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Sequential Move Game

* Why not just solve them using NE?
* We would find too many NEs
 Some NEs would be “sequentially irrational,” as we define in this chapter.

* We then need players to behave rationally:

e Every player maximizes her payoff when called to move (on a node or on an
information set)...

e given her position on the game tree, and
* given her available information.

 Strategy profiles where every player is sequentially rational will be called
Subgame Perfect Equilibria (SPEs).

* We will consider games with:
e Discrete and continuous strategies.
 When players observe their rivals’ previous actions, and when they do not.

* Before we start, we need to specify some “game tree rules.”
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Every node is the successor of the initial 1« i
node. N B
* Figure 1 illustrates this property. i WL A G
* Game tree in the left satisfies it, since there is e @l\
only one initial node. One initial node ;' D\,
* The game tree in the right panel violates it. Two initial nodes
* If a modeler wanted to indicate that two different ‘
players act simultaneously... Comet Incarrect
* Then the figure 6.1a at the bottom is the correct way
to represent this. Figure 6.1. Games with one or two initial nodes.

* Player 1 selects between B or C, then player 2
chooses c or d without observing player 1's choice (as
they are simultaneous).

If, instead, the modeler considers the same player
in two initial nodes (right panel in Figure 6.1),
there must be a mistake because Player 1 cannot
choose simultaneously between A and B (on the
top of the figure), and between C and D (on the
bottom), as if he had multiple personalities!

* In this case, player 1’s decision should happen at the Figure 6.1a: two different players acting simultaneously
subsequent stage.
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2. Every node has exactly one
immediate predecessor; except the
initial nOde that has no Figure 6.1. Games with one or two initial nodes.
predecessor. |
* The left panel in Figure 6.1 satisfies this e i
property. e

a

* But Figure 6.2 depicts a game tree that
violates it.

e If a tree has nodes with more than one BN o
predecessor, we could run into & C 1; i
misunderstandings: < o

* In Figure 6.2, we do not know if player 4 is :d—i(:

called to move after player 2 chose b or
because player 3 chose ¢

Figure 6.2: Game with two predecessors



No, you must be

referring to a
Tre e R u | e S different action.

Otherwise collapse

everything

3. Multiple branches extending from under the same name.

the same node have different action

labels. N
» Left panel in Figure 6.3 satisfies this <
property A/ M
* The right panel violates it because label A is "
on two branches for player 1. i
* If the modeler seeks to represent that: ouT
* Player 1 chooses A in both the top and middle S
branches that stem from the initial node, then g ® C\e 2
these two branches should be collapsed into a - .
single branch. i i
* If, instead, the modeler tries to represent that Correct Incorrect

player 1 has two different actions in each of
these branches, then they should be labelled

differently to avoid misunderstandings. Figure 6.3. Games with same/different action labels.



Tree Rules

4. Each information set contains nodes for
only one player.

* The left panel in Figure 6.4 satisfies this
property.
* The right panel violates it.

* Intuitively, if player 2 is called to move at the
top node of the game tree in the right panel,
she can infer that player 1 selected A, leaving
her no uncertainty about player 1’s choices in
the previous stage.

* Asimilar argument applies to player 3: if she is
called to move at the bottom node, she knows
that player 1 selected B.

* Therefore, the information set connecting the
top and bottom nodes is incorrect
(unnecessary).
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B ' J sl B e o uEEs,
B h — ) by
(CCorrect Incorr¢et
Figure 6.4. Information sets with one or morg players.

Incorrect, otherwise P3
knows he is called on to
move after player 1
chose B.

(no uncertainty)



Tree Rules

5. Same number of branches and labels.

» 15t requirement. All nodes in a given information
set have the same number of branches stemming
from them (i.e., the same number of immediate
successors)

* Figure 6.5a depicts a game tree that violates this:

Player 2 would be able to infer whether player 1 chose
Invest or Not Invest by just observing the number of
strategies.

* Drawing the information set is unnecessary in this
setting!

« 2"d requirement. The labels in the branches must

coincide across all nodes connected by the same
information set.

* Figure 6.5b depicts a game tree that violates this:

Player 2 would be able to infer that:

Player 1 must have chosen Invest if she must select
between A and B, but...

Player 1 must have chosen Not Invest is she must
select between 4 and C.
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- T\‘
P,
Not Invest ~_ n“;{nﬂ

Figure 6.5b. Different immediate successors.



Actions vs. Strategies

* Graphically, an action denoted as a; or s;(h;), is just a specific branch that
player i chooses when it is her turn to move.
* Note that the notation is to emphasize one action among those available in
information set h;, A;(h;).

e A strategy is the list of all the branches that she would choose along the
game tree, both in nodes that are reached in equilibrium and those that
are not reached.

 Complete contingent plan.

* Definition. Pure Strategy.
* In a sequential-move game, a pure strategy for player i is a mapping
Si- Hi — Ai
that assigns an action s;(h;) € A;(h;) atinformation set h; € H;, where A;(h;)
denotes the set of available actions at information set h;.



Actions and Strategies

* Importantly, the above definition of pure , N , »
strat%y applies to every information set, S S
h; € H;, describing how player i behaves .

once she reaches each information set h;.

* In contrast, an action only describes how
player i behaves when reaching a specific

information set h;. A\, ™ o,

* Example (Figure 6.3): S S
. g]} t?]eeng;c?r;s.eptlsg/gr 2’s action at the top node Correct  A—
" ndicating that she responds with” Figue 63 Games wit s diffrent action abls

» [n after player 1 chooses 4,
* Qut’ after player 1 selects B, and
« In'' after playerl chooses C).



Why don’t we just find the Nash Equilibria of

the Game Tree?

* Example. Entry Game.
e Consider the Entry game in Figure 6.6.

* A firm (potential entrant) chooses whether to
enter into an industry, where an incumbent firm

operates as a monopolist, or stay out of the
market.

* If the potential entrant stays out (at the bottom
of the figure):

* The incumbent remains a monopolist, earning
$10 while the potential entrant earns zero.

* However, if the entrant joins the industry (top of
the figure), the incumbent observes this
decision and responds either:

* Accommodating the entry (e.g., setting moderate
prices) which yields a payoff of $4 for each firm, or

* Fighting it (e.g., starting a price war against the
entrant) leading to a payoff of —$2 for each firm.

Accommodate

Entry e (4.4)
Incumbent __——
> Fight ~*(-2.-2)
Entrant « Entry
Out ™
~+(0.10)
I)il'\'oﬂ‘ 1‘0[‘ E[”l'iﬂl.[ ( l'it ‘\IU\‘L‘]‘j

Payoff for Incumbent (2*¢ Mover)

Figure 6.6. The entry game.



Entry Game (contd.)

* To find the NEs of this game tree, we first need to represent the game

in matrix form.
Potential Entrant
In Out
Accommodate 4.4 10,0
Incumbent _
Fight Entry -2,-2 10,0

Matrix 6.1a. Finding NEs in the Entry Game

* There are two psNE for this game:
NE = {(Accommodate,In) and (Fight,Out)}



Example 6.1. Entry Game (contd.)

* Specifically, for the incumbent, we find that:
* BR;,,.(In) = Acc because 4 > —2
* BR;,,.(Out) = {Acc, Fight} because both yield a profit of 10

* For the potential entrant,
* BR,,;(Acc) = In because 4 > 0
* BR,,;(Fight) = Out because 0 > —2

* Therefore:
* |In the first NE, entry occurs and the incumbent responds accommodating.

* In the second NE, the entrant does not enter because it believes that the
incumbent will start a price war.



Example 6.1. Entry Game (contd.)

e But is this belief credible?

* NO! The entrant beliefs about the incumbent’s decision to Fight after he
enters are not rational (in a sequential way):

* Once the entrantis in, the best thing that the incumbent can do it to accommodate
(4> -2).

* Hence, the incumbent would never have incentives to start a price war after entry has
already occurred.

* Therefore, among the two NEs:
* Only (Accommodate, In) is sequentially rational,
» (Fight, Out) | s not sequentially rational.



Introducing a new solution concept

* In the Entry Game, we found NEs that were sequentially irrational.
* Can we find only those equilibria that are sequentially rational? Yes!

* We can guarantee sequential rationality by using a new solution concept,
Subgame Perfect Equilibrium (SPE).

* For this solution concept, we first need to define what we mean by a
“subgame.”

* Definition. Subgame:

* A subgame is a tree structure defined by a node and all its successors.

* This definition means that:

* if nodes a and b are connected with an information set (so player i does not know whether
he is at node a or b), then both nodes must be part of the same subgame.

* Examples in next slide.



Subgames - Example

* Graphically, a subgame can be
identified by drawing a rectangle
or a circle around a section of the
game tree without “breaking” any
information set.

* Figure 6.7a depicts the Entry
Game, identifying only two
subgames:

1. thatinitiated when the incumbent
is called on to move; and

2. the game as a whole.

Second smallest subgame
(game as a whole)

Accommodate

Entry
Incumbent __— «(4.4)
g

Smallest subgame

—

T —
—

In_~~ Fight e (-2.-2)
e Entry
Entrant
Out
~*(0,10)

Figure: 6.7a. Subgames in the entry game



Subgames — Example

Subgame 4 (game as a whole)

* There are 4 subgames in Figure 6.7b:

1. After player 2 is called to move after p. A (4 Subgame ]
player 1 chooses Up A %)
2. After player 2 is called to move after  Up e
‘; Subgame 3
player 1 chooses Down ™ ot —— oame
3. After player 3 is called to move, p, E 063 1
which happens when player 2 - Down™_| c_+ 2.0 2
. ; h , s F i B
responds to Down with C N\ P el |
E i Py - Subgame 2 P

4. The game as a whole D oo

igure 6.7b. Four subgames in a game tree.
Figure 6.7b. Fi bgame L\ game tree



What if the Game Tree has Information Sets?

* Figure 6.8 depicts a game tree with
an information set.
* The smallest subgame must include

player 2’s information set (otherwise we
would be breaking it!)

* The presence of information sets
reduces the number of subgames.

* In Figure 6.8, player 2 does not
ob_zerve whether player 1 selected a
or b.

* This entails that player 2, when choosing
whether to respond with c or d,
operates “as if” player 1 was selecting a
or b at the same time.

* This is equivalent to a setting where
players interact in a simultaneous-move
game.

...................................................................

34

5 p, ° (3.4)

7‘&;1

| - ; ~ (1.4

§P1, d (1.4)

: B~ | c QD
Up __ :

d (2.0
P T Simaliest subgame
Down
*(2.6)

Figure: 6.8. Finding subgames in a game with an information set



Subgame Perfect Equilibrium

 Definition. Subgame Perfect Equilibrium (SPE).

* A strategy profile (s;,s”;) is a Subgame Perfect Equilibrium if it
specifies a NE in each subgame.

* To find SPEs in a sequential-move game, we just need to apply the
notion of backward induction.



Tool 6.1. Applying backward induction

1. Go to the farthest right side of the game tree (where the game ends),
and focus on the last mover.

2. Find the strategy that yields the highest payoff for the last mover.

3. Shade the branch that you found to yield the highest payoff for the last
mover.

4. Go to the next-to-last mover and, following the response of the last
mov%g that you found in step 3, find the strategy that maximizes her
payoff.

5. Shade the branch that you found to yield the highest payoff for the next-
to-last mover.

6. Repeat steps 4-5 for the player acting before the previous-to-the-last
mover, and then for each player acting before her, until you reach the
first mover at the root of the game.



Example 6.2. Applying Backward Induction —
Entry Game

Before we start, recall this game has two

SuU bga mes. Smallest subgame (1* step)
. . . . Accommodat ' -
15t step: Applying backward induction, we first " By (4,0)
focus on the last subgame (closest to the Inmm?egt___/'
terminal nodes). Y-
n - Fight ~(-2.2) Best response of the last mover
. Entrv / 40d g
* This corresponds to the last mover, the — i (2 sep)
incumbent.
Out™_

2nd step: Comparing its fayoff from .

accommodating entry, 4, and starting a price *(0,10)

Wa F, _21 we find that its best response to entry Figure: 6.9. Applying Backward Induction in the entry game —Last Move
is to accommodate.

We shade the corresEonding branch in Figure
6.9 to keep in mind the optimal response of
the incumbent in this subgame.



Example 6.2. Applying Backward Induction —
Entry Game

3'd step: We move to the first mover, the e
entrant, who anticipates that, if it enters, Entry
the incumbent will accommodate.

(44)

Smallest proper subgame

[ncuml (1 step)

* This means that the entrant expects that,
upon entry, the game will proceed
through the shaded branch in Figure 6.10

2" step

Entrant

vielding a payoff of 4 from entering. Om
* |f, instead, the entrant stays out, its (0,10) J
payoff is only 0. As a consequence, the / \Bm Peponm o fa ke "o

optimal strategy for the entrant is to

Payoff for entrant (1t mover) Payoff for Incumbent (2" mover)
enter. Figure: 6.10. Applying Backward Induction in the entry game —First Mover



Example 6.2. Applying Backward Induction —
Entry Game

Accommodate
Entry

(] Hence: IllClll]ll (Slrnsta;lii)t)propersubgame
Fial? .
SPE = {(In, Accommodate)} PR S20d) | e
Entrant ¢
\_\‘\
 Among the two psNE we found, i.e., olff\,_\
(In, Accommodate) and (Out, Fight), '\.(0 0
 only the former is sequentially rational. / \Bm response ofthe it mover (3° step)
Payoff for entrant (1t mover) Payoff for Incumbent (2" mover)

Figure: 6.10. Applying Backward Induction in the entry game —First Mover



Example 6.2. Applying Backward Induction —
Entry Game

* Figure 6.10 shades the branches that Accommodate
players choose in equilibrium, known B ¥ (8) | et romersbgome
as the “equilibrium path”. o o
* The equilibrium path of play is a visual FRS000) 1 s
tool to understand how players Entrantof
behave in equilibrium: Y
* From the initial node to one of the
terminal nodes in the tree, *(0,10 ]
Best response of the first mover (3™ step)
* but does not coincide with the SPE in / \
more involved games. Payoff for entrant (1t mover)  Payoff for Incumbent (274 mover)

Figure: 6.10. Applying Backward Induction in the entry game —First Mover



Example 6.2. Applying backward induction —
Entry Game

* Recall that (In, Accommodate) was also one of the
NEs in the Entry game, as shown in Example 6.1.

* Then Examples 6.1 and 6.2 illustrate that:

* Every SPE must be a NE, since (In, Accommodate) is both
a SPE and one of the NEs in the Entry game, but...

* The converse ins not necessarily true.
* More formally, for a strategy profile s*,

s*isaSPE= s*isa NE |
N | SPE |
* Alternatively, the set of strategy profiles thatcanbe '\

supported as SPEs of a game is a subset of those | R
strategy profiles that can be sustained as NE, as __ -

depicted in Figure 6.11. in the game

Figure 6.11. SPEs as a subset of NEs.



Example 6.3. Applying Backward Induction in
the Modified Entry Game

Accommodate

* Consider the modified version of Enty ., (4.4)
’éhszntry Game depicted in Figure B |
In TR\H\““% iy
* The top part of the game tree ~ Eiiiif (-2:-2)
coincides with that in the original Entrant < '
Entry game. SI{E\ o 0105
e ® nves -
* However, if the entrant chooses to B e
stay out of the industry, the —
incumbent can now respond Nol ™~ (0.10)
investinﬁ in a new technology or Invest ‘
not, with associated payoffs (0,12)

and (0,10), respectively.

Figure 6.12. Modified entry game.



Example 6.3. Applying Backward Induction in
the Modified Entry Game

Three subgames: s s e Subgame 3 (game as a whole)
T |
1. oneinitiated after the : IF o | Subgame 1 |
entrant joins the | | Entry —=(4.4) | |
industry : ‘“C““jﬁ< | |
: | I
2. another initiated after | 2 oy (2D |
) ; | |
the entrant remains out |Entrant < 0 e ——— |
l _________
and | Out :— vest__+(0,12) | :
I
3. the game as a whole | Incum}aent : :
| Not
| _ (0,10) | [
| Invest
' | | Subgame 2 |
I
|

Figure 6.13. Modified entry game - Subgames.



Example 6.3. Applying Backward Induction in
the Modified Entry Game

Subgame 3 (game as a whole)

* Anticipating Acc upon entry

_______________________ and Invest upon no entry,
="~ TT77 Subgame 1 the entrant can, in the initial

| Accommodate
| Entry

| |
: | node, compare its payoff
i i f)‘;';’g;‘ﬁfnrge ! from entry, 4, and from no
| . underlined entry 0, thus choosing to

| payoffs enter

| .

: * Therefore:

|

................................................ » Solve subgame 2
by comparing
underlined
______________________ i payoffs which denotes that the entrant

chooses In, and the incumbent
responds with Acc after In, but
with Invest after Out.

SPE = {(In, Accommodate/Invest)}

I
I
I
|
|
|
I
I
| Entrant
I
I
|
|
I
I
I
I

Figure 6.13. Modified entry game - Subgames.



Equilibrium Path vs. SPE

Subgame 3 (game as a whole)

I ___________________ ) * Figure 6.14 shades the branches that players choose
:_ P— Subgame 1 in equilibrium.
| Entry (4.4) * The equilibrium path, coincides with that in the

Incumpent original Entry game.

* The SPE, however, is more intricate because it
specifies the incumbent’s equilibrium behavior both
in the node that it reaches in equilibrium (when the
entrant joins the market) and in the node that the
incumbent does not even reach in equilibrium (when
the entrant stays out).

* Thus, when describing the SPE of a sequential-move
game, it must specify the equilibrium behavior for
every player at every node where she is called to

move, even in nodes that may not be reached in
Figure: 6.14 Equilibrium Path vs. SPE equilibrium.

Entrant

Subgame 2



Finding SPEs in Game Trees with Information
Sets

Consider Figure 6.15.

If firms 1 chooses Up, this firm gets to
play again, choosing between A and B.

Firm 2 is then asked to respond, but
witgout seeing whether firm 1 chose A
or B.

Firm 2’s uncertainty is graphically
represented by the dotted line
connecting the end of the branches that
it doesn’t distinguish, A and B.

This dotted line is formally known as an
“information set” for Firm 2, because this
firm doesn’t know which of these two
actions was chosen by Firm 1.

/‘{ -
4 | -
Firm 1 | d (14)
///\ - x @)

5" )
—
Fim 1< Y (2,0)

\\

b
Dowr \
(2,6)

Payoff of firm 1 \Payoff of firm 2

Figure 6.15. A more involved game tree.



Finding SPEs in Game Trees with Information
Sets

* Before applying backward induction to this game, a usual trick is to
find all the subgames (i.e., circling the portions of the tree that do
not break any information set)

Subgame 2 (game as a whole)

Not a subgame

| . Notasubg I
: ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ Subgame 1 | : v (34) |
| r o | ' |
| | Y . (3-4) | | y | |

| — [ = | y e (l4)
| i) | Fim1_- AU i . |
| :F_ 1 : J Yy = (14) : | N [‘————-——,,l—ﬂ

irm 1_. | " N \ Ly

: A S | o(2.1) | : U~ B\ ! : (54 :

i b : X _ - doy | 2

Up > s s /
: | i SO | | Firm 1< | Y (2,0) |
| Firm 1< | Yy T—(2,0) | : \\\ ————— - — il
| o e e , I Down™_ Not a subgame
| Down ™~ | \\\
9

| 2.6) | *(2:6)
| | :
S S S I Figure: 6.15(b) Not subgames

Figure: 6.15(a) Finding subgames



Finding SPEs in Game Trees with Information
Sets

Firm 2
* Subgame 1. ¢ v
. Firm 2 o!oes not obserye which | A 3.4 1.4
action firm 1 chose (eitherAor Firm 1
B). Therefore, subgame 1 can B 2,1 2,0
be represented using Matrix Matrix 6.2. Representing Subgame 1 in matrix form
6.2.
e Matrix 6.3 underlines the best Firm 2
response payoffs. X Y
* NEof subgame 1 = {(4,X)} | A 34 14
Firm 1
2,1 2,0

Matrix 6.3. Finding the NE of Subgame 1



Finding SPEs in Game Trees with Information
Sets

e The Game as a whole.

Firm 1 must choose between Up and Down,
anticipating that if it chooses Up, subgame 1 will
start.

Firm 1 can anticipate equilibrium behavior in
subsequent stages of the game; that is, the NE of
subgame 1is (4, X), with payoff (3,4).

Firm 1 can then simplify its decision problem to the
tree depicted in Figure 6.16. Therefore, firm 1 only
needs to compare the following: if it chooses
Down, the game is over and its payoffis 2,
whereas if it chooses Up, subgame 1 is initiated,
obtaining a payoff of 3.

Because 3 > 2, firm 1 prefers to choose Up rather
than Down, illustrated by the thick arrows on the
branch corresponding to Up.

The SPE of this game is (Up, (A,X)).

(3:4)

o v
| * NE payoff from
Firm 1 5

e (4.X) in subgame 1

Down™_
N

(26

Figure 6.16. The reduced game tree from figure 6.15a.



Evaluating SPE as a Solution Concept

1. Existence? Yes.
* When we apply backward induction in any game tree, we find that at least

one equilibrium exist.
* This is often known as “Zermelo’s theorem”, after Zermelo (1913) article on chess, and
later on extended by Kuhn (1953).

* Intuitively, this means that every player selects on strategy at every node
where she is called to move.
* If a player is indifferent between two available actions a and b, for instance,

then her best response is to choose either.
* But every player selects on strategy at every node, yielding at least one SPE strategy
profile.



Evaluating SPE as a Solution Concept

2. Uniqueness? No.

* While the examples in this chapter display game trees that produce a unique
SPE, we cannot guarantee that applying backward induction will always
induce a unique SPE, as required by this criterion.

* For instance, if in the Entry game of Example 6.2 the incumbent’s payoff from
both accommodating and fighting entry was 4, then this firm would be
indifferent between Acc and Fight, leading to two SPEs:

SPE = {(In, Acc), (In,Fight)}
* |n this case, the SPEs exactly coincide with those that are NEs.

* Interesting point:

* If players are not indifferent about any of their actions at any of the nodes (or
information sets) where they are called to move...

e equilibrium behavior in each subgame must specify a unique strategy for every player in
that subgame,

e so the SPE must be unique.



Evaluating SPE as a Solution Concept

3. Robust to small payoff perturbations? Yes.

* If we change the payoff of one of the players by a small amount (e.g. 0.001,
but generally, for any € that approaches zero), backward induction still
provides us with the same equilibrium outcome, implying that SPE is robust to
small payoff perturbations.

* This is due the fact that:
* If a strategy s; yields a strictly higher payoff than another strategy s;,

* it must still yield a strictly higher payoff than s; after we apply a small payoff
perturbation (remember that € can be infinitely small),

* meaning that play i still chooses s; in the subgame where this action was optimal.



Evaluating SPE as a Solution Concept

4. Socially optimal? No.

* The application of backward induction does not necessarily produce a socially
optimal outcome, which goes in line with our evaluation of IDSDS and NE,
which did not yield socially optimal outcomes either.



Application: Stackelberg Game of Sequential
Quantity Competition

e Consider two firms produce a homogeneous good facing a linear

demand function p(Q) = 1 — Q, where Q = g, + g, denotes
aggregate output.

* Assume that all firms have a constant marginal cost of production
c,wherel >c = 0.

* Firms interact in a sequential-move game:
1. Inthe first stage, firm 1 (the industry leader) chooses its output g;.
2. Inthe second stage, firm 2 (the industry follower) observes that the
leader’s output g; and responds with its own output level g,.

* Solving the game by backward induction, we start by solving the
second stage.



Application: Stackelberg Game of Sequential
Quantity Competition

* Second stage, follower — firm 2.

Firm 2 maximizes its profit as follows

maxm, = (1 —q; — q2)q; — cq;
4220

Differentiating with respect to g,:
1-29—q1—c=90

Solving for q, yields:
d2 =

1—-c 1

> —ECh

which is positive for all % — %ql =0 =>q9,<1-c




Application: Stackelberg Game of Sequential
Quantity Competition

Firm 2’s BRF:
(1—¢c 1
ax(q) =47 “zhifa=l-c
L 0 otherwise.

.. 1- :
* Intuitively, the follower produces an output of g,= TC when the leader is
: : : : 1
inactive (g; = 0), but decreases its output in g, at a rate of >

* When the leader’s output is sufficiently large, g;> 1 — ¢, the follower
responds staying inactive, g,= 0.

e This BRF coincides with that under the Cournot model of simultaneous
guantity competition in chapter 4.



Application: Stackelberg Game of Sequential
Quantity Competition

* First stage, leader — firm 1.

Firm 1 maximizes its profit as follows

maxm; = [1 - q — q(q)]a —cq

which is evaluated at g,(q;). Inserting firm 2’s BRF, we obtain

Clz(fh)
1—-c 1 1+c 1
Maxm; = _1 ThT\ Ty M) | T S [ > _E(h](h —Cq
Differentiating with respect to q;:
f +C — 0
5 g1 —C =
Solving for g4 yields:
Seq . 1 —C




Application: Stackelberg Game of Sequential
Quantity Competition

* The SPE in this Stackelberg game of quantity competition:
seq l1-c1—-c 1
SPE = (CI1 »Clz(%)) =

— 51
where firm 2 (the follower) response with its BRF, g, (g, ), for any output that the

2 72 2

leader chooses (both its equilibrium output, g; = q;°?, and any off-the-equilibrium output,
Q1 #q; )

* In equilibrium, we can claim that the follower observes the leader’s output, g7, and inserts it
into Its BRF, to obtain the follower’s equilibrium:

a,
Seq _ 1—c_11—c: 1—c
12 2 2 2 4

* Importantly, we do not say that the SPE of this Stackelberg game with two symmetric firms is

(Qfeq» qg"") = (%,E) This output vector only describes firms’ output along the
equilibrium Ioath. In con%rast, the SPE must specify each firm’s output decision, both in- and

off-the-equilibrium path.



Equilibrium Output level in the Cournot and
Stackelberg Games

* Recall that the equilibrium output in the Cournot model of simultaneous

1— L. .
quantity competition was qf”" = 36 for every firm i (see section 4.2.1),

where we assumed the same indirect demand function p(Q) = 1 — Q and
marginal cost ¢ for both firms.

* Therefore,

* the leader produces morle unltsichan when firms chooses their output
simultaneously, q1 = —C > = gdim

3
) 1-c 1-c
* while the follower produces fewer units, qzeq = < = g5'™m

* Intuitively, the leader exercises its “First-mover-advantage” by increasing
its output, relative to that under Cournot competition, anticipating that the
follower will respond to this increase in g, by decreasing its own output ¢g,.



Equilibrium Output level in the Cournot and
Stackelberg Games

* Figure 6.17 depicts the equilibrium
output level in the Cournot and
Stackelberg games, showing that the
output pair moves form the 45° — line
(where both firms produce the same
output) to above this line, which
indicates that firm 1 produces more
units than firm 2.

* Graphically, firm 1 anticipates firm 2’s 3
BRF, g,(q,), and chooses the point
along this line that yields the highest Fisue 6.17. Equilibrium quantities in Cournot vs. Stackelberg games.
profit.




Equilibrium Profit level in the Cournot and
Stackelberg Games

As expected, the leader’s profit when firms compete sequentially,

Seq __ Seq Seq Seq Seq
n, = [1_q1 — 4 ]ql — ¢4,

1-c 1-c| 1—c 1-c
=1 -5 - e

2 4 1 2
_ (1-0¢)?
= —=
is larger than its profit when they compete simultaneously i.e.,
seq _ (1=0% g (1—0)’
7T1 = S > (8] — 5



Equilibrium Profit level in the Cournot and
Stackelberg Games

In contrast, the follower’s profits when firms compete sequentially,

Seq __ Seq Seq Seq Seq
T, —[1_‘71 — 4 ]qz — q;

1-c 1-c| 1—c 1-c
=1 -5 - T e

2 4 1 4
_ (1-0)?
16
is lower than its profits under simultaneous quantity competition, i.e.,
seq _ (1 —c)? < sim _ (1 —c)?
2. 16 29



Sequential Public Good Game

* Let us now return to the public good game we examined in section
4.4, but rather than assuming players simultaneously choose their
contributions to the public good, we now consider that

* Player 1 makes her contribution x4in the first period, and after observing this
contribution, player 2 responds with her contribution x, in the second period.

* Because this is a sequential-move game of complete information, we solve it
by backward induction, focusing on player 2 first, and then moving on to
player 1.



Sequential Public Good Game

Player 2, follower. Player 2 takes player 1’s contribution, x4, as given,
and chooses her contribution x,to solve the utility maximization
problem:

max Uy (X1, x2) = (W — xz)\/m(xl + x3)
2

Differentiating with respect to x,, we obtain
m(w, — x3)
—\/m(xl + xZ) +

=(
2\/m(x1 + x,)

= 0 which holds when 3x, =

m(wy,—2x1—3x5)
2./m(x1+x3)

which simplifies to
Wo—2X1



Sequential Public Good Game

Solving for x5, we find that player 2’s BRF is:

(1) =13 3
. 0 otherwise.

This BRF coincides with that found in section 4.4:

* Originating at x, = % when player 1 does not donate to the public good.

* But decreasing at a rate of 2/; for every dollar that player 1 contributes.



Sequential Public Good Game

Player 1, leader. In the first period, player 1 anticipates player 2’s BRF in the subsequent period, x,(x;), and
inserts it into her utility maximization problem as follows:

gg}gg up(xg,%2) = (wyg — xl)\/m[xl + x5 (x1)]

) w, 2\
= (wy —x1) lm|x; + 3 T34

N " X2(x1)

which simplifies to

( ) W, + X1
max (wq — X m
X120 1 1 3



Sequential Public Good Game

Player 1, leader. In the first period, player 1 solves

( ) W, + X1
max (wq — X m
X120 1 1 3

Differentiating with respect to x;, we obtain
mw; —xq) Jm(w, + x;) _

2m(w, + x41) V3

m(Wl — 2W2 — 3x1) _

2V3m(w, + x)

Then solving for x;, we find player 1’s equilibrium contribution in this sequential-move version of the public
good game

xfeq — W1—2W2
3



Sequential Public Good Game

Therefore, the SPE of the game is:
SPNE = (xlseq,xz(xl)) = (

As a consequence, players contributions evaluated in equilibrium are:

Se wWq—2wW
e x; 1 == . 2 for player 1, and

* X5 = X, (xfeq) for player 2, that is

Seq\ _ W»- 2 Wi — ZWZ _ 7W2 — ZW]_
3 9



Sequential and Simultaneous Public Good
Game Comparison

* We find that the leader contributes less to the charity than when players submit
donations simultaneously, i.e.,
L 5ed _ Wi — 2W, < 3wy — 2w, L Sim
1 3 5 1
because this inequality simplifies to —w, < wy, which always hold given that
wealth levels are positive by assumption.

* The follower, however, contributed more in the sequential- than simultaneous-
move game since:

Seq /W2 —2Wp _ 3w, —2w; o

simplifies to —w; < w,, which also holds for all wealth levels.

* Intuitively, the leader anticipates that her decreased contributions will be
responded by the follower with an increase in her own donation.

* In other words, the leader exploits her first-move advantage, which in this case
means decreasing her contribution to free-ride the follower’s donation.




Application: Ultimatum Bargaining Game

Proposer

e Bargaining is prevalent in many economic
situations where two or more parties
negotiate how to divide a certain surplus,
such as the federal budget or a salary
Increase. 0

* We first examine the shortest bargaining
setting, the so-called “ultimatum bargaining
game” depicted in Figure 6.18a:

. Ela&/er 1 makes a division of the surplus to player

,Wwhere d € [0,1] can be interpreted as a | |
share of the total surplus. [ e |_y (129 K

* Observing the offer d, player 2 only has the
ability to accept it or reject it.

* The arc at the top of the game represents the
continuum of offers that(g)layer 1 can make
to player 2, since d € [0,1].

The size of the pie can

be normalized to 1,
offe :
d = js between 0 and 1.
Size ol pie

1
Responder

Accept Reject

Figure 6.18a. Ultimatum bargaining game.



Application: Ultimatum Bargaining Game

* If player 2 rejects the offer, both players earn a payoff of zero.

* If player 2 accepts the offer:
e She receives d
e Player 1 earns the remaining surplus, 1 — d.

* Example.

* If player 1 offers 20 percent of the surplus to player 2, d = 0.2, and player 2

accepts it, player 1 keeps the remaining 80 percent of the surplus, 1 —d =
0.8.

* This bargaining game is, then, equivalent to a “take-it-or-leave-it”
offer, or an ultimatum, from player 1, explaining the game’s name.



Application: Ultimatum Bargaining Game

Proposer

* The smallest subgame that we can
identify in Figure 6.18b is that
initiated after the responder (player
2) observes the proposer’s offer, d.

The size of the pie can

be normalized to 1,
d= —2_ ishetween0and 1.
size of ple

1

Responder

* The second smallest subgame is the
game as a whole.

Accept Reject

<«—— Smallest subgame

Figure 6.18b. Ultimatum bargaining game - Smallest subgame.



Application: Ultimatum Bargaining Game

* Applying backward induction

* Smallest subgame.
* Upon receiving an offer d, the responder accepts it if d satisfiesd = 0.
* First Stage.

* Proposer anticipates the responder’s decision rule, d = 0, and makes an offer that maximizes
her payoff conditional on that being accepted, i.e., proposer solves

max 1—d
d=0

which considers the constraint d = 0 to induce the responder to accept the offer.
» Differentiating with respect to d, yields —1 (corner solution).

* Intuitively, the proposer seeks to reduce d as much as possible (Figure with d on the
horizontal axis).

* Therefore, the proposer reduces d all the way to d* = 0, which still satisfies

acceptance, making the responder indifferent between accepting and rejecting the
offer.



Application: Ultimatum Bargaining Game

* For simplicity, we assume that the responder accepts offers that make her
indifferent.

* If, instead, she rejects this type of offers, thedproposer could offer her an extremely
small division of the surplus,d — 0, still yielding similar equilibrium results as above.

* Therefore, the SPE of the ultimatum game is:
SPE ={d*=0,d = 0}

which indicates that the proposer makes an offer d* = 0, and the responder
accepts any offer d that satisfies d = 0.

* Equilibrium path:
* The proposer offersd™ = 0
e The responder acceﬁts that offer, yieldin % equilibrium payoff (1 — d,d) = (1,0)
which implies that the proposer keeps all the surplus.

* Recall that this “equilibrium path” doesn’t describe how the responder
reacts to an off-the-equilibrium offer from the proposer, thatis, d # 0.



Application: Two-period alternating offers
bargaining game )

* Figure 6.19 extends the above
bargaining:

 allowing the responder (player 2)
to make a counteroffer if she

rejects the division that player 1 il
offers, d?.

Matrix 6.19. Two-period alternating offers
bargaining game



Application: Two-period alternating offers
bargaining game ]

Time structure:

* Player 1 makes an offer d! to player
2, who accepts or rejects it.

* If player 2 accepts d*, the game is
over, and player 2 earns d-. 1

. PIay?irll earns the remaining surplus,

* |f player 2 rejects, however, she can
make an offer d* to player 1 (which
we can interpret as a
“counteroffer”).

e Observing d?, player 1 responds
accepting or rejecting it.

Matrix 6.19. Two-period alternating offers
bargaining game



Application: Two-period alternating offers

bargaining game

Time structure:

* As in previous stages, both players
earn zero if the game ends without
a division being accepted.

* Otherwise, player 1 (the responder in
the second stage) earns d?, which has
a discounted value of §;d? in today’s
terms.

* Discount factor §; € [0,1] indicates
the relative importance that player
1 assigns to future payoffs.

Player 1

Matrix 6.19. Two-period alternating offers
bargaining game



Application: Two-period alternating offers
bargaining game ]

Time structure:

* Player 2 earns, in this case, the
remaining surplus 1 — d?, whose
discounted value in today’s terms

iS 62(1 — dZ) T [g; |

* |n this context, we can find four
subgames, those initiated after:
1. Player 1 receives offer d?
2. Player 2 rejects offer d*
3. Player 2 receives offer d*, and
4. The game as a whole

Matrix 6.19. Two-period alternating offers
bargaining game



Application: Two-period alternating offers
bargaining game

By backward induction, we start with the smallest subgame (subgame (1)).

e Subgame (1). At that pgmt of the game, player 1 accepts any offer d? from
player 2 if and only if d

e Subgame (2). In subgameéz , player 2 anticipates this best response by
player 1, making an offer d“ that solves
max 1-— d?
d2>0
which is analogous to the proposer’s problem in the ultimatum bargaining
game of section 6.4.3.

* Intuitively, when players reject offers and reach their final period of interaction, they
face a strategic setting like the ultimatum bargaining game:
* Not reaching an agreement at that point will lead to a zero payoff for everyone, as in the
ultimatum bargaining game.
* The proposer (player 2) offers the lowest d|V|5|on that guarantees acceptance from
player 1, d* = 0, earning a payoffof 1 —d? =1 -0 = 1.



Application: Two-period alternating offers
bargaining game

* Subgame (3). Player 2 chooses whether to:
* Accept the offer from player 1, earning d?, or

* Reject it and become the proposer tomorrow.
* In this setting, she anticipates that her equilibrium payoff in subgame (2) will be 1.
e Discounted value of 1 todayis 6, X 1 = §,.

* Therefore, player 2 accepts offer d! if and only if d1 > §,.



Application: Two-period alternating offers
bargaining game

* Game as a whole. Player 1 maximizes

max 1—d?
d1=6,

which yields an eolouilibrium offer dt = &,. Therefore, the SPE of the two-period
alternating offers bargaining game is

SPE = ((d' = 6,,d* 2 0),(d* = 0,d' = §&,)

Player 1 Player 2

* Player 1 offers a division d* = &, in the first period, and accepts any offer d* > 0in the
second period.

* Player 2 offers a division d? = 0 in the first period, and accepts any offer d* > §, in the
second period.



Application: Two-period alternating offers
bargaining game

e Game as a whole.

* This SPE implies that, while players have two periods to
negotiate how to divide the surplus, they reach an
agreement in the first period (instantaneously!):

e Player 1 offers a division d* = §,, which player 2 accepts since
it satisfies d? > 0, and the game is over (see left side of Figure
6.19).

* In equilibrium,

* Player 1 earns a payoff1 —d* =1 —§,.

* Player 2 earns a payoff equal to the division she accepted from
player 1, d! = §,.
* In summary, equilibrium payoffs are (uj,u;) = (1 —§,,65)




Application: Two-period alternating offers
bargaining game

Comparative Statics of equilibrium payoffs.

* As player 2 becomes more patient (higher 6,):
* Her equilibrium payoff increases while that of player 1 decreases.

* Player 1 understands that player 2 does not discount future payoffs significantly,
meaning that she can reject player 1’s offer today, becoming the proposer tomorrow.

* Ifinstead 6, — O:

* Player 1 anticipates that plalyer 2 severely discounts future payoffs, having a stronger
preference for today’s payoffs.

. Idr] this case, player 1 can exploit player 2’'s impatience by offering her a lower
ivision.

* Interestingly, player 1’s patience, as captured by his discount factor 45,
does not affect:
* The offer she makes to player 2 in equilibrium, d? = 0, or
* Players’ equilibriumg)ayoffs, (ui,u3) = (1 —=4,, &,), which are only affected by
player 2’s patience, 0,.



Some tricks about solving alternating offer
bargaining games

 Equilibrium payoffs in the last stage of the game are (0,1) where the proposer in
that stage makes a zero offer, which is accepted, helping the proposer keep the
whole surplus.

* This holds true when the game has only one period of possible negotiations (ultimatum
bargaining game), two periods, or more.

* Players then anticipate that, if the game reaches the last period, their equilibrium
payoffs will be (0,1) if player 2 is the proposer in that period or (1,0) if player 1 is
the proposer.

* (WLOG, assume that player 2 is the proposer in the last period).

* The proposer in the previous-to-last period (player 1), must then offer a division
d! that makes player 2 indifferent between:

* Accepting d* today or...

* Rejecting it to become the proposer tomorrow and earn a payoff of 1, with discounted value
6, X 1 = 4, today.

* This means that player 1 offers exactly d* = §,, keeping the remaining surplus 1 — §, in
equilibrium.



Some tricks about solving alternating offer
bargaining games

Applying in longer alternating offer bargaining games

* Forinstance, if players can negotiate for four periods, starting with player 1 making
an offer d*, we can operate by backward induction as follows:

1. Fourth period. Player 2 is the proposer, so the equilibrium payoff in that subgame is (0,1).

2. Third period. Player 1 makes an offer, so she must make player 2 indifferent between her
offer today or the whole surplus tomorrow, worth §, today. Equilibrium payoffs are, then,
* (1 — 52, 52)

3. Second period. Player 2 is the proposer, so she must make player 1 indifferent between her
offer today and payoff 1 — 6, tomorrow (when she becomes the proposer), with
discounted value §; (1 — §,) today. Therefore, equilibrium payoffs are

(6:(1=82),1 6,1 - 82))
where 1 — §; (1 — &,) represents the remaining surplus that player 2 earns, after offering
5:(1 — 6,) to player 1.



Some tricks about solving alternating offer
bargaining games

4. First period. Player 1 is the proposer, and she must make player 2
indifferent between her current offer and payoff 1 — §; (1 — §,)
tomorrow, with discounted value §,[1 — §; (1 — §,)] today. As a
consequence, equilibrium payoffs are

(1-6,[1-6; (1=63)], 6,11 —61(1—=632)])

where player 1’s equilibrium payoff denotes the remaining surplus after
she offers §,[1 — 6; (1 — 65,)] to player 2.



Some tricks about solving alternating offer
bargaining games

* Table 6.1 summarizes our approach to solve Player  Period  Player 1'spayoff  Player 2 payoff
this alternating-offer bargaining game, starting ﬁﬁQ
In the |ast period. Player 1 =1 1-02[1-61(1-02)] <« 1 - 03[1-01(}-03)]

* Vertical arrows indicate that a player must be Player 2 - 5059 L 15118

indifferent between her payoff in the Feriod
when she is a proposer and her payoft in the
previous period when she is the responder.

* Horizontal arrows, however, denote that the Player2 | =4 0 !
proposing player’s equilibrium payoff is the
remaining surplus, i.e., the share not offered to
her rival. Table 6.1. An approach to solve alternating-offers bargaining games.

* Graphically, we move up and sideways, and
then up and sideways again, until reaching the
first period, arrows resemble a ladder,
explaining why our students often refer to this
approach as the “ladder”.

Player 1 =3 1-0; < 03
)




Alternating-offer bargaining game with
infinite periods

e Consider an infinite-period bargaining game where player 1 makes offers to
player 2, d!, in odd numbered periods while player 2 makes to player 1, d?,
in even numbered periods

* We seek to find “Stationary strategies,” meaning:

* Player 1:

* Makes the same offer to player 2 in every period when player 1 is the proposer (every odd-
numbered period), and

* Follows the same decision rule when he becomes the responder (in every even-numbered
period).
* Player 2:

* Makes the same offer to player 1 in every period when player 2 is the proposer (every even-
numbered period), and

* Follows the same decision rule when he becomes the responder (in every odd-numbered
period).



Alternating-offer bargaining game with
infinite periods

Odd-numbered periods:

* Player 2 compares the payoff she gets from accepting the offer from
player 1, d1, against the payoff that she can earn tomorrow when she
becomes the proposer.

« Tomorrow, player 2 offers d?, keeping the remaining 1 — d? of the
surplus, with discounted value §,(1 — d?) in today’s terms.

* Player 1 accepts player 1’s offer today, d*, if and only if
dal > 6,(1 —d?).

* Player 1 anticipates this decision rule and minimizes her offer, d?,
making player 2 indifferent: d* = §,(1 — d?).



Alternating-offer bargaining game with
infinite periods

Even-numbered periods:

* Player 1 compares her payoff from accepting player 2’s offer, d?, and the
payoff she can earn tomorrow when she becomes the proposer.

* Player 1 offers d* to player 2 tomorrow, keeping the remaining 1 — d?! of the
surplus, with discounted value §;(1 — d1).

* Player 1 accepts d? today if and only if d? > &§; (1 — d%), where player 2
reduces d?, ultimately making player 1 indifferent between accepting and
rejecting, that is,

dz — 51 (1 — dl)



Alternating-offer bargaining game with
infinite periods

Solving the game.

* We have one equation each from odd and even-numbered periods with two
unknowns d! and d?.

» Solve for these two offers in equilibrium, we can insert one indifferent
condition into the other yielding

d1 —_ 52 (1 — §1(1 — d12>

d?
which rearranges tod! = §, — 8,6, + 6,6, d*, and solving for d?, yields
1 __ 52(1 _ 513

1 _6162



Alternating-offer bargaining game with
infinite periods

* Inserting this result into indifference condition d? = §;(1 — d'), we

obtain
62(1=381)\  6:(1—63)
51 1 - —_
1 - 5152 1 - 6162

* We can then conclude that, in the first period, player 1 makes an offer
d'to player 2, who immediately accepts it, and the game is over,
vielding equilibrium payoffs

g1 g1y _ 1-0; 52(1—51))
(1-d%d") = (1—6152’ 1-8165,
§,(1-81) 1-6,

wherel—-dl =1 - — .
ere 1-616, 1-616,

d* =




Alternating-offer bargaining game with
infinite periods

. 'gher_efore, player 2’s equilibrium payoff, d!, increases in her own discount factor
2, Since

od?! _ _1-6 > 0
P} (1-6162)?
Implying that, as player 2 assigns more weight to her future payoff, she can reject player 1’s
b

offer and wait to become the proposer, which forces player 1 to make a more generous
offer today.

* In contrast, player 2’s equilibrium payoff decreases in her rival’s discount factor, 64,

because
od?! B 0,(0, — 1)
06, (1—6,6,)2

which intuitively means that, as player 1, assigns more Weiﬁht to her future payoffs, player
2 must offer her a larger surplus share in future periods (when player 2 becomes the
proposer). This, in turn, reduces player 2’s future payoffs, making her less attracted to
reject the offer from player 1 today.

<0




Appendix:

Mixed and Behavioral Strategies



Appendix — Mixed and Behavioral Strategies

e Definition. Mixed Strategy. In a
sequential-move game, a mixed
strategy is a probability Flayer 1
distribution over all player i’s
pure strategies s; € S;.

Player 2

* In Figure 6.20, the set of pure
strategies is 51 =
{Ac, Ad, Bc, Bd}, and a mixed
strategy is a randomization over
all these pure strategies.

Player 1

Figure 6.20. Mixed and behavioral strategies in a game tree.



Appendix — Mixed and Behavioral Strategies

* Intuitively, player i rolls a dice, before
the game starts, and the outcome of
this roll determines the path of play Plaver 1
that she will follow (i.e., the pure '
strategy that she chooses).

* For instance, a mixed strategy for
player 1 could be

(OAc, 0Ad,> Bc, Bd) , player

* which puts:
* no probability weight on pure strategies
Ac and Ad, but

* assigns 50 percent probability on Bc and
Bd.

Figure 6.20. Mixed and behavioral strategies in a game tree.



Appendix — Mixed and Behavioral Strategies

Definition. Behavioral strategy.

A behavioral strategy is a mapping b;: H; — AA;(h;), where b;(s; (hl-)) is the
probability that player i selects action s;(h;) at information set h;.

In the context of Figure 6.20, an example of behavioral strategy for player 1 could
specify that:

* At the first node where she is called to move, she randomizes between the two available actions in
this node, A and B, such as pA + (1 — p)B wherep € [0,1].

* Similarly, in the second node where she is called to move, she randomizes between actions ¢ and d,
e.g.,qc + (1 —q)d, whereq € [0,1].

In that context, an example of a behavioral strategy for player 1is (p,q) = (l 1) ,

. 374
meaning that:
e She assigns a probability of gto action A in the first node where she is called to move, and

o1 : :
* Probability ; toactioncin the second node where she plays.



Appendix — Mixed and Behavioral Strategies

* Equivalence.
* Are behavioral strategies equivalent to a corresponding mixed strategy?
* Yes, we can construct a one-to-one correspondence between behavioral and mixed strategy.

* To see this with the ab9ve example, if probabilities p and g in the behavioral strategy
satisfyp =0and g = > then the behavioral strategy becomes

B . + . d
2772
is equivalent to the mixed strategy

0Ac, 0Ad 1B 1Bd
C, 'S C;Z

Since, in one of them, player 1 starts choosing B in pure strategies, and then randomizes
between ¢ and d with equal probability.

* Otherwise, the behavioral and mixed strategy do not produce the same outcome.



Appendix — Mixed and Behavioral Strategies

 “Manuals and Libraries.”

* Following Luce and Raiffa’s (1957) analogy, a pure strategy s; € S; can be
understood as an “instructional manual” in which each page tells player i

which action to choose when she is called on to move at information set h;.
* Every manual has as many pages as information sets player i can face.

* In this analogy, strategy space S; is a “library” with all possible instruction
manuals.

* A mixed strategy, then, randomly chooses a specific manual s; from the
library S; (i.e., a specific complete contingent plan), which the player
considers for the rest of the game.

* |n contrast, a behavioral strategy chooses pages from different manuals
(actions in each information set) with positive probability.
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