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Sequential Move Game

• Why not just solve them using NE?
• We would find too many NEs
• Some NEs would be “sequentially irrational,” as we define in this chapter.

• We then need players to behave rationally:
• Every player maximizes her payoff when called to move (on a node or on an 

information set)…
• given her position on the game tree, and
• given her available information.

• Strategy profiles where every player is sequentially rational will be called 
Subgame Perfect Equilibria (SPEs).

• We will consider games with:
• Discrete and continuous strategies. 
• When players observe their rivals’ previous actions, and when they do not.

• Before we start, we need to specify some “game tree rules.”



Tree Rules

1. Every node is the successor of the initial 
node. 
• Figure 1 illustrates this property.
• Game tree in the left satisfies it, since there is 

only one initial node.
• The game tree in the right panel violates it.
• If a modeler wanted to indicate that two different 

players act simultaneously…
• Then the figure 6.1a at the bottom is the correct way 

to represent this. 
• Player 1 selects between 𝐵𝐵 or 𝐶𝐶, then player 2 

chooses c or d without observing player 1’s choice (as 
they are simultaneous).

• If, instead, the modeler considers the same player 
in two initial nodes (right panel in Figure 6.1), 
there must be a mistake because Player 1 cannot 
choose simultaneously between 𝐴𝐴 and 𝐵𝐵 (on the 
top of the figure), and between 𝐶𝐶 and 𝐷𝐷 (on the 
bottom), as if he had multiple personalities! 

• In this case, player 1’s decision should happen at the 
subsequent stage.

One initial node

Figure 6.1a: two different players acting simultaneously
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Tree Rules

2. Every node has exactly one 
immediate predecessor; except the 
initial node that has no 
predecessor.
• The left panel in Figure 6.1 satisfies this 

property. 
• But Figure 6.2 depicts a game tree that 

violates it.
• If a tree has nodes with more than one 

predecessor, we could run into 
misunderstandings:

• In Figure 6.2, we do not know if player 4 is 
called to move after player 2 chose 𝑏𝑏 or 
because player 3 chose 𝑐𝑐

Figure 6.2: Game with two predecessors

One initial node



Tree Rules
No, you must be 
referring to a
different action.
Otherwise collapse 
everything
under the same name.3. Multiple branches extending from 

the same node have different action 
labels.
• Left panel in Figure 6.3 satisfies this 

property
• The right panel violates it because label 𝐴𝐴 is 

on two branches for player 1.
• If the modeler seeks to represent that:

• Player 1 chooses 𝐴𝐴 in both the top and middle 
branches that stem from the initial node, then 
these two branches should be collapsed into a 
single branch.

• If, instead, the modeler tries to represent that 
player 1 has two different actions in each of 
these branches, then they should be labelled 
differently to avoid misunderstandings.



Tree Rules

Incorrect, otherwise P3
knows he is called on to
move after player 1 
chose B.
(no uncertainty)

4. Each information set contains nodes for 
only one player.
• The left panel in Figure 6.4 satisfies this 

property. 
• The right panel violates it.
• Intuitively, if player 2 is called to move at the 

top node of the game tree in the right panel, 
she can infer that player 1 selected 𝐴𝐴, leaving 
her no uncertainty about player 1’s choices in 
the previous stage. 

• A similar argument applies to player 3: if she is 
called to move at the bottom node, she knows 
that player 1 selected 𝐵𝐵.

• Therefore, the information set connecting the 
top and bottom nodes is incorrect 
(unnecessary).



Tree Rules

5. Same number of branches and labels.
• 1st requirement. All nodes in a given information 

set have the same number of branches stemming 
from them (i.e., the same number of immediate 
successors)

• Figure 6.5a depicts a game tree that violates this:
• Player 2 would be able to infer whether player 1 chose 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 or 𝑁𝑁𝑁𝑁𝑁𝑁 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 by just observing the number of 
strategies. 

• Drawing the information set is unnecessary in this 
setting!

• 2nd requirement. The labels in the branches must 
coincide across all nodes connected by the same 
information set.

• Figure 6.5b depicts a game tree that violates this: 
• Player 2 would be able to infer that:
• Player 1 must have chosen 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 if she must select 

between 𝐴𝐴 and 𝐵𝐵, but…
• Player 1 must have chosen 𝑁𝑁𝑁𝑁𝑁𝑁 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is she must 

select between 𝐴𝐴 and 𝐶𝐶.

Figure: 6.5a.  Different number of branches 



Actions vs. Strategies

• Graphically, an action denoted as 𝑎𝑎𝑖𝑖 or 𝑠𝑠𝑖𝑖 ℎ𝑖𝑖 , is just a specific branch that 
player 𝑖𝑖 chooses when it is her turn to move. 

• Note that the notation is to emphasize one action among those available in 
information set ℎ𝑖𝑖 ,𝐴𝐴𝑖𝑖 ℎ𝑖𝑖 .

• A strategy is the list of all the branches that she would choose along the 
game tree, both in nodes that are reached in equilibrium and those that 
are not reached.

• Complete contingent plan.
• Definition. Pure Strategy. 

• In a sequential-move game, a pure strategy for player 𝑖𝑖 is a mapping 
𝑠𝑠𝑖𝑖: 𝐻𝐻𝑖𝑖 → 𝐴𝐴𝑖𝑖

that assigns an action 𝑠𝑠𝑖𝑖 ℎ𝑖𝑖 ∈ 𝐴𝐴𝑖𝑖 ℎ𝑖𝑖 at information set ℎ𝑖𝑖 ∈ 𝐻𝐻𝑖𝑖 , where 𝐴𝐴𝑖𝑖 ℎ𝑖𝑖
denotes the set of available actions at information set ℎ𝑖𝑖 .



Actions and Strategies
• Importantly, the above definition of pure 

strategy applies to every information set, 
ℎ𝑖𝑖 ∈ 𝐻𝐻𝑖𝑖, describing how player 𝑖𝑖 behaves 
once she reaches each information set ℎ𝑖𝑖. 

• In contrast, an action only describes how 
player 𝑖𝑖 behaves when reaching a specific 
information set ℎ𝑖𝑖.

• Example (Figure 6.3): 
• 𝐼𝐼𝐼𝐼 denotes player 2’s action at the top node 

of the game tree.
• (𝐼𝐼𝐼𝐼,𝑂𝑂𝑂𝑂𝑂𝑂𝑂, 𝐼𝐼𝐼𝐼𝐼𝐼) denotes her strategy, 

indicating that she responds with:
• 𝐼𝐼𝐼𝐼 after player 1 chooses 𝐴𝐴, 
• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂 after player 1 selects 𝐵𝐵, and 
• 𝐼𝐼𝐼𝐼′′ after player1 chooses 𝐶𝐶).



Why don’t we just find the Nash Equilibria of 
the Game Tree?
• Example. Entry Game. 

• Consider the Entry game in Figure 6.6.
• A firm (potential entrant) chooses whether to 

enter into an industry, where an incumbent firm 
operates as a monopolist, or stay out of the 
market.

• If the potential entrant stays out (at the bottom 
of the figure): 

• The incumbent remains a monopolist, earning 
$10 while the potential entrant earns zero. 

• However, if the entrant joins the industry (top of 
the figure), the incumbent observes this 
decision and responds either:

• Accommodating the entry (e.g., setting moderate 
prices) which yields a payoff of $4 for each firm, or 

• Fighting it (e.g., starting a price war against the 
entrant) leading to a payoff of −$2 for each firm.



Entry Game (contd.)
• To find the NEs of this game tree, we first need to represent the game 

in matrix form.

• There are two psNE for this game: 
𝑁𝑁𝑁𝑁 = { 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐼𝐼𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑂𝑂𝑂𝑂𝑂𝑂 }

Potential Entrant
In Out

Incumbent
Accommodate 4,4 10,0

Fight Entry -2,-2 10,0
Matrix 6.1a. Finding NEs in the Entry Game



Example 6.1. Entry Game (contd.)

• Specifically, for the incumbent, we find that:
• 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼 = 𝐴𝐴𝐴𝐴𝐴𝐴 because 4 > −2
• 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 because both yield a profit of 10

• For the potential entrant,
• 𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐼𝐼𝐼𝐼 because 4 > 0
• 𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑂𝑂𝑂𝑂𝑂𝑂 because 0 > −2

• Therefore: 
• In the first NE, entry occurs and the incumbent responds accommodating.
• In the second NE, the entrant does not enter because it believes that the 

incumbent will start a price war.



Example 6.1. Entry Game (contd.)

• But is this belief credible?
• NO! The entrant beliefs about the incumbent’s decision to 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 after he 

enters are not rational (in a sequential way): 
• Once the entrant is in, the best thing that the incumbent can do it to accommodate 

4 > −2 .
• Hence, the incumbent would never have incentives to start a price war after entry has 

already occurred.
• Therefore, among the two NEs:

• Only 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐼𝐼𝐼𝐼 is sequentially rational, 
• 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑂𝑂𝑂𝑂𝑂𝑂 I s not sequentially rational.



Introducing a new solution concept

• In the Entry Game, we found NEs that were sequentially irrational.
• Can we find only those equilibria that are sequentially rational? Yes!
• We can guarantee sequential rationality by using a new solution concept, 

Subgame Perfect Equilibrium (SPE).

• For this solution concept, we first need to define what we mean by a 
“subgame.”

• Definition. Subgame:
• A subgame is a tree structure defined by a node and all its successors.

• This definition means that: 
• if nodes 𝑎𝑎 and 𝑏𝑏 are connected with an information set (so player i does not know whether 

he is at node 𝑎𝑎 or 𝑏𝑏), then both nodes must be part of the same subgame.
• Examples in next slide.



Subgames - Example

• Graphically, a subgame can be 
identified by drawing a rectangle 
or a circle around a section of the 
game tree without “breaking” any 
information set.

• Figure 6.7a depicts the Entry 
Game, identifying only two 
subgames: 

1. that initiated when the incumbent 
is called on to move; and

2. the game as a whole.

Figure: 6.7a.  Subgames in the entry game



Subgames – Example

• There are 4 subgames in Figure 6.7b:
1. After player 2 is called to move after 

player 1 chooses 𝑈𝑈𝑈𝑈
2. After player 2 is called to move after 

player 1 chooses 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
3. After player 3 is called to move, 

which happens when player 2 
responds to 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 with 𝐶𝐶

4. The game as a whole



What if the Game Tree has Information Sets?

• Figure 6.8 depicts a game tree with 
an information set. 

• The smallest subgame must include 
player 2’s information set (otherwise we 
would be breaking it!)

• The presence of information sets 
reduces the number of subgames.

• In Figure 6.8, player 2 does not 
observe whether player 1 selected 𝑎𝑎
or 𝑏𝑏. 

• This entails that player 2, when choosing 
whether to respond with 𝑐𝑐 or 𝑑𝑑, 
operates “as if” player 1 was selecting 𝑎𝑎
or 𝑏𝑏 at the same time.

• This is equivalent to a setting where 
players interact in a simultaneous-move 
game.

Figure: 6.8.  Finding subgames in a game with an information set



Subgame Perfect Equilibrium

• Definition. Subgame Perfect Equilibrium (SPE). 
• A strategy profile 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖∗ is a Subgame Perfect Equilibrium if it 

specifies a NE in each subgame.

• To find SPEs in a sequential-move game, we just need to apply the 
notion of backward induction.



Tool 6.1. Applying backward induction

1. Go to the farthest right side of the game tree (where the game ends), 
and focus on the last mover.

2. Find the strategy that yields the highest payoff for the last mover.
3. Shade the branch that you found to yield the highest payoff for the last 

mover.
4. Go to the next-to-last mover and, following the response of the last 

mover that you found in step 3, find the strategy that maximizes her 
payoff.

5. Shade the branch that you found to yield the highest payoff for the next-
to-last mover.

6. Repeat steps 4-5 for the player acting before the previous-to-the-last 
mover, and then for each player acting before her, until you reach the 
first mover at the root of the game.



Example 6.2. Applying Backward Induction –
Entry Game
Before we start, recall this game has two 
subgames.
1st step: Applying backward induction, we first 
focus on the last subgame (closest to the 
terminal nodes). 
• This corresponds to the last mover, the 

incumbent. 
2nd step: Comparing its payoff from 
accommodating entry, 4, and starting a price 
war, −2, we find that its best response to entry 
is to accommodate. 
We shade the corresponding branch in Figure 
6.9 to keep in mind the optimal response of 
the incumbent in this subgame.

Figure: 6.9.  Applying Backward Induction in the entry game –Last Move



Example 6.2. Applying Backward Induction –
Entry Game

Payoff for entrant (1st mover) Payoff for Incumbent (2nd mover)

Smallest proper subgame
(1st step)

2nd step

3rd step: We move to the first mover, the 
entrant, who anticipates that, if it enters, 
the incumbent will 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 
• This means that the entrant expects that, 

upon entry, the game will proceed 
through the shaded branch in Figure 6.10 
yielding a payoff of 4 from entering. 

• If, instead, the entrant stays out, its 
payoff is only 0. As a consequence, the 
optimal strategy for the entrant is to 
enter. Figure: 6.10.  Applying Backward Induction in the entry game –First Mover



Example 6.2. Applying Backward Induction –
Entry Game

Payoff for entrant (1st mover) Payoff for Incumbent (2nd mover)

Smallest proper subgame
(1st step)

2nd step

• Hence:

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

• Among the two psNE we found, i.e., 
(𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) and (𝑂𝑂𝑂𝑂𝑂𝑂,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹),

• only the former is sequentially rational.

Figure: 6.10.  Applying Backward Induction in the entry game –First Mover



Example 6.2. Applying Backward Induction –
Entry Game

Payoff for entrant (1st mover) Payoff for Incumbent (2nd mover)

Smallest proper subgame
(1st step)

2nd step

• Figure 6.10 shades the branches that 
players choose in equilibrium, known 
as the “equilibrium path”.

• The equilibrium path of play is a visual 
tool to understand how players 
behave in equilibrium: 

• From the initial node to one of the 
terminal nodes in the tree, 

• but does not coincide with the SPE in 
more involved games.

Figure: 6.10.  Applying Backward Induction in the entry game –First Mover



Example 6.2. Applying backward induction –
Entry Game
• Recall that (𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) was also one of the 

NEs in the Entry game, as shown in Example 6.1.
• Then Examples 6.1 and 6.2 illustrate that:

• Every SPE must be a NE, since (𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) is both 
a SPE and one of the NEs in the Entry game, but…

• The converse ins not necessarily true. 
• More formally, for a strategy profile 𝑠𝑠∗,

𝑠𝑠∗ is a SPE ⇒ 𝑠𝑠∗ is a NE
⇍

• Alternatively, the set of strategy profiles that can be 
supported as SPEs of a game is a subset of those 
strategy profiles that can be sustained as NE, as 
depicted in Figure 6.11.



Example 6.3. Applying Backward Induction in 
the Modified Entry Game
• Consider the modified version of 

the Entry Game depicted in Figure 
6.12.

• The top part of the game tree 
coincides with that in the original 
Entry game.

• However, if the entrant chooses to 
stay out of the industry, the 
incumbent can now respond 
investing in a new technology or 
not, with associated payoffs 0,12
and 0,10 , respectively.



Example 6.3. Applying Backward Induction in 
the Modified Entry Game
Three subgames: 
1. one initiated after the 

entrant joins the 
industry

2. another initiated after 
the entrant remains out 
and 

3. the game as a whole



Example 6.3. Applying Backward Induction in 
the Modified Entry Game

Solve subgame 1 
by comparing 
underlined 
payoffs 

Solve subgame 2 
by comparing 
underlined 
payoffs 

• Anticipating 𝐴𝐴𝐴𝐴𝐴𝐴 upon entry 
and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 upon no entry, 
the entrant can, in the initial 
node, compare its payoff 
from entry, 4, and from no 
entry 0, thus choosing to 
enter.

• Therefore:

which denotes that the entrant 
chooses 𝐼𝐼𝐼𝐼, and the incumbent 
responds with 𝐴𝐴𝐴𝐴𝐴𝐴 after 𝐼𝐼𝐼𝐼, but 
with 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 after 𝑂𝑂𝑂𝑂𝑂𝑂.

𝑆𝑆𝑆𝑆𝑆𝑆 = {(𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴/𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)}



Equilibrium Path vs. SPE

• Figure 6.14 shades the branches that players choose 
in equilibrium.

• The equilibrium path, coincides with that in the 
original Entry game.

• The SPE, however, is more intricate because it 
specifies the incumbent’s equilibrium behavior both 
in the node that it reaches in equilibrium (when the 
entrant joins the market) and in the node that the 
incumbent does not even reach in equilibrium (when 
the entrant stays out).

• Thus, when describing the SPE of a sequential-move 
game, it must specify the equilibrium behavior for 
every player at every node where she is called to 
move, even in nodes that may not be reached in 
equilibrium.Figure: 6.14 Equilibrium Path vs. SPE



Finding SPEs in Game Trees with Information 
Sets
• Consider Figure 6.15.
• If firms 1 chooses 𝑈𝑈𝑝𝑝, this firm gets to 

play again, choosing between 𝐴𝐴 and 𝐵𝐵.
• Firm 2 is then asked to respond, but 

without seeing whether firm 1 chose 𝐴𝐴
or 𝐵𝐵.

• Firm 2’s uncertainty is graphically 
represented by the dotted line 
connecting the end of the branches that 
it doesn’t distinguish, 𝐴𝐴 and 𝐵𝐵.

• This dotted line is formally known as an 
“information set” for Firm 2, because this 
firm doesn’t know which of these two 
actions was chosen by Firm 1.

Payoff of firm 1 Payoff of firm 2



Finding SPEs in Game Trees with Information 
Sets
• Before applying backward induction to this game, a usual trick is to 

find all the subgames (i.e., circling the portions of the tree that do 
not break any information set)

Figure: 6.15(a) Finding subgames
Figure: 6.15(b) Not subgames



Finding SPEs in Game Trees with Information 
Sets
• Subgame 1. 

• Firm 2 does not observe which 
action firm 1 chose (either 𝐴𝐴 or 
𝐵𝐵). Therefore, subgame 1 can 
be represented using Matrix 
6.2.

• Matrix 6.3 underlines the best 
response payoffs.

• 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 = 𝐴𝐴,𝑋𝑋

Firm 2
X Y

Firm 1
A 3,4 1,4
B 2,1 2,0

Matrix 6.2. Representing Subgame 1 in matrix form

Firm 2
X Y

Firm 1
A 3,4 1,4
B 2,1 2,0

Matrix 6.3. Finding the NE of Subgame 1



Finding SPEs in Game Trees with Information 
Sets
• The Game as a whole.

• Firm 1 must choose between 𝑈𝑈𝑈𝑈 and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 
anticipating that if it chooses 𝑈𝑈𝑈𝑈, subgame 1 will 
start.

• Firm 1 can anticipate equilibrium behavior in 
subsequent stages of the game; that is, the NE of 
subgame 1 is 𝐴𝐴,𝑋𝑋 , with payoff (3,4).

• Firm 1 can then simplify its decision problem to the 
tree depicted in Figure 6.16. Therefore, firm 1 only 
needs to compare the following: if it chooses 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, the game is over and its payoff is 2, 
whereas if it chooses 𝑈𝑈𝑈𝑈, subgame 1 is initiated, 
obtaining a payoff of 3. 

• Because 3 > 2, firm 1 prefers to choose 𝑈𝑈𝑈𝑈 rather 
than 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, illustrated by the thick arrows on the 
branch corresponding to 𝑈𝑈𝑈𝑈.

• The SPE of this game is 𝑈𝑈𝑈𝑈, 𝐴𝐴,𝑋𝑋 .



Evaluating SPE as a Solution Concept

1. Existence? Yes.
• When we apply backward induction in any game tree, we find that at least 

one equilibrium exist. 
• This is often known as “Zermelo’s theorem”, after Zermelo (1913) article on chess, and 

later on extended by Kuhn (1953).
• Intuitively, this means that every player selects on strategy at every node 

where she is called to move.
• If a player is indifferent between two available actions a and b, for instance, 

then her best response is to choose either.
• But every player selects on strategy at every node, yielding at least one SPE strategy 

profile.



Evaluating SPE as a Solution Concept

2. Uniqueness? No.
• While the examples in this chapter display game trees that produce a unique 

SPE, we cannot guarantee that applying backward induction will always 
induce a unique SPE, as required by this criterion.

• For instance, if in the Entry game of Example 6.2 the incumbent’s payoff from 
both accommodating and fighting entry was 4, then this firm would be 
indifferent between 𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, leading to two SPEs: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴 , 𝐼𝐼𝐼𝐼,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
• In this case, the SPEs exactly coincide with those that are NEs.
• Interesting point: 

• If players are not indifferent about any of their actions at any of the nodes (or 
information sets) where they are called to move…

• equilibrium behavior in each subgame must specify a unique strategy for every player in 
that subgame, 

• so the SPE must be unique.



Evaluating SPE as a Solution Concept

3. Robust to small payoff perturbations? Yes.
• If we change the payoff of one of the players by a small amount (e.g. 0.001, 

but generally, for any 𝜀𝜀 that approaches zero), backward induction still 
provides us with the same equilibrium outcome, implying that SPE is robust to 
small payoff perturbations.

• This is due the fact that:
• If a strategy 𝑠𝑠𝑖𝑖 yields a strictly higher payoff than another strategy 𝑠𝑠𝑖𝑖′,
• it must still yield a strictly higher payoff than 𝑠𝑠𝑖𝑖′ after we apply a small payoff 

perturbation (remember that 𝜀𝜀 can be infinitely small), 
• meaning that play 𝑖𝑖 still chooses 𝑠𝑠𝑖𝑖 in the subgame where this action was optimal.



Evaluating SPE as a Solution Concept

4. Socially optimal? No.
• The application of backward induction does not necessarily produce a socially 

optimal outcome, which goes in line with our evaluation of IDSDS and NE, 
which did not yield socially optimal outcomes either.



Application: Stackelberg Game of Sequential 
Quantity Competition
• Consider two firms produce a homogeneous good facing a linear 

demand function 𝑝𝑝 𝑄𝑄 = 1 − 𝑄𝑄, where 𝑄𝑄 = 𝑞𝑞1 + 𝑞𝑞2 denotes 
aggregate output.

• Assume that all firms have a constant marginal cost of production 
𝑐𝑐, where 1 > 𝑐𝑐 ≥ 0.

• Firms interact in a sequential-move game:
1. In the first stage, firm 1 (the industry leader) chooses its output 𝑞𝑞1.
2. In the second stage, firm 2 (the industry follower) observes that the 

leader’s output 𝑞𝑞1 and responds with its own output level 𝑞𝑞2.
• Solving the game by backward induction, we start by solving the 

second stage.



Application: Stackelberg Game of Sequential 
Quantity Competition
• Second stage, follower – firm 2.

Firm 2 maximizes its profit as follows
max
𝑞𝑞2≥0

𝜋𝜋2 = 1 − 𝑞𝑞1 − 𝑞𝑞2 𝑞𝑞2 − 𝑐𝑐𝑞𝑞2

Differentiating with respect to 𝑞𝑞2:
1 − 2𝑞𝑞2 − 𝑞𝑞1 − 𝑐𝑐 = 0

Solving for 𝑞𝑞2 yields:

𝑞𝑞2 =
1 − 𝑐𝑐

2
−

1
2
𝑞𝑞1

which is positive for all 1−𝑐𝑐
2
− 1

2
𝑞𝑞1 ≥ 0 ⇒ 𝑞𝑞1 ≤ 1 − 𝑐𝑐.



Application: Stackelberg Game of Sequential 
Quantity Competition
Firm 2’s BRF:

𝑞𝑞2 𝑞𝑞1 = �
1 − 𝑐𝑐

2
−

1
2
𝑞𝑞1 if 𝑞𝑞1 ≤ 1 − 𝑐𝑐

0 otherwise.
• Intuitively, the follower produces an output of 𝑞𝑞2= 1−𝑐𝑐

2
when the leader is 

inactive 𝑞𝑞1 = 0 , but decreases its output in 𝑞𝑞1 at a rate of 1
2
.

• When the leader’s output is sufficiently large, 𝑞𝑞1> 1 − 𝑐𝑐, the follower 
responds staying inactive, 𝑞𝑞2= 0.

• This BRF coincides with that under the Cournot model of simultaneous 
quantity competition in chapter 4.



Application: Stackelberg Game of Sequential 
Quantity Competition
• First stage, leader – firm 1.

Firm 1 maximizes its profit as follows
max
𝑞𝑞1≥0

𝜋𝜋1 = 1 − 𝑞𝑞1 − 𝑞𝑞2(𝑞𝑞1) 𝑞𝑞1 − 𝑐𝑐𝑞𝑞1
which is evaluated at 𝑞𝑞2 𝑞𝑞1 . Inserting firm 2’s BRF, we obtain

max
𝑞𝑞1≥0

𝜋𝜋1 = 1 − 𝑞𝑞1 −
1 − 𝑐𝑐

2
−

1
2
𝑞𝑞1

𝑞𝑞2 𝑞𝑞1

𝑞𝑞1 − 𝑐𝑐𝑞𝑞1 =
1 + 𝑐𝑐

2
−

1
2
𝑞𝑞1 𝑞𝑞1 − 𝑐𝑐𝑞𝑞1

Differentiating with respect to 𝑞𝑞1:
1 + 𝑐𝑐

2
− 𝑞𝑞1 − 𝑐𝑐 = 0

Solving for 𝑞𝑞1 yields:

𝑞𝑞1
𝑆𝑆𝑆𝑆𝑆𝑆 =

1 − 𝑐𝑐
2



Application: Stackelberg Game of Sequential 
Quantity Competition
• The SPE in this Stackelberg game of quantity competition:

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑞𝑞1
𝑆𝑆𝑆𝑆𝑆𝑆 , 𝑞𝑞2 𝑞𝑞1 =

1 − 𝑐𝑐
2 ,

1 − 𝑐𝑐
2 −

1
2 𝑞𝑞1

where firm 2 (the follower) response with its BRF, 𝑞𝑞2 𝑞𝑞1 , for any output that the
leader chooses (both its equilibrium output, 𝑞𝑞1 = 𝑞𝑞1

𝑆𝑆𝑆𝑆𝑆𝑆, and any off-the-equilibrium output, 
𝑞𝑞1 ≠ 𝑞𝑞1

𝑆𝑆𝑆𝑆𝑆𝑆).
• In equilibrium, we can claim that the follower observes the leader’s output, 𝑞𝑞1∗, and inserts it 

into its BRF, to obtain the follower’s equilibrium:

𝑞𝑞2
𝑆𝑆𝑆𝑆𝑆𝑆 =

1 − 𝑐𝑐
2

−
1
2

1 − 𝑐𝑐
2

𝑞𝑞1
𝑆𝑆𝑆𝑆𝑆𝑆

=
1 − 𝑐𝑐

4
• Importantly, we do not say that the SPE of this Stackelberg game with two symmetric firms is
𝑞𝑞1
𝑆𝑆𝑆𝑆𝑆𝑆 , 𝑞𝑞2

𝑆𝑆𝑆𝑆𝑆𝑆 = 1−𝑐𝑐
2

, 1−𝑐𝑐
4

. This output vector only describes firms’ output along the 
equilibrium path. In contrast, the SPE must specify each firm’s output decision, both in- and 
off-the-equilibrium path.



Equilibrium Output level in the Cournot and 
Stackelberg Games
• Recall that the equilibrium output in the Cournot model of simultaneous 

quantity competition was 𝑞𝑞𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖 = 1−𝑐𝑐
3

for every firm 𝑖𝑖 (see section 4.2.1), 
where we assumed the same indirect demand function 𝑝𝑝 𝑄𝑄 = 1 − 𝑄𝑄 and 
marginal cost 𝑐𝑐 for both firms.

• Therefore, 
• the leader produces more units than when firms chooses their output 

simultaneously, 𝑞𝑞1
𝑆𝑆𝑒𝑒𝑒𝑒 = 1−𝑐𝑐

2
> 1−𝑐𝑐

3
= 𝑞𝑞1𝑆𝑆𝑆𝑆𝑆𝑆, 

• while the follower produces fewer units, 𝑞𝑞2
𝑆𝑆𝑆𝑆𝑆𝑆 = 1−𝑐𝑐

4
< 1−𝑐𝑐

3
= 𝑞𝑞2𝑆𝑆𝑆𝑆𝑆𝑆.

• Intuitively, the leader exercises its “First-mover-advantage” by increasing 
its output, relative to that under Cournot competition, anticipating that the 
follower will respond to this increase in 𝑞𝑞1by decreasing its own output 𝑞𝑞2.



Equilibrium Output level in the Cournot and 
Stackelberg Games

• Figure 6.17 depicts the equilibrium 
output level in the Cournot and 
Stackelberg games, showing that the 
output pair moves form the 45° − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
(where both firms produce the same 
output) to above this line, which 
indicates that firm 1 produces more 
units than firm 2. 

• Graphically, firm 1 anticipates firm 2’s 
BRF, 𝑞𝑞2 𝑞𝑞1 , and chooses the point 
along this line that yields the highest 
profit.



Equilibrium Profit level in the Cournot and 
Stackelberg Games
As expected, the leader’s profit when firms compete sequentially,

𝜋𝜋1
𝑆𝑆𝑆𝑆𝑆𝑆 = 1 − 𝑞𝑞1

𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑞𝑞2
𝑆𝑆𝑆𝑆𝑆𝑆 𝑞𝑞1

𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑐𝑐𝑞𝑞1
𝑆𝑆𝑆𝑆𝑆𝑆

= 1 − 1−𝑐𝑐
2
− 1−𝑐𝑐

4
1−𝑐𝑐
2
− 𝑐𝑐 1−𝑐𝑐

2

= 1−𝑐𝑐 2

8
,

is larger than its profit when they compete simultaneously i.e., 

𝜋𝜋1
𝑆𝑆𝑆𝑆𝑆𝑆 =

1 − 𝑐𝑐 2

8
> 𝜋𝜋1𝑆𝑆𝑖𝑖𝑖𝑖 =

1 − 𝑐𝑐 2

9



Equilibrium Profit level in the Cournot and 
Stackelberg Games
In contrast, the follower’s profits when firms compete sequentially,

𝜋𝜋2
𝑆𝑆𝑆𝑆𝑆𝑆 = 1 − 𝑞𝑞1

𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑞𝑞2
𝑆𝑆𝑆𝑆𝑆𝑆 𝑞𝑞2

𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑐𝑐𝑞𝑞2
𝑆𝑆𝑆𝑆𝑆𝑆

= 1 − 1−𝑐𝑐
2
− 1−𝑐𝑐

4
1−𝑐𝑐
4
− 𝑐𝑐 1−𝑐𝑐

4

= 1−𝑐𝑐 2

16
,

is lower than its profits under simultaneous quantity competition, i.e.,

𝜋𝜋2
𝑆𝑆𝑆𝑆𝑆𝑆 =

1 − 𝑐𝑐 2

16
< 𝜋𝜋2𝑆𝑆𝑖𝑖𝑖𝑖 =

1 − 𝑐𝑐 2

9



Sequential Public Good Game

• Let us now return to the public good game we examined in section 
4.4, but rather than assuming players simultaneously choose their 
contributions to the public good, we now consider that 

• Player 1 makes her contribution 𝑥𝑥1in the first period, and after observing this 
contribution, player 2 responds with her contribution 𝑥𝑥2 in the second period.

• Because this is a sequential-move game of complete information, we solve it 
by backward induction, focusing on player 2 first, and then moving on to 
player 1.



Sequential Public Good Game

Player 2, follower. Player 2 takes player 1’s contribution, 𝑥𝑥1, as given, 
and chooses her contribution 𝑥𝑥2to solve the utility maximization 
problem:

max
𝑥𝑥2

𝑢𝑢2 𝑥𝑥1, 𝑥𝑥2 = 𝑤𝑤2 − 𝑥𝑥2 𝑚𝑚 𝑥𝑥1 + 𝑥𝑥2
Differentiating with respect to 𝑥𝑥2, we obtain

− 𝑚𝑚 𝑥𝑥1 + 𝑥𝑥2 +
𝑚𝑚 𝑤𝑤2 − 𝑥𝑥2

2 𝑚𝑚 𝑥𝑥1 + 𝑥𝑥2
= 0

which simplifies to  𝑚𝑚 𝑤𝑤2−2𝑥𝑥1−3𝑥𝑥2
2 𝑚𝑚 𝑥𝑥1+𝑥𝑥2

= 0 which holds when 3𝑥𝑥2 =
𝑤𝑤2−2𝑥𝑥1



Sequential Public Good Game

Solving for 𝑥𝑥2, we find that player 2’s BRF is:

𝑥𝑥2 𝑥𝑥1 = �
𝑤𝑤2
3
−

2
3
𝑥𝑥1 𝑖𝑖𝑖𝑖𝑥𝑥1 <

𝑤𝑤2
2

0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.

This BRF coincides with that found in section 4.4:

• Originating at 𝑥𝑥2 = 𝑤𝑤2
3

when player 1 does not donate to the public good.

• But decreasing at a rate of ⁄2 3 for every dollar that player 1 contributes.



Sequential Public Good Game
Player 1, leader. In the first period, player 1 anticipates player 2’s BRF in the subsequent period, 𝑥𝑥2 𝑥𝑥1 , and 
inserts it into her utility maximization problem as follows:

max
𝑥𝑥1≥0

𝑢𝑢1 𝑥𝑥1, 𝑥𝑥2 = 𝑤𝑤1 − 𝑥𝑥1 𝑚𝑚 𝑥𝑥1 + 𝑥𝑥2 𝑥𝑥1

= 𝑤𝑤1 − 𝑥𝑥1 𝑚𝑚 𝑥𝑥1 +
𝑤𝑤2
3 −

2
3 𝑥𝑥1

𝑥𝑥2 𝑥𝑥1

which simplifies to 

max
𝑥𝑥1≥0

𝑤𝑤1 − 𝑥𝑥1 𝑚𝑚
𝑤𝑤2 + 𝑥𝑥1

3



Sequential Public Good Game
Player 1, leader. In the first period, player 1 solves

max
𝑥𝑥1≥0

𝑤𝑤1 − 𝑥𝑥1 𝑚𝑚
𝑤𝑤2 + 𝑥𝑥1

3

Differentiating with respect to 𝑥𝑥1, we obtain
𝑚𝑚 𝑤𝑤1 − 𝑥𝑥1

2 𝑚𝑚 𝑤𝑤2 + 𝑥𝑥1
−

𝑚𝑚 𝑤𝑤2 + 𝑥𝑥1
3

= 0

⇒
𝑚𝑚 𝑤𝑤1 − 2𝑤𝑤2 − 3𝑥𝑥1
2 3 𝑚𝑚 𝑤𝑤2 + 𝑥𝑥1

= 0

Then solving for 𝑥𝑥1, we find player 1’s equilibrium contribution in this sequential-move version of the public 
good game 

𝑥𝑥1
𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑤𝑤1−2𝑤𝑤2

3
. 



Sequential Public Good Game

Therefore, the SPE of the game is: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑥𝑥1
𝑆𝑆𝑆𝑆𝑆𝑆 , 𝑥𝑥2 𝑥𝑥1 =

𝑤𝑤1 − 2𝑤𝑤2
3

,
𝑤𝑤2
3
−

2
3
𝑥𝑥1

As a consequence, players contributions evaluated in equilibrium are:
• 𝑥𝑥1

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑤𝑤1−2𝑤𝑤2
3

for player 1, and

• 𝑥𝑥2∗ = 𝑥𝑥2 𝑥𝑥1
𝑆𝑆𝑆𝑆𝑆𝑆 for player 2, that is

𝑥𝑥2 𝑥𝑥1
𝑆𝑆𝑆𝑆𝑆𝑆 =

𝑤𝑤2
3
−

2
3

𝑤𝑤1 − 2𝑤𝑤2
3

=
7𝑤𝑤2 − 2𝑤𝑤1

9



Sequential and Simultaneous Public Good 
Game Comparison
• We find that the leader contributes less to the charity than when players submit 

donations simultaneously, i.e.,

𝑥𝑥1
𝑆𝑆𝑆𝑆𝑆𝑆 =

𝑤𝑤1 − 2𝑤𝑤2
3

<
3𝑤𝑤1 − 2𝑤𝑤2

5
= 𝑥𝑥1𝑆𝑆𝑖𝑖𝑖𝑖

because this inequality simplifies to −𝑤𝑤2 < 𝑤𝑤1, which always hold given that 
wealth levels are positive by assumption. 
• The  follower, however, contributed more in the sequential- than simultaneous-

move game since:

𝑥𝑥2
𝑆𝑆𝑆𝑆𝑆𝑆 =

7𝑤𝑤2 − 2𝑤𝑤1
9

>
3𝑤𝑤2 − 2𝑤𝑤1

5
= 𝑥𝑥2𝑆𝑆𝑖𝑖𝑖𝑖

simplifies to −𝑤𝑤1 < 𝑤𝑤2, which also holds for all wealth levels.
• Intuitively, the leader anticipates that her decreased contributions will be 

responded by the follower with an increase in her own donation.
• In other words, the leader exploits her first-move advantage, which in this case 

means decreasing her contribution to free-ride the follower’s donation.



Application: Ultimatum Bargaining Game
• Bargaining is prevalent in many economic 

situations where two or more parties 
negotiate how to divide a certain surplus, 
such as the federal budget or a salary 
increase.

• We first examine the shortest bargaining 
setting, the so-called “ultimatum bargaining 
game” depicted in Figure 6.18a:

• Player 1 makes a division of the surplus to player 
2, 𝑑𝑑, where 𝑑𝑑 ∈ 0,1 can be interpreted as a 
share of the total surplus. 

• Observing the offer 𝑑𝑑, player 2 only has the 
ability to accept it or reject it.

• The arc at the top of the game represents the 
continuum of offers that player 1 can make 
to player 2, since 𝑑𝑑 ∈ 0,1 .



Application: Ultimatum Bargaining Game

• If player 2 rejects the offer, both players earn a payoff of zero. 
• If player 2 accepts the offer: 

• She receives 𝑑𝑑
• Player 1 earns the remaining surplus, 1 − 𝑑𝑑.

• Example. 
• If player 1 offers 20 percent of the surplus to player 2, 𝑑𝑑 = 0.2, and player 2 

accepts it, player 1 keeps the remaining 80 percent of the surplus, 1 − 𝑑𝑑 =
0.8.

• This bargaining game is, then, equivalent to a “take-it-or-leave-it” 
offer, or an ultimatum, from player 1, explaining the game’s name. 



Application: Ultimatum Bargaining Game

• The smallest subgame that we can 
identify in Figure 6.18b is that 
initiated after the responder (player 
2) observes the proposer’s offer, 𝑑𝑑.

• The second smallest subgame is the 
game as a whole.



Application: Ultimatum Bargaining Game

• Applying backward induction
• Smallest subgame. 

• Upon receiving an offer 𝑑𝑑, the responder accepts it if 𝑑𝑑 satisfies 𝑑𝑑 ≥ 0.
• First Stage. 

• Proposer anticipates the responder’s decision rule, 𝑑𝑑 ≥ 0, and makes an offer that maximizes 
her payoff conditional on that being accepted, i.e., proposer solves

max
𝑑𝑑≥0

1 − 𝑑𝑑
which considers the constraint 𝑑𝑑 ≥ 0 to induce the responder to accept the offer. 

• Differentiating with respect to 𝑑𝑑, yields −1 (corner solution).
• Intuitively, the proposer seeks to reduce 𝑑𝑑 as much as possible (Figure with 𝑑𝑑 on the 

horizontal axis). 

• Therefore, the proposer reduces 𝑑𝑑 all the way to 𝑑𝑑∗ = 0, which still satisfies 
acceptance, making the responder indifferent between accepting and rejecting the 
offer. 



Application: Ultimatum Bargaining Game

• For simplicity, we assume that the responder accepts offers that make her 
indifferent.

• If, instead, she rejects this type of offers, the proposer could offer her an extremely 
small division of the surplus, 𝑑𝑑 → 0, still yielding similar equilibrium results as above.

• Therefore, the SPE of the ultimatum game is:
𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑑𝑑∗ = 0,𝑑𝑑 ≥ 0

which indicates that the proposer makes an offer 𝑑𝑑∗ = 0, and the responder 
accepts any offer 𝑑𝑑 that satisfies 𝑑𝑑 ≥ 0.
• Equilibrium path:

• The proposer offers 𝑑𝑑∗ = 0
• The responder accepts that offer, yielding equilibrium payoff 1 − 𝑑𝑑,𝑑𝑑 = 1,0

which implies that the proposer keeps all the surplus.
• Recall that this “equilibrium path” doesn’t describe how the responder 

reacts to an off-the-equilibrium offer from the proposer, that is, 𝑑𝑑 ≠ 0 .



Application: Two-period alternating offers 
bargaining game
• Figure 6.19 extends the above 

bargaining:
• allowing the responder (player 2) 

to make a counteroffer if she 
rejects the division that player 1 
offers, 𝑑𝑑1.

Matrix 6.19. Two-period alternating offers 
bargaining game



Application: Two-period alternating offers 
bargaining game
Time structure:
• Player 1 makes an offer 𝑑𝑑1 to player 

2, who accepts or rejects it.
• If player 2 accepts 𝑑𝑑1, the game is 

over, and player 2 earns 𝑑𝑑1.
• Player 1 earns the remaining surplus, 

1 − 𝑑𝑑1.
• If player 2 rejects, however, she can 

make an offer 𝑑𝑑2 to player 1 (which 
we can interpret as a 
“counteroffer”).

• Observing 𝑑𝑑2, player 1 responds 
accepting or rejecting it. 

Matrix 6.19. Two-period alternating offers 
bargaining game



Application: Two-period alternating offers 
bargaining game
Time structure:
• As in previous stages, both players 

earn zero if the game ends without 
a division being accepted. 

• Otherwise, player 1 (the responder in 
the second stage) earns 𝑑𝑑2, which has 
a discounted value of 𝛿𝛿1𝑑𝑑2 in today’s 
terms.

• Discount factor 𝛿𝛿1 ∈ 0,1 indicates 
the relative importance that player 
1 assigns to future payoffs.

Matrix 6.19. Two-period alternating offers 
bargaining game



Application: Two-period alternating offers 
bargaining game
Time structure:
• Player 2 earns, in this case, the 

remaining surplus 1 − 𝑑𝑑2, whose 
discounted value in today’s terms 
is 𝛿𝛿2 1 − 𝑑𝑑2 .

• In this context, we can find four 
subgames, those initiated after:

1. Player 1 receives offer 𝑑𝑑2
2. Player 2 rejects offer 𝑑𝑑1
3. Player 2 receives offer 𝑑𝑑1, and
4. The game as a whole

Matrix 6.19. Two-period alternating offers 
bargaining game



Application: Two-period alternating offers 
bargaining game
By backward induction, we start with the smallest subgame (subgame (1)).
• Subgame (1). At that point of the game, player 1 accepts any offer 𝑑𝑑2 from 

player 2 if and only if 𝑑𝑑2 ≥ 0.
• Subgame (2). In subgame (2), player 2 anticipates this best response by 

player 1, making an offer 𝑑𝑑2 that solves
max
𝑑𝑑2≥𝟎𝟎

1 − 𝑑𝑑2

which is analogous to the proposer’s problem in the ultimatum bargaining 
game of section 6.4.3. 

• Intuitively, when players reject offers and reach their final period of interaction, they 
face a strategic setting like the ultimatum bargaining game: 

• Not reaching an agreement at that point will lead to a zero payoff for everyone, as in the 
ultimatum bargaining game.

• The proposer (player 2) offers the lowest division that guarantees acceptance from 
player 1, 𝑑𝑑2 = 0, earning a payoff of 1 − 𝑑𝑑2 = 1 − 0 = 1.



Application: Two-period alternating offers 
bargaining game
• Subgame (3). Player 2 chooses whether to:

• Accept the offer from player 1, earning 𝑑𝑑1, or 
• Reject it and become the proposer tomorrow. 

• In this setting, she anticipates that her equilibrium payoff in subgame (2) will be 1.
• Discounted value of 1 today is  𝛿𝛿2 × 1 = 𝛿𝛿2.

• Therefore, player 2 accepts offer 𝑑𝑑1 if and only if  𝑑𝑑1 ≥ 𝛿𝛿2.



Application: Two-period alternating offers 
bargaining game
• Game as a whole. Player 1 maximizes

max
𝑑𝑑1≥𝛿𝛿2

1 − 𝑑𝑑1

which yields an equilibrium offer 𝑑𝑑1 = 𝛿𝛿2. Therefore, the SPE of the two-period 
alternating offers bargaining game is

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑑𝑑1 = 𝛿𝛿2,𝑑𝑑2 ≥ 0

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 1

, 𝑑𝑑2 = 0,𝑑𝑑1 ≥ 𝛿𝛿2

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 2

• Player 1 offers a division 𝑑𝑑1 = 𝛿𝛿2 in the first period, and accepts any offer 𝑑𝑑1 ≥ 0 in the 
second period.

• Player 2 offers a division 𝑑𝑑2 = 0 in the first period, and accepts any offer 𝑑𝑑1 ≥ 𝛿𝛿2 in the 
second period.



Application: Two-period alternating offers 
bargaining game
• Game as a whole. 

• This SPE implies that, while players have two periods to 
negotiate how to divide the surplus, they reach an 
agreement in the first period (instantaneously!): 

• Player 1 offers a division 𝑑𝑑1 = 𝛿𝛿2, which player 2 accepts since 
it satisfies 𝑑𝑑2 ≥ 0, and the game is over (see left side of Figure 
6.19).

• In equilibrium, 
• Player 1 earns a payoff 1 − 𝑑𝑑1 = 1 − 𝛿𝛿2. 
• Player 2 earns a payoff equal to the division she accepted from 

player 1, 𝑑𝑑1 = 𝛿𝛿2.
• In summary, equilibrium payoffs are 𝑢𝑢1∗ ,𝑢𝑢2∗ = 1 − 𝛿𝛿2, 𝛿𝛿2



Application: Two-period alternating offers 
bargaining game
Comparative Statics of equilibrium payoffs. 
• As player 2 becomes more patient (higher 𝛿𝛿2): 

• Her equilibrium payoff increases while that of player 1 decreases.
• Player 1 understands that player 2 does not discount future payoffs significantly, 

meaning that she can reject player 1’s offer today, becoming the proposer tomorrow.
• If instead 𝛿𝛿2 → 0:

• Player 1 anticipates that player 2 severely discounts future payoffs, having a stronger 
preference for today’s payoffs. 

• In this case, player 1 can exploit player 2’s impatience by offering her a lower 
division.

• Interestingly, player 1’s patience, as captured by his discount factor 𝛿𝛿1,
does not affect:

• The offer she makes to player 2 in equilibrium, 𝑑𝑑2 = 0, or 
• Players’ equilibrium payoffs, 𝑢𝑢1∗ ,𝑢𝑢2∗ = 1 − 𝛿𝛿2, 𝛿𝛿2 , which are only affected by 

player 2’s patience, 𝛿𝛿2.



Some tricks about solving alternating offer 
bargaining games
• Equilibrium payoffs in the last stage of the game are 0,1 where the proposer in 

that stage makes a zero offer, which is accepted, helping the proposer keep the 
whole surplus. 

• This holds true when the game has only one period of possible negotiations (ultimatum 
bargaining game), two periods, or more.

• Players then anticipate that, if the game reaches the last period, their equilibrium 
payoffs will be 0,1 if player 2 is the proposer in that period or 1,0 if player 1 is 
the proposer. 

• (WLOG, assume that player 2 is the proposer in the last period).
• The proposer in the previous-to-last period (player 1), must then offer a division 
𝑑𝑑1 that makes player 2 indifferent between:

• Accepting 𝑑𝑑1 today or…
• Rejecting it to become the proposer tomorrow and earn a payoff of 1, with discounted value 
𝛿𝛿2 × 1 = 𝛿𝛿2 today. 

• This means that player 1 offers exactly 𝑑𝑑1 = 𝛿𝛿2, keeping the remaining surplus 1 − 𝛿𝛿2 in 
equilibrium.



Some tricks about solving alternating offer 
bargaining games
Applying in longer alternating offer bargaining games

• For instance, if players can negotiate for four periods, starting with player 1 making 
an offer 𝑑𝑑1, we can operate by backward induction as follows:

1. Fourth period. Player 2 is the proposer, so the equilibrium payoff in that subgame is 0,1 .
2. Third period. Player 1 makes an offer, so she must make player 2 indifferent between her 

offer today or the whole surplus tomorrow, worth 𝛿𝛿2 today. Equilibrium payoffs are, then, 
• 1 − 𝛿𝛿2,𝛿𝛿2 .

3. Second period. Player 2 is the proposer, so she must make player 1 indifferent between her 
offer today and payoff 1 − 𝛿𝛿2 tomorrow (when she becomes the proposer), with 
discounted value 𝛿𝛿1 1 − 𝛿𝛿2 today. Therefore, equilibrium payoffs are 

𝛿𝛿1 1 − 𝛿𝛿2 , 1 − 𝛿𝛿1 1 − 𝛿𝛿2
where 1 − 𝛿𝛿1 1 − 𝛿𝛿2 represents the remaining surplus that player 2 earns, after offering 
𝛿𝛿1 1 − 𝛿𝛿2 to player 1.



Some tricks about solving alternating offer 
bargaining games
4. First period. Player 1 is the proposer, and she must make player 2 

indifferent between her current offer and payoff 1 − 𝛿𝛿1 1 − 𝛿𝛿2
tomorrow, with discounted value 𝛿𝛿2 1 − 𝛿𝛿1 1 − 𝛿𝛿2 today. As a 
consequence, equilibrium payoffs are

1 − 𝛿𝛿2 1 − 𝛿𝛿1 1 − 𝛿𝛿2 , 𝛿𝛿2 1 − 𝛿𝛿1 1 − 𝛿𝛿2

where player 1’s equilibrium payoff denotes the remaining surplus after 
she offers 𝛿𝛿2 1 − 𝛿𝛿1 1 − 𝛿𝛿2 to player 2.



Some tricks about solving alternating offer 
bargaining games
• Table 6.1 summarizes our approach to solve 

this alternating-offer bargaining game, starting 
in the last period.

• Vertical arrows indicate that a player must be 
indifferent between her payoff in the period 
when she is a proposer and her payoff in the 
previous period when she is the responder.

• Horizontal arrows, however, denote that the 
proposing player’s equilibrium payoff is the 
remaining surplus, i.e., the share not offered to 
her rival.

• Graphically, we move up and sideways, and 
then up and sideways again, until reaching the 
first period, arrows resemble a ladder, 
explaining why our students often refer to this 
approach as the “ladder”.



Alternating-offer bargaining game with 
infinite periods
• Consider an infinite-period bargaining game where player 1 makes offers to 

player 2, 𝑑𝑑1, in odd numbered periods while player 2 makes to player 1, 𝑑𝑑2,
in even numbered periods

• We seek to find “Stationary strategies,” meaning:
• Player 1: 

• Makes the same offer to player 2 in every period when player 1 is the proposer (every odd-
numbered period), and 

• Follows the same decision rule when he becomes the responder (in every even-numbered 
period).

• Player 2:
• Makes the same offer to player 1 in every period when player 2 is the proposer (every even-

numbered period), and 
• Follows the same decision rule when he becomes the responder (in every odd-numbered 

period).



Alternating-offer bargaining game with 
infinite periods
Odd-numbered periods: 
• Player 2 compares the payoff she gets from accepting the offer from 

player 1, 𝑑𝑑1, against the payoff that she can earn tomorrow when she 
becomes the proposer.

• Tomorrow, player 2 offers 𝑑𝑑2, keeping the remaining 1 − 𝑑𝑑2 of the 
surplus, with discounted value 𝛿𝛿2 1 − 𝑑𝑑2 in today’s terms.

• Player 1 accepts player 1’s offer today, 𝑑𝑑1, if and only if 
𝑑𝑑1 ≥ 𝛿𝛿2 1 − 𝑑𝑑2 .

• Player 1 anticipates this decision rule and minimizes her offer, 𝑑𝑑1, 
making player 2 indifferent:  𝑑𝑑1 = 𝛿𝛿2 1 − 𝑑𝑑2 .



Alternating-offer bargaining game with 
infinite periods
Even-numbered periods: 

• Player 1 compares her payoff from accepting player 2’s offer, 𝑑𝑑2, and the 
payoff she can earn tomorrow when she becomes the proposer.

• Player 1 offers 𝑑𝑑1 to player 2 tomorrow, keeping the remaining 1 − 𝑑𝑑1 of the 
surplus, with discounted value 𝛿𝛿1 1 − 𝑑𝑑1 .

• Player 1 accepts 𝑑𝑑2 today if and only if 𝑑𝑑2 ≥ 𝛿𝛿1 1 − 𝑑𝑑1 , where player 2 
reduces 𝑑𝑑2, ultimately making player 1 indifferent between accepting and 
rejecting, that is,

𝑑𝑑2 = 𝛿𝛿1 1 − 𝑑𝑑1 .



Alternating-offer bargaining game with 
infinite periods
Solving the game.

• We have one equation each from odd and even-numbered periods with two 
unknowns 𝑑𝑑1 and 𝑑𝑑2.

• Solve for these two offers in equilibrium, we can insert one indifferent 
condition into the other yielding

𝑑𝑑1 = 𝛿𝛿2 1 − 𝛿𝛿1 1 − 𝑑𝑑1

𝑑𝑑2

which rearranges to 𝑑𝑑1 = 𝛿𝛿2 − 𝛿𝛿1𝛿𝛿2 + 𝛿𝛿1𝛿𝛿2 𝑑𝑑1, and solving for 𝑑𝑑1, yields

𝑑𝑑1 =
𝛿𝛿2 1 − 𝛿𝛿1
1 − 𝛿𝛿1𝛿𝛿2



Alternating-offer bargaining game with 
infinite periods
• Inserting this result into indifference condition 𝑑𝑑2 = 𝛿𝛿1 1 − 𝑑𝑑1 , we 

obtain

𝑑𝑑2 = 𝛿𝛿1 1 −
𝛿𝛿2 1 − 𝛿𝛿1
1 − 𝛿𝛿1𝛿𝛿2

=
𝛿𝛿1 1 − 𝛿𝛿2
1 − 𝛿𝛿1𝛿𝛿2

• We can then conclude that, in the first period, player 1 makes an offer 
𝑑𝑑1to player 2, who immediately accepts it, and the game is over, 
yielding equilibrium payoffs

1 − 𝑑𝑑1,𝑑𝑑1 = 1−𝛿𝛿2
1−𝛿𝛿1𝛿𝛿2

, 𝛿𝛿2 1−𝛿𝛿1
1−𝛿𝛿1𝛿𝛿2

where 1 − 𝑑𝑑1 = 1 − 𝛿𝛿2 1−𝛿𝛿1
1−𝛿𝛿1𝛿𝛿2

= 1−𝛿𝛿2
1−𝛿𝛿1𝛿𝛿2

.



Alternating-offer bargaining game with 
infinite periods
• Therefore, player 2’s equilibrium payoff, 𝑑𝑑1, increases in her own discount factor 
𝛿𝛿2, since

𝜕𝜕𝑑𝑑1

𝜕𝜕𝛿𝛿2
= 1−𝛿𝛿1

1−𝛿𝛿1𝛿𝛿2 2 ≥ 0
Implying that, as player 2 assigns more weight to her future payoff, she can reject player 1’s 
offer and wait to become the proposer, which forces player 1 to make a more generous 
offer today.
• In contrast, player 2’s equilibrium payoff decreases in her rival’s discount factor, 𝛿𝛿1,

because
𝜕𝜕𝑑𝑑1

𝜕𝜕𝛿𝛿1
=

𝛿𝛿2(𝛿𝛿2 − 1)
1 − 𝛿𝛿1𝛿𝛿2 2 < 0

which intuitively means that, as player 1, assigns more weight to her future payoffs, player 
2 must offer her a larger surplus share in future periods (when player 2 becomes the 
proposer). This, in turn, reduces player 2’s future payoffs, making her less attracted to 
reject the offer from player 1 today.



Appendix:

Mixed and Behavioral Strategies



Appendix – Mixed and Behavioral Strategies
• Definition. Mixed Strategy. In a 

sequential-move game, a mixed 
strategy is a probability 
distribution over all player 𝑖𝑖′𝑠𝑠
pure strategies 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖 .

• In Figure 6.20, the set of pure 
strategies is 𝑆𝑆1 =
𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵,𝐵𝐵𝐵𝐵 , and a mixed 

strategy is a randomization over 
all these pure strategies.



Appendix – Mixed and Behavioral Strategies
• Intuitively, player 𝑖𝑖 rolls a dice, before 

the game starts, and the outcome of 
this roll determines the path of play 
that she will follow (i.e., the pure 
strategy that she chooses).

• For instance, a mixed strategy for 
player 1 could be 
0𝐴𝐴𝐴𝐴, 0𝐴𝐴𝐴𝐴, 1

2
𝐵𝐵𝐵𝐵, 1

2
𝐵𝐵𝑑𝑑 ,

• which puts:
• no probability weight on pure strategies 
𝐴𝐴𝐴𝐴 and 𝐴𝐴𝑑𝑑, but

• assigns 50 percent probability on 𝐵𝐵𝐵𝐵 and 
𝐵𝐵𝑑𝑑.



Appendix – Mixed and Behavioral Strategies

• Definition. Behavioral strategy. 
• A behavioral strategy is a mapping 𝑏𝑏𝑖𝑖: 𝐻𝐻𝑖𝑖 → Δ𝐴𝐴𝑖𝑖 ℎ𝑖𝑖 , where 𝑏𝑏𝑖𝑖 𝑠𝑠𝑖𝑖 ℎ𝑖𝑖 is the 

probability that player 𝑖𝑖 selects action 𝑠𝑠𝑖𝑖 ℎ𝑖𝑖 at information set ℎ𝑖𝑖 .

• In the context of Figure 6.20, an example of behavioral strategy for player 1 could 
specify that: 

• At the first node where she is called to move, she randomizes between the two available actions in 
this node, 𝐴𝐴 and 𝐵𝐵, such as 𝑝𝑝𝑝𝑝 + 1 − 𝑝𝑝 𝐵𝐵 where 𝑝𝑝 ∈ 0,1 .

• Similarly, in the second node where she is called to move, she randomizes between actions 𝑐𝑐 and 𝑑𝑑, 
e.g., 𝑞𝑞𝑞𝑞 + 1 − 𝑞𝑞 𝑑𝑑, where 𝑞𝑞 ∈ 0,1 .

• In that context, an example of a behavioral strategy for player 1 is 𝑝𝑝, 𝑞𝑞 = 1
3

, 1
4

,
meaning that:

• She assigns a probability of  1
3

to action 𝐴𝐴 in the first node where she is called to move, and
• Probability 1

4
to action 𝑐𝑐 in the second node where she plays.



Appendix – Mixed and Behavioral Strategies

• Equivalence. 
• Are behavioral strategies equivalent to a corresponding mixed strategy? 
• Yes, we can construct a one-to-one correspondence between behavioral and mixed strategy.

• To see this with the above example, if probabilities 𝑝𝑝 and 𝑞𝑞 in the behavioral strategy 
satisfy 𝑝𝑝 = 0 and 𝑞𝑞 = 1

2
, then the behavioral strategy becomes

𝐵𝐵,
1
2 𝑐𝑐 +

1
2𝑑𝑑

is equivalent to the mixed strategy

0𝐴𝐴𝐴𝐴, 0𝐴𝐴𝐴𝐴,
1
2
𝐵𝐵𝑐𝑐,

1
2
𝐵𝐵𝐵𝐵

Since, in one of them, player 1 starts choosing 𝐵𝐵 in pure strategies, and then randomizes 
between 𝑐𝑐 and 𝑑𝑑 with equal probability. 
• Otherwise, the behavioral and mixed strategy do not produce the same outcome.



Appendix – Mixed and Behavioral Strategies

• “Manuals and Libraries.” 
• Following Luce and Raiffa’s (1957) analogy, a pure strategy 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖 can be 

understood as an “instructional manual” in which each page tells player 𝑖𝑖
which action to choose when she is called on to move at information set ℎ𝑖𝑖 .

• Every manual has as many pages as information sets player i can face.
• In this analogy, strategy space 𝑆𝑆𝑖𝑖 is a “library” with all possible instruction 

manuals.
• A mixed strategy, then, randomly chooses a specific manual 𝑠𝑠𝑖𝑖 from the 

library 𝑆𝑆𝑖𝑖 (i.e., a specific complete contingent plan), which the player 
considers for the rest of the game.

• In contrast, a behavioral strategy chooses pages from different manuals 
(actions in each information set) with positive probability.


	Chapter 6: Subgame Perfect Equilibrium
	Sequential Move Game
	Tree Rules
	Tree Rules
	Tree Rules
	Tree Rules
	Tree Rules
	Actions vs. Strategies
	Actions and Strategies
	Why don’t we just find the Nash Equilibria of the Game Tree?
	Entry Game (contd.)
	Example 6.1. Entry Game (contd.)
	Example 6.1. Entry Game (contd.)
	Introducing a new solution concept
	Subgames - Example
	Subgames – Example
	What if the Game Tree has Information Sets?
	Subgame Perfect Equilibrium
	Tool 6.1. Applying backward induction
	Example 6.2. Applying Backward Induction –Entry Game
	Example 6.2. Applying Backward Induction –Entry Game
	Example 6.2. Applying Backward Induction –Entry Game
	Example 6.2. Applying Backward Induction –Entry Game
	Example 6.2. Applying backward induction –Entry Game
	Example 6.3. Applying Backward Induction in the Modified Entry Game
	Example 6.3. Applying Backward Induction in the Modified Entry Game
	Example 6.3. Applying Backward Induction in the Modified Entry Game
	Equilibrium Path vs. SPE
	Finding SPEs in Game Trees with Information Sets
	Finding SPEs in Game Trees with Information Sets
	Finding SPEs in Game Trees with Information Sets
	Finding SPEs in Game Trees with Information Sets
	Evaluating SPE as a Solution Concept
	Evaluating SPE as a Solution Concept
	Evaluating SPE as a Solution Concept
	Evaluating SPE as a Solution Concept
	Application: Stackelberg Game of Sequential Quantity Competition
	Application: Stackelberg Game of Sequential Quantity Competition
	Application: Stackelberg Game of Sequential Quantity Competition
	Application: Stackelberg Game of Sequential Quantity Competition
	Application: Stackelberg Game of Sequential Quantity Competition
	Equilibrium Output level in the Cournot and Stackelberg Games
	Equilibrium Output level in the Cournot and Stackelberg Games
	Equilibrium Profit level in the Cournot and Stackelberg Games
	Equilibrium Profit level in the Cournot and Stackelberg Games
	Sequential Public Good Game
	Sequential Public Good Game
	Sequential Public Good Game
	Sequential Public Good Game
	Sequential Public Good Game
	Sequential Public Good Game
	Sequential and Simultaneous Public Good Game Comparison
	Application: Ultimatum Bargaining Game
	Application: Ultimatum Bargaining Game
	Application: Ultimatum Bargaining Game
	Application: Ultimatum Bargaining Game
	Application: Ultimatum Bargaining Game
	Application: Two-period alternating offers bargaining game
	Application: Two-period alternating offers bargaining game
	Application: Two-period alternating offers bargaining game
	Application: Two-period alternating offers bargaining game
	Application: Two-period alternating offers bargaining game
	Application: Two-period alternating offers bargaining game
	Application: Two-period alternating offers bargaining game
	Application: Two-period alternating offers bargaining game
	Application: Two-period alternating offers bargaining game
	Some tricks about solving alternating offer bargaining games
	Some tricks about solving alternating offer bargaining games
	Some tricks about solving alternating offer bargaining games
	Some tricks about solving alternating offer bargaining games
	Alternating-offer bargaining game with infinite periods
	Alternating-offer bargaining game with infinite periods
	Alternating-offer bargaining game with infinite periods
	Alternating-offer bargaining game with infinite periods
	Alternating-offer bargaining game with infinite periods
	Alternating-offer bargaining game with infinite periods
	Appendix:� �Mixed and Behavioral Strategies
	Appendix – Mixed and Behavioral Strategies
	Appendix – Mixed and Behavioral Strategies
	Appendix – Mixed and Behavioral Strategies
	Appendix – Mixed and Behavioral Strategies
	Appendix – Mixed and Behavioral Strategies

