the associated
probabilities can be expressed as

(pl’pl'l_pl _pl)



Background:
Players’ types and their associated probability

Continuous Types.

* Our notation can be adapted to a setting where types are continuous.
* A player i's type in this setting, 0;, is drawn from a continuous cumulative
probability distribution, that is,
F(x) = Pr(6; < x)
. :Ontluitively, F (x) measures the probability that player i’s type, 6;, lies weakly
elow x.

* This representation also helps us find a density function, f(x), associated above
F(x), if one exists, by computing its first-order derivative:

f(x) =F(x).
* Recall that density f(x) describes the probability that “player i's type, 6, is
exactly x,” thatis, f(x) = Pr{f; = x}, which can be quite useful in some games.



Background:
Players’ types and their associated probability

Continuous Types.

e Uniform distribution.
* If player i’s types are uniformly distributed, F(x) = x.
* The density function is f(x) = 1, meaning that all types are equally likely to occur.

* Exponential distribution.

* If types are exponentially distributed, F(x) = 1 — exp(—Ax), its density function is
f(x) = Aexp(—1x)

* implying that parameter A represents how quickly the density function decreases as we
increase x, and is often known as the “decay rate.”

* Figure.
* Intuitively, a higher A means that f(x) puts most probability weight on low values of x.



Strategies under Incomplete Information

* |f players operate under incomplete information, we must have that:
 at least one player does not observe the types of at least one of her opponents.

* |f player i does not observe any private information:
* The player only has access to the “public information” in the game that everyone
else also observes.
* |[n contrast, if player i observes some piece of private information:
* She can condition her strategy on her type,
* implying that her strategy in this context is a function of 8;, which we express as
s:(6;).
* |[n some games, we may have:

* Some perfectly informed players, who observe everyone’s types because of their
experience in the industry or because they get to act before everyone else;

 Some uninformed players who observe their own types but not their rival’s.



Representing Asymmetric Information as
ncomplete Information

Player 2
L R
U x,17 5,10
Player 1
10,0 10,17

Matrix 8.1. Simultaneous move game where player 1 privately observes x

* Player 1 observes the realization of random variable x before playing the
game.

* Player 2 only knows that its realization is either x = 20 or x = 12 with
equal probabilities. This information is common knowledge.

* Matrix 8.1, therefore, suggests that player 2 faces imﬁerfect information
because she does not observe the realization of x, while player 1 does.



Representing Asymmetric Information as
ncomplete Information

* Player 2 knows, however, that she faces either of the two games depicted
in Figures 8.1a and 8.1b.

* We circled the only payoff that differs across both figures, corresponding to (U, L).

17) (@17
(5, 10) (5, 10)
(10, 0) (10, 0)
(10, 17) (10, 17)
Figure 8.1a. Simultaneous move game Figure 8.1b. Simultaneous move game

where x = 20 where x = 12



Representing Asymmetric Information as
ncomplete Information

* Alternatively, we can represent b L =(20.17)
the above setting as a game of s
incomplete information. p, >~ 1 RTG10

* See figure. Y

: =20/ e o
. PIayer 2: . Ap R (10.17)
* Instead of not observing the Mt
realization of random variable x, Y I _.(2.17)
* Doesn’t observe the move from a —12\ e
fictitious player (“nature”), who L~ | 510
determines whether: N ’
e x = 20 or x = 12 at the beginning of ¢ e ;__(10,0)
the game. D el
* We are just connecting the two TR (10.17)

trees in the previous slide, with a
move of nature.

e This trick is due to Harsanyi (1967).

Figure 8.2. Combining both games of figure 8.1 to allow for incomplete information.



Best Response under Incomplete Information

Definition.

Best response under incomplete information. Player i regards s;(6;) as a
best response to strategy profile s_;(08_;), if

EU;(s5:(6,),s_;(6_y)) = EU;(s{(6)),5_;(6_)))
for every available strategy s;(0;) € S; and every type 6; € 0.

* This means that strategy s; (6;) yields a weakly higher expected payoff than
any other strategy s; (6;) against s_;(6_;), and this holds for all player i’'s

types, 6;.
* Forinstance, if @; = {H, L}, and player i's type is H, player i maximizes her
expected payoff responding with s; XH)_against her rival strategy; and

similarly, when i’s type is L, she maximizes her expected payoff responding
with SJL).



Best Response under Incomplete Information

Relative to the definition of best response in contexts of complete
information (chapter 3), this definition differs in two dimensions.

1. Expected Utility. First, player i seeks to maximize her expected, instead of

certain, utility level.

e That’s because she faces the uncertainty from not observing some private
information.

2. Best Response as a function of types. In addition, player i finds a strategy
s;(0;), as opposed to the strategy s;, in the best responses of chapter 3.

* Intuitively, her choice many now depend on her privately observed type, meaning
that her strategy may differ for at least two of her types.

* Player i must find an optimal strategy for each of her type, potentially different.



Bayesian Nash Equilibrium

Definition.

Bayesian Nash Equilibrium (BNE). A strategy profile (Sl* (6,), Sii(é?_i)) is a
Bayesian Nash Equilibrium if every player chooses a best response (under
incomplete information) given her rivals’ strategies.

* Therefore, in a two-player game, a strategy profile is a BNE if it is a mutual
best response, thus being analogous to the definition of NE.

* As a result, no player has unilateral incentives to deviate.

* This definition assumes, of course, that players select best responses in the
sense defined in section 8.2, where players seek to maximize their
expected payoffs given the information they observe.



Ex-ante and ex-post stability

e As under complete information:

* In a BNE every player must be playing mutual best responses to each other’s
strategies,

* Thus making the strategy profile stable.

* This stability is, in this context, understood from an ex-ante perspective,
* That is, given the information that every player observes when she is called to move.

* As opposed to ex-post:
* which assumes that at the end of the game, every player gets to observe her rivals’
types.
* Players could say

* “if | had to play the game again, given the (little) information | had, | would not have
incentives to deviate. | would play in the same way | just did.”



Ex-ante and ex-post stability

* Ex-post stability would, however, imply that, after playing according
to a BNE, players would say:

* “If | had to play the game again, but given the (rich) information | have now,
once the game is over and | can observe everyone’s types, | would still play in
the same way.”

* Ex-post stability is, therefore, more demanding than ex-ante stability:

* |t requires that players have no incentives to deviate from their equilibrium
strategies for all realizations of type profiles

* (i.e., regardless of her rival’s types).



Tool 8.1. Finding BNEs using the Bayesian Normal
Form Representation (two-player game)

1.

Write down each player’s strategy set, S; and S;. Recall that privately
informed players condition their strategies on their types. Similarly,
players who observed other players actions before being called to move

can condition their strategy on the node or information set where they
are called to move.

Building the Bayesian Normal Form representation of the game:

a. Depict a matrix with as many rows as strategies in S; and as many columns as
strategies in S, leaving all cells in this matrix empty.

b. Find the expected utility that player i earns in each cell.

Find each Elayer’s best response against her opponent strategy and
underline her best response payoffs.

Identify which cell/s have all players’ payoff underlined, thus being
mutual best responses. This cell/s are the BNEs of the game.



Example 8.1. Finding BNEs

Player 2
L R
U x,17 5,10
Player 1
10,0 10,17

Matrix 8.2. Simultaneous move game where player 1 privately observes x

* First step. For simplicity, we often start with the uninformed pIayerépIayer 21in
this setting), whose strategy setis S, = {L, R} since she cannot condition her
strategy on player 1’s type.

* |n contrast, pIa\{]er 1 observes her type (the realization of x) and can condition her
strategy on x, that is, s;(x). Therefore, player 1’s strategy set is

Sl — {U20U12 U20D12 D20U12 D20D12}

* Strategy U%°U*?, for instance, prescribes that player 1 chooses U both after
observing that x = 20 and that x = 12. In U%YD*?(D*°U'%), however, player 1
chogses U only after observing that x = 20 (that x = 12,respectively). Finally,
in D?YD'? player 1 selects D regardless of her type.



Example 8.1. Finding BNEs

 Second step. From the first step, * where _ 1 1
player 1 has four available strategies EU,(U“"U°%, L) = -20 + S12 =16

—_—

while player 2 only has two, yielding if x=20 if x=12

the Bayesian normal form
Y EU,(U?°U2,L) = %17 ¥ %17 =17

representation of the game in Matrix 2 2
8 3 if x=20 if x=12
= Player 2
L R EU,(U?°D'2,L) = =20+>10 = 15
Y2012 2 2
U20D12 1 1
Player 1 2012 EU,(U?°U%, L) = 517+§O = 8.5
D20D12

Matrix 8.3. Player 1 privately observes x —
Bayesian normal form representation



Example 8.1. Finding BNEs

e Operating similarly for the remaining strategy profiles, we find the
expected payoffs in 8.3, obtaining matrix 8.4.

Player 2
L R
Uoytz 16,17 5,10
U20ptz 15,8.5 | 7.5,13.5

D2°y12 11,8.5| 7.5,13.5
D29ptz 10,0 10,17

Player 1

Matrix 8.4. Player 1 privately observes x — Finding expected payoffs



Example 8.1. Finding BNEs

* Third step. Underlining best response payoffs, we obtain Matrix 8.5.
The two cells where both players’ (expected) payoffs are underlined
indicate the two BNEs of this game: (U%2°U?, L) and (D?°D'%, R).

Player 2
L R
U2oyt? 16,17 5,10
U?°pt? 15,8.5 | 7.5,13.5
Playerl o012 (1185 | 75135
D?°p12 10,0 10,17

Matrix 8.5. Player 1 privately observes x — Best Response payoffs



Tool 8.2. Finding BNEs by focusing on the
informed player first

1. Focus on the privately informed player i.
. Fo(r eacf} of her k = 2 types, find her best response function to her rival’s strategies, e.g.,
Si Sjlgi .
* You must find k best response functions, one for each type, e.g., si(sj|H) and Si(Sle).
2. If all players are privately informed about their types, simultaneously solve for
Si(HB in best response function s; Sj|6’i), finding k equilibrium strategies, one

for each type, that is, s/ (8;) = (Sl* 0}), ..., s;(65)).
* Therefore, (s{"(@il), S:‘(le)) is the BNE of the game.

3. If one player is uninformed (does not privately observe some information),
analyze the uninformed player j.
a. Find which strategy gives player j the highest expected utility to her rival’s strategies. This
strategy is her best response function s;(s;), which is not conditional on her rival’s types.

b. Simultaneously solve for s;(6;) and sj in best response functions s; (sj|9i), one for each
player i’s types, and s;(s;).



Example 8.2. Cournot competition with
asymmetrically informed firms

* Consider a duopoly market where firms compete a la Cournot and
face inverse demand function p(Q) =1 — Q

* Firms interact in an incomplete information context where firm 2’s
marginal costs are either:

* Ccy = % or ¢; = 0, occurring with probability p and 1 — p, respectively, where
p € (0,1).

* Firm 2 privately observes its marginal cost but firm 1 does not

observe firm 2’s costs.

e Because firm 1 has operated in the industry for a long period, all firms
1

observe that this firm’s costs are ¢y = >



Example 8.2. Cournot competition with
asymmetrically informed firms

* Privately informed firm, high costs.
H

1
;nax %) (CIz) = (1- qlzq_ch)qg_g%
H>0

Differentiating with respect to g2, yields .
1-2q7 —q1—5=0

2
and solving for g3, we obtain firm 2’s best relsporise function when its costs are high,
q5 (q1) = 7 70

which orlgmates at —, decreases in its rival’s output at rate of —, and becomes zero for
all g4 >



Example 8.2. Cournot competition with
asymmetrically informed firms

* Privately informed firm, low costs.

grllz;ué né(qg) = (1- qé — CI1)CI5
Ly

Differentiating with respect to g5, yields
1-2q;—q, =0

and solving for g4, we obtain firm 2’s best response function when its costs are low,
1 1

L - _ __
Clz(Ch)—Z 2‘11

: . 1 T 1
which originates at = decreases in its rival’s output at rate of > and becomes zero for
all g; > 1.



Equilibrium Output under Incomplete
Information

* Figure 8.3a compares firm 2’s
best response functions when
its costs are high and low.

e We find that

q5(q1) > q7 (q1),

* indicating that:
* for a given output by firm 1, firm

2 produces more units when its
own costs are low than high.

Figure § Ja. Firm 2 - High or Low costs.

Figure 8.3b. Equilibrium output under incomplete information.

-
i



Example 8.2. Cournot competition with
asymmetrically informed firms

* Uninformed firm. )
max  m;(q) =p [A—-¢z —qlq] + A=p) [A~qz —qda] 5@

d1=o0

Firm 2's costs are high Firm 2's costs are low
where the last term indicates firm 1’s high costs, which are certain, and observed by all firms.

Differentiating with respect to g4, yields: ,
p(1—qz =2q) +(1-p)(A~qz -2¢)) =5 =0

which leads to firm 1’s best response function: u .
1 pq; +(1—-plg;
q:(qz,q3) =7 — >
which originates at — and decreases at rate of when firm 2’s expected output increases as
captured by the terfh pgi + (1 —p)qs.




Equilibrium Output under Incomplete

Information

e Figure 8.3b depicts firm 2’s
expected output

E(q) =pqgs + (1 —p)q;
in the dashed line between
q5 (q1) and q%(q4).

* |t also plots firm 1’s best
response as a function of

E(q,).

* Only one BRF for the
uninformed firm!

Figure § Ja. Firm 2 - High or Low costs.

Figure 8.3b. Equilibrium output under incomplete information.




Example 8.2. Cournot competition with
asymmetrically informed firms

* Fipding equilibrium output in the BNE. A common approach is to insert best response functions
qf (Q1g and qg (g1) into g, (q55 : qé‘%, as follows,

q?(ql) CI%(‘CI1)

1 1 1 1
1 r(z-z0)+a-»(3-34)
T= g 2
Rearranging, this expression simplifies to

_1, 20+p-2
=y 3

which, solving for g, yields firm 1’s equilibrium outpztgjt
qd1 = 6

Inserting g, into firm 2’s best response functions, we obtain
al gD ==L qhtqn = 2=
2 1 12 ) 2 1 12



Example 8.2. Cournot competition with
asymmetrically informed firms

* Therefore, the BNE of this game is
given by the triplet of output levels

(CI1»CI2 qu)_<6: 17 12

* Figure 8.4 depicts these three output
levels, showing that:
* firm 1’s equilibrium output, g5, is
increasing in the probability that its rival
has a high cost, p, but...

e firm 2’s equilibrium output is decreasing
in this probability, which holds both its
costs are both high and low.

Catput, ¢, ;

Figure 8.4. Cournot competition with asymmetrically
informed firms — Equilibrium output



Example 8.2. Cournot competition with
asymmetrically informed firms

. . i} i
* The figure also embodies complete e
information as special cases.

* Whenp — 0, firm 2 has (almost
certainly) low costs, thus being very
competitive.

* The uninformed firm 1 remains inactive, b TR o
while firm 2 produces % when its cost is -
high and 2 when its cost is low. e Y

* Whenp — 1, firm 2 has (almost

certainly) high costs, thus being very
competitive. Figure 8.4. Cournot competition with asymmetrically

* The uninformed firm 1 produces 1/6, as informed firms — Equilibrium output
much as firm 2’s output.

" .;.}



Evaluating BNE as a solution concept

1. Existence? Yes.
 When we apply BNE to any game, we find that at least one equilibrium exists.

* This result is equivalent to the existence of NEs in complete information games, but extended to
an incomplete information context.

* We may need to rely on mixed strategies. See exercise 8.17 and auctions in chapter 9.

2. Uniqueness? No.

* Games of incomplete information may have more than one BNE, as illustrated in Example 1 where
we found two BNEs.

3. Robust to small payoff perturbations? Yes.
* We find that BNE is also robust to small payoff perturbations.

* This is due to the fact that, if a strategy s; yields a higher expected payoff than another strategy
S_j, it rk?ust still generate a higher expected payoff than s_; after we apply a small payoff
perturbation.

4. Socially optimal? No.
* BNE does not necessarily yield socially optimal outcomes

. Strateg?/ profile (D?°D'2, R) is a BNE, with equilibrium pavoffs (10, 17), but it is not socially
optimal because other strategy profiles, such as (U?°U*?, L), provide payoffs (16,17), thus
improving player 1’s payoff without lowering player 2’s.



What if both players are privately informed?

Example 8.3. Cournot competition with symmetrically uninformed firms.
* Assume now that every firm i = {1,2} observes its marginal cost.
* Its marginal cost is either cy = % or ¢; = 0, occurring with probability p and 1 — p, respectively.
* Every firm i doesn’t observe its rival’s (firm j’s) marginal cost.

* This means that every firm will have two BRFs, one upon observing its cost is high and
another after observing its cost is low.

* High costs. If firm i has high marginal costs, cy = z , it solves the following probiem:

max  w'(q) =p [(1-¢j' —q)a] + A-p) [(1 —4¢j —a)ai] 54

Firm j's costs are high Firm j's costs are low

Differentiating with respect to g; and finding BR function:

H L
wrn oy 1 pai +(1—p)g;
4 (q,-,q,-)—z— 5




What if both players are privately informed?

Low costs. If firm i has, instead, low marginal costs, ¢c; = 0, it solves:
max m;(q)=p |[(1-q —a)a| + A-p) [(1-aqj —a)a]

di=o0 -

Firm j's costs are high Firm j's costs are low

Differentiating with respect to g;, yields
p(1—qf —2q;))+ (1 -p)(1—q;7 —2¢;) =0
which leads to firm i’s best response function:

H L
vron oy 1opgi +(1—p)g;
ai (a]',q5) =5 - >




What if both players are privately informed?

Comparing best response functions:

1 pqi + (1 —p)q;
ai (a7, a7) = 5 - >

Relative to q{’(q}q, qJL- , the best response function qiL(q}q, q]L- :
. . .. 1
e originates at a higher vertical intercept, p

* shares the same slope.

* Intuitively, firm i produces a larger output, for a given expected output
from its rival, when its own costs are low than high.



What if both players are privately informed?

* Finding equilibrium output in the BNE. In a symmetric BNE flrms produce the
same output level when their costs coincide, that is, ql = q] = g" and ql

q] — C[
* Inserting this property in best response functions g; (q] , ) and q; (q] , -),
yields

g _ 1 pqd"+(1-p)q" L _ 1 pg"+(-p)q”
q’ = - — and q" = - —
4 2 2 2
Solving two equations and two unknowns, we obtain
H 1+p L 4+p
=—— and = —
q 12 q 12

which are both increasing in the probability that its rival’s costs are high, p.



Comparison across information settings

 How equilibrium output levels vary from those we found in example 8.2, gq{, qg*, qﬁ*),
where only one player was privately informed about its costs (firm 2), while firm 1’s costs

were common knowledge.

* Firm 1: it produces more units when its rival does not observe its costs (example 8.3)
than when its rival does (example 8.2), because

. 1 1-
qH—q1=ﬁ—£—1—2p>O, and
— P

MRy
T= T 12 '

L

q

since 0 < p < 1 by assumption.
* Firm 2: In contrast, firm 2’s output satisfies

H H* 1+p 3-p 1-p
— = — = —-——-<90, and
e e
L L* p -p -p
— = ————=——<0.
q 4> 12 12 6

Indicating that firm 2 produces more output when it observes its rival’s cost (example 8.2)
than when it does not (example 8.3).
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