Intermediate Microeconomic Theory

Tools and Step-by-Step Examples

Chapter 15:

Games of Incomplete Information and Auctions

Outline

- Incomplete Information
- Extending NE to Games of Incomplete Information
- Auctions
- Second-Price Auctions
- First-Price Auctions
- Efficiency in Auctions
- Common Value Auctions
- A Look at Behavioral Economics—Experiments with Auctions
- Appendix. First-Price Auctions in More General Settings

Incomplete Information

Incomplete Information

- So far, we have learned how to predict equilibrium behavior with 2 tools:
 - Nash equilibrium (NE) solution concept, with the help of best responses.
 - Subgame perfect equilibrium (SPE) concept, by applying backward induction.
- We have explored games of complete information: every player could perfectly predict her opponent's payoff in every contingency.
- However, many strategic settings in real life involve elements of incomplete information.

Incomplete Information

• Examples:

- Firms can observe their own production costs, but do not perfectly observe their rivals' costs.
- An incumbent firm may have reliable information about market demand, while a new entrant has limited information.
- Bidders in auctions know how much they are willing to pay for the object being sold, but usually cannot observe other bidders' valuation.
- In these scenarios, players need to compare payoffs in expectation.

Extending NE to Games of Incomplete Information

About notation:

- 1. A player's "type" is used to represent her private information.
 - With 2 firms privately observing their costs, every firm i's type is its production cost, high c_H or low c_L , where $c_H > c_L \ge 0$.
 - In auctions, a bidder's type denotes her valuation for the object being sold, $\nu > 0$.
- 2. The strategies of player i are expressed as a function of her type.
 - With 2 firms privately informed, a production strategy specifies how many units firm *i* produces as a function of its costs.
 - In auctions, a bidding strategy specifies how much player i bids as a function of her valuation of the object, $b_i(v)$.

- Best response. Player i regards strategy s_i as a "best response" to her rival's strategy s_j if s_i yields a weakly higher expected payoff than any other available strategy s_i' against s_i .
 - We are considering expected payoffs.
 - Consider the example of 2 firms:
 - Firm i observes its own production cost, c_H , but does not observe that of its rival.
 - A production strategy $q_i(c_H)$ is its best response to its rival j's output level if $q_i(c_H)$ yields a higher expected profit than any other different production.
 - Firm *i* must have an optimal production strategy for each of its possible types (e.g., costs).

- Bayesian Nash Equilibrium (BNE). A strategy profile (s_i^*, s_j^*) is Bayesian Nash equilibrium if every player chooses a best response (evaluated in expectation) given her rivals' strategies.
 - Players select mutual best responses to each other's strategies, where best responses are "lists" specifying which strategy a player chooses for each of her possible types.

- Example 15.1: Cournot competition, with asymmetric information about costs.
 - Consider a duopoly game where 2 firms compete on quantities and face inverse demand $p = 1 q_1 q_2$.
 - Firm 1 is an incumbent with $MC_1 = 0$, which every firm can accurately estimate.
 - Firm 2 privately observes its marginal costs, which can be low, $MC_2 = 0$, or high, $MC_2 = 1/4$.
 - Because firm 2 is newcomer, firm 1 cannot accurately observes firm 2's costs, but it assigns equal probability to firm 2 having low and high costs.

- Example 15.1 (continued):
 - Firm 2's best response.
 - When firm 2 has low costs ($MC_2 = 0$), its PMP is

$$\max_{q_2^L \ge 0} \pi_2^L = (1 - q_1 - q_2^L) q_2^L.$$

• Differentiating with respect to
$$q_2^L$$
, and solving for q_2^L ,
$$1-q_1-2q_2^L=0 \quad \Longrightarrow q_2^L(q_1)=\frac{1}{2}-\frac{1}{2}q_1. \qquad \textit{(BRF}_2^L(q_1))$$

• When firm 2 has high costs ($MC_2 = 1/4$), its PMP is

$$\max_{q_2^H \ge 0} \pi_2^H = (1 - q_1 - q_2^H)q_2^H - \frac{1}{4}q_2^H.$$

• Differentiating and solving for q_2^H ,

$$1 - q_1 - 2q_2^H - \frac{1}{4} = 0 \implies q_2^H(q_1) = \frac{3}{8} - \frac{1}{2}q_1. \quad (BRF_2^H(q_1))$$

- Example 15.1 (continued):
 - Comparing the best response function under low and high costs, for a given output level of firm 1,

$$q_2^L(q_1) > q_2^H(q_1).$$

Graphically, $q_2^L(q_1)$ and $q_2^H(q_1)$ are parallel to each other, but $q_2^L(q_1)$ originates at $\frac{1}{2}$, while $q_2^H(q_1)$ originates at $\frac{3}{8} \cong 0.375$.

- Firm 1. Firm 1 (uninformed player) seeks to maximize its expected profits because it does not observe firm 2's costs.
 - Firm 1's PMP is

$$\max_{q_1 \ge 0} \pi_1 = \underbrace{\frac{1}{2} (1 - q_1 - q_2^L) q_1}_{\text{if firm 2 has low costs}} + \underbrace{\frac{1}{2} (1 - q_1 - q_2^H) q_1}_{\text{if firm 2 has high costs}} = \left(1 - q_1 - \frac{q_2^L}{2} - \frac{q_2^H}{2}\right) q_1.$$

- Example 15.1 (continued):
 - Differentiating with respect to q_1 , and solving for q_1 ,

$$1 - 2q_1 - \frac{q_2^L}{2} - \frac{q_2^H}{2} = 0,$$

$$q_1(q_2^L, q_2^H) = \frac{1}{2} - \frac{1}{4}q_2^L - \frac{1}{4}q_2^H. \qquad (BRF_1^H(q_2^L, q_2^H))$$

- We found 3 best response functions, which can be solved to obtain the 3 unknown output levels, q_1 , q_2^L , and q_2^H .
 - Inserting $q_2^L(q_1)$ and $q_2^H(q_1)$ into $q_1(q_2^L,q_2^H)$, and solving for q_1 ,

$$q_{1} = \frac{1}{2} - \underbrace{\frac{1}{4} \left(\frac{1}{2} - \frac{1}{2} q_{1} \right)}_{q_{2}^{L}(q_{1})} - \underbrace{\frac{1}{4} \left(\frac{3}{8} - \frac{1}{2} 1_{1} \right)}_{q_{2}^{H}(q_{1})},$$

$$q_1 = \frac{9 + 8q_1}{32} \Longrightarrow q_1 = \frac{3}{8}.$$

- Example 15.1 (continued):
 - Inserting this result into firm 2's best response function, first when having low cost,

$$q_2^L\left(\frac{3}{8}\right) = \frac{1}{2} - \frac{1}{2}\frac{3}{8} = \frac{5}{16},$$

and then when having high costs,

$$q_2^H \left(\frac{3}{8}\right) = \frac{3}{2} - \frac{1}{2}\frac{3}{8} = \frac{3}{16}.$$

 Therefore, the BNE of this duopoly game with incomplete information prescribes production levels

$$(q_1, q_2^L, q_2^H) = \left(\frac{3}{8}, \frac{5}{16}, \frac{3}{16}\right).$$

- Auctions are a larger part of the economic landscape:
 - Since Babylon in 500 b.c. and during the Roman Empire, in 193 a.c.
 - 1595 the Oxford English Dictionary first included the term auction.
 - Auction houses Sotheby's and Christie's founded in 1744 and 1766.
 - Websites such as eBay, with \$9 billion in total revenue in 2017 and thousands of employees worldwide, and QuiBids.
 - Also used by governments to sell:
 - Treasure bonds.
 - Airwaves (3G and 4G technology): British 3G telecom licenses generated \$34 billion the so-called "the biggest auction ever".

- Consider N bidders, each bidder i has a valuation ν_i for an object.
- There is one seller.
- We can design many different rules for the auction:
 - 1. Firs-price auction (FPA). The winner is the bidder submitting the highest bid, and she must pay the highest bid (which is hers).
 - 2. Second-price auction (SPA). The winner is the bidder submitting the highest bid, and she must pay the second-highest bid.
 - 3. Third-price auction. The winner is the bidder submitting the highest bid, but she must pay the third-highest bid.
 - 4. All-pay auction. The winner is the bidder submitting the highest bid, but every single bidder must pay the price she submitted.

- All auctions can be interpreted as allocation mechanisms with 2 main ingredients:
 - 1. An allocation rule ("who gets the object"):
 - The allocation rule for most auctions determines that the object is allocated to the bidder submitting the highest bid.
 - The object could be assigned through a lottery, where $prob(win) = \frac{b_1}{b_1 + b_2 + \dots + b_N}$, as in Chinese auctions.
 - 2. A payment rule ("how much each bidder pays"):
 - In FPA, the individual submitting the highest bid pays here own bid, while everybody else pays zero.
 - In SPA, the individual submitting the highest bid pays the secondhighest bid, and everybody else pays zero.
 - In all-pay auction, every individual must pay the bid she submitted.

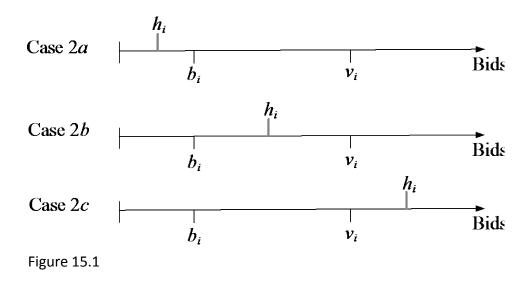
- Bidding your own valuation, $b_i(v_i)$, is a weakly dominant strategy for all players.
 - Submitting a bid equal to your valuation, $b_i(v_i) = v_i$, yields an expected profit equal or higher than that of submitting any other bid, $b_i(v_i) \neq v_i$.
- To show this bidding strategy is an equilibrium outcome,
 - 1. Examine bidder i's expected payoff $b_i(v_i) = v_i$ ("First case").
 - 2. Compare with what she would obtain from $b_i(v_i) < v_i$ ("Second case").
 - 3. Compare with what she would obtain from $b_i(v_i) > v_i$ ("Third case").

- 1. First case: Bidding your valuation, $b_i(v_i) = v_i$.
 - 1a) If the highest competing bid lies below her bid, $h_i < b_i$, where $h_i = \max_{i \neq 1} \{b_i\}$,
 - bidder i wins, and obtains a net payoff of $v_i h_i$.
 - 2a) If the highest competing bid lies above her bid, $h_i > b_i$,
 - bidder i loses the auction, earning zero payoff.

We do not consider the case when her bid coincides with the highest bid, $b_i = h_i$, and a tie occurs;

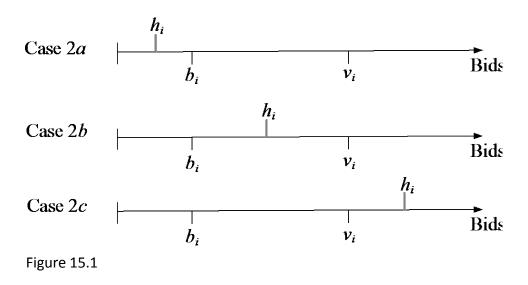
- Ties are solved by randomly assigning the object to the bidders who submitted the highest bids.
- Bidder *i*'s expected payoff becomes $\frac{1}{2}(\nu_i h_i)$, but earns zero expected payoff because $b_i = h_i$.

2. Second case: Bidding below your valuation, $b_i(v_i) < v_i$.



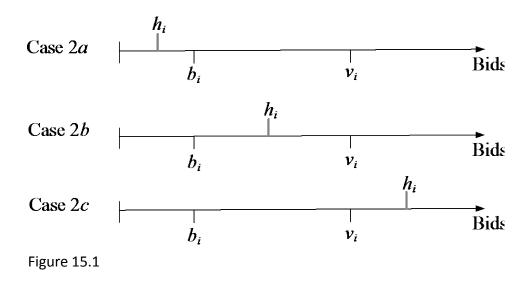
- 2a) If the highest competing bid lies below her bid, $h_i < b_i$,
 - bidder i still wins the auction, and obtains the same net payoff as when she does not shade her bid, $v_i h_i$.

2. Second case: Bidding below your valuation, $b_i(v_i) < v_i$.



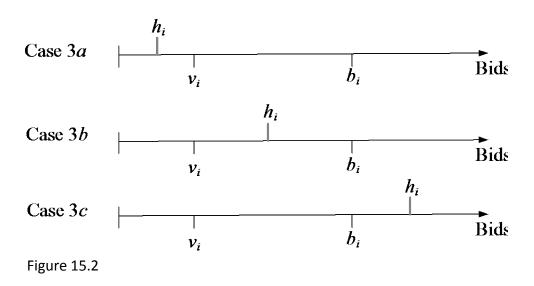
- 2b) If the highest competing bid is between her bid and bidder i's valuation, $b_i < h_i < v_i$,
 - bidder i loses, making zero payoff.

2. Second case: Bidding below your valuation, $b_i(v_i) < v_i$.



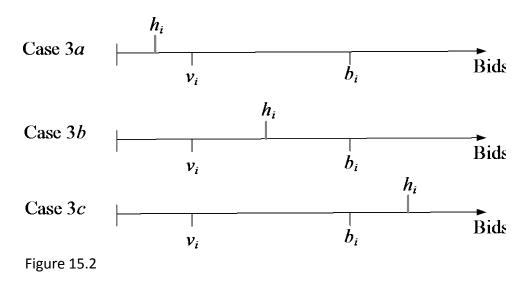
- 2c) If the highest competing bid is higher than her valuation, $h_i > v_i$
 - bidder i loses, yielding the same outcome as when $b_i = v_i$.

3. Third case: Bidding above your valuation, $b_i(v_i) > v_i$.



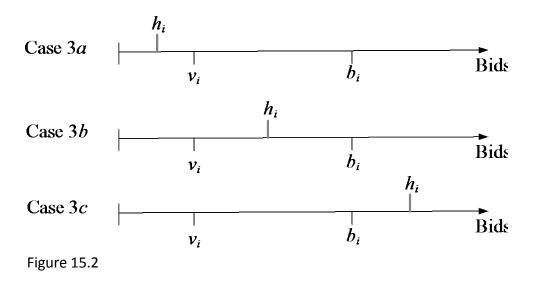
- 3a) If the highest competing bid lies below bidder i's valuation, $h_i < v_i$,
 - she still wins, earning a payoff of $v_i h_i$, which coincides with that when $b_i = v_i$.

3. Third case: Bidding above your valuation, $b_i(v_i) > v_i$.



- 3b) If the highest competing bid lies between her valuation and her bid $v_i < h_i < b_i$,
 - bidder i still wins the object but earns a negative payoff because $v_i h_i < 0$.

3. Third case: Bidding above your valuation, $b_i(v_i) > v_i$.



- 3c) If the highest competing bid lies above her bid, $h_i > b_i$,
 - bidder i loses, earning a zero payoff.

• Summary:

- When bidder i shades her bid, $b_i < v_i$, she obtains the same or lower payoff than when she submits a bid that coincides with her valuation, $b_i = v_i$.
 - She does not have incentives to shade her bid.
- When bidder i submits a bid above her valuation, $b_i > \nu_i$, her payoff either coincides with her valuation, or becomes strictly lower.
 - She does not have incentives to deviate from her equilibrium bid.
- Hence, there is no bidding strategy that provides a strictly higher payoff than $b_i(v_i) = v_i$ in the SPA.

Remark:

- The equilibrium bidding strategy in the SPA is unaffected by:
 - The number of bidders in the auction, N.
 - An increase in N does not emphasize or ameliorate the incentives that very bidder has to submit $b_i(v_i) = v_i$.
 - Their risk aversion preferences.
 - Results remain when bidders evaluate their net payoff, $v_i h_i$, according to a concave utility function, such as $u(x) = x^{\alpha}$. For a given value of h_i , her expected payoff from $b_i(v_i) = v_i$, would be weakly larger than deviating.
 - How valuations for an object are distributed (e.g., uniform, normal or exponential distribution).

First-Price Auctions

Privately Observed Valuations

- Auctions are strategic scenarios where players choose their strategies in an incomplete information context:
 - Every bidder knows her own valuation, v_i , but does not observe other bidders' valuation, v_i .
 - Bidder i knows the probability distribution behind v_j .
 - Example:

$$v_i = \begin{cases} \$10 \text{ with probability 0.4} \\ \$5 \text{ with probability 0.6} \end{cases}$$

• More generally,

$$F(\nu) = prob(\nu_j < \nu)$$

• We will assume that every bidder's valuation for the object is drawn from a uniform distribution function between 0 and 1.

Privately Observed Valuations

• Union distribution function, $v_j \sim U[0,1]$.

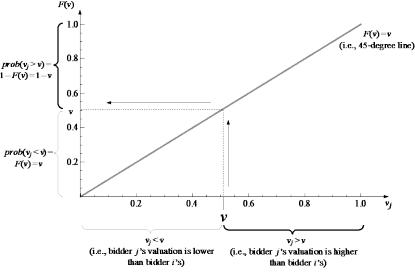


Figure 15.3

• If bidder i's valuation is ν , valuations to the left in the horizonal axis represent points where $\nu_j < \nu$. The mapping to the vertical axis gives $prob(\nu_j < \nu) = F(\nu) = \nu$.

Privately Observed Valuations

• Union distribution function, $v_j \sim U[0,1]$.

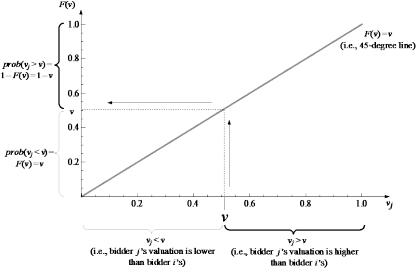


Figure 15.3

• Valuations to the right side of ν describe points where $\nu_j > \nu$. Mapping these points into the vertical axis gives $prob(\nu_j > \nu) = 1 - F(\nu) = 1 - \nu$.

Equilibrium Bidding in First-Price Auctions

- Submitting $b_i > v_i$, is a dominated strategy.
 - Her expected utility becomes,

$$EU_i(b_i|\nu_i) = prob(win) \times (\nu_i - b_i) + prob(lose) \times 0,$$

which becomes negative regardless of the probability of wining since $v_i - b_i < 0$.

- Submitting $b_i = v_i$, is also dominated strategy.
 - Her expected utility would be zero,

$$EU_i(b_i|\nu_i) = prob(win) \times \underbrace{(\nu_i - b_i)}_{0}.$$

• Equilibrium bidding in FPA imply $b_i > \nu_i$, known as "bid shading".

Equilibrium Bidding in First-Price Auctions

• "Bid shading": If bidder i's valuation is v_i , her bid must be a share of her true valuation, $b_i(v_i) = a \cdot v_i$, where $a \in (0,1)$

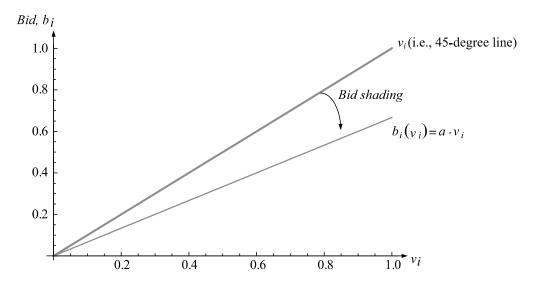


Figure 15.4

Equilibrium Bidding in First-Price Auctions

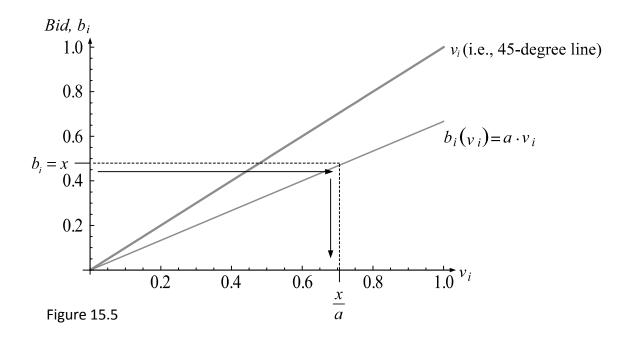
- What is the precise value of the bid shading parameter a?
- To answer this question, we must describe bidder i's expected utility from submitting a bid x, when her valuation of the object is v_i ,

$$EU_i(x|\nu_i) = prob(win) \times (\nu_i - x) + prob(lose) \times 0.$$

- We need to characterize prob(win):
 - Upon submitting $b_i = x$, bidder j can anticipate that bidder i's valuation is $\frac{x}{a}$, by inverting the bidding function $b_i(v_i) = x = a \times v_i$.
 - For a bid x, bidder j can use the symmetric bidding function $a \times v_i$ to "recover" bidder i's valuation, $\frac{x}{a}$, that generated a bid of x.

• The probability of winning is

$$prob(b_i > b_j) = prob(x > b_j).$$



Or from the point of view of valuations,

$$prob(b_i > b_j) = prob\left(\frac{x}{a} > \nu_j\right) = \frac{x}{a} \text{ (since } \nu_j \sim U[0,1]\text{)}.$$

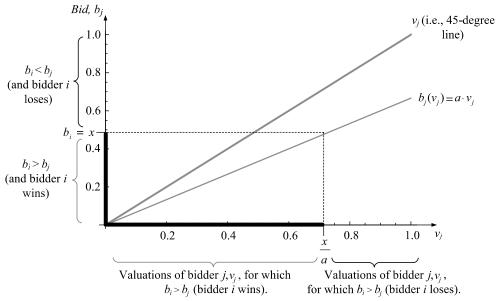


Figure 15.6

• Plugging the probability of winning into bidder i's expecting utility from submitting a bid of x in the FPA,

$$EU_i(x|\nu_i) = \frac{x}{a}(\nu_i - x) = \frac{\nu_i x - x^2}{a}.$$

• Taking firs-order conditions with respect to x,

$$\frac{v_i - 2x}{a} = 0,$$

and solving for x yields bidder i's optimal bidding function:

$$x(\nu_i) = \frac{1}{2}\nu_i$$

• It informs bidder i how much to bid as a function of her privately observed valuation of the object, v_i .

- Bidder *i*'s optimal function, $x(v_i) = \frac{1}{2}v_i$.
 - When N=2, bid i shades her bid in half.
 - For instance, when $v_i = \$0.75$, her optimal bid becomes $\frac{1}{2}0.75 = \$0.375$.

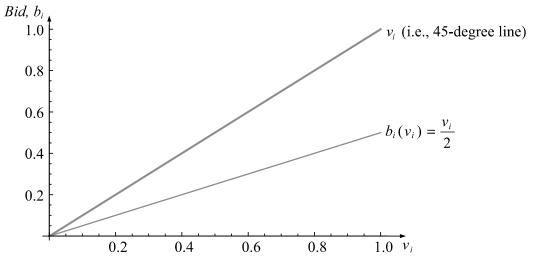


Figure 15.7

First-Price Auctions with *N*Bidders

• With N bidders, the probability of bidder i winning the auction when submitting a bid of x is

$$prob(win) = prob\left(\frac{x}{a} > \nu_1\right) \cdot \dots \cdot prob\left(\frac{x}{a} > \nu_{i-1}\right) \cdot prob\left(\frac{x}{a} > \nu_{i+1}\right) \cdot \dots \cdot prob\left(\frac{x}{a} > \nu_N\right)$$
$$= \frac{x}{a} \cdot \dots \cdot \frac{x}{a} \cdot \frac{x}{a} \cdot \dots \cdot \frac{x}{a} = \left(\frac{x}{a}\right)^{N-1},$$

where we evaluate the probability that the valuation of all other N-1 bidders lies below the valuation $v_i=\frac{x}{a}$, which generates a bid of x.

• Hence, bidder i's expected utility from submitting x is

$$EU_i(x|\nu_i) = \left(\frac{x}{a}\right)^{N-1} (\nu_i - x).$$

$$prob(win)$$

First-Price Auctions with *N*Bidders

• The bidder expected utility can be rewritten as

$$EU_i(x|\nu_i) = \frac{1}{a^{N-1}}(x^{N-1}\nu_i - x^{N-1}x) = \frac{1}{a^{N-1}}(x^{N-1}\nu_i - x^N)$$

• Taking first-order conditions with respect to x,

$$\frac{1}{a^{N-1}}[(N-1)x^{N-2}v_i - Nx^{N-1}] = 0,$$

• Rearranging and solving for x,

$$\frac{x^{N-1}}{x^{N-2}} = \frac{N-1}{N} \nu_i,$$

$$x^{(N-1)-(N-2)} = \frac{N-1}{N} \nu_i,$$

$$x(\nu_i) = \frac{N-1}{N} \nu_i.$$

First-Price Auctions with *N*Bidders

• Optimal bidding function $x(v_i) = \frac{N-1}{N}v_i$.

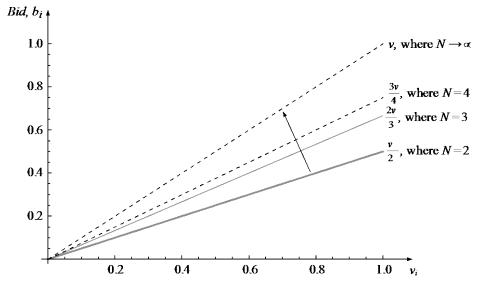


Figure 15.8

- Bid shading is ameliorated as N increases.
- When N is extremely large, bidder i's bid almost coincides with her valuation. The bidding function approaches the 45-degree line.

- Utility function is concave in income, e.g., $u(x) = x^a$.
 - $0 < \alpha \le 1$ denotes bidder *i*'s risk aversion parameter.
 - When $\alpha = 1$, she is risk neutral.
- N = 2:
 - The probability of winning is unaffected because a symmetric bidding function $b_i(v_i) = a \cdot v_i$ for every bidder i, where $a \in (0,1)$.
 - The probability that bidder i wins the auction against bidder j is

$$prob(b_i > b_j) = prob(x > b_j) = prob(\frac{x}{a} > \nu_j) = \frac{x}{a}.$$

- N = 2 (cont.):
 - Bidder i's expected utility from participating in the auction is

$$EU_i(x|\nu_i) = \frac{x}{a} \times (\nu_i - x)^{\alpha}.$$

• Taking first-order conditions with respect to x,

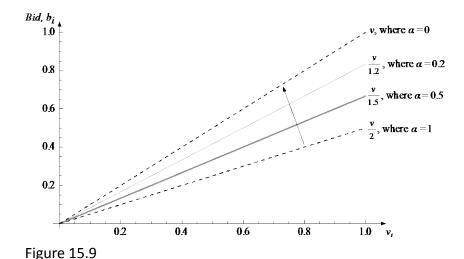
$$\frac{1}{a}(\nu_i - x)^{\alpha} - \frac{x}{a}\alpha(\nu_i - x)^{\alpha - 1} = 0,$$

and solving for x,

$$x(\nu_i) = \frac{1}{1+\alpha}\nu_i.$$

- N = 2 (cont.):
 - When $\alpha = 1$ (risk-neutral bidder), $x(\nu_i) = \frac{\nu_i}{2}$.
 - When α decreases (more risk aversion), $x(\nu_i)$ increases. Specifically, $\frac{\partial x(\nu_i)}{\partial \alpha} = -\frac{\nu_i}{(1+\alpha)^2} < 0$.
 - When $\alpha \to 0$, $x(\nu_i) = \nu_i$.

- N = 2 (cont.):
 - Optimal bidding function $\frac{1}{1+\alpha}\nu_i$.
 - Bid shading is ameliorated as bidders become more risk averse.
 - The bidding function approaches the 45-degree line as $\alpha \to 0$.



- N = 2 (cont.):
 - Consider bidder i reduces her bid from b_i to $b_i \varepsilon$,
 - if she wins the auction, she obtains an additional profit of ε because she has to pay a lower price;
 - but, lowering her bid increases her probability of losing.
 - *Intuition*: For a risk-averse bidder, the positive effect of getting the object at a cheaper price is offset by the negative effect of increasing the probability of losing the auction.

- $N \ge 2$:
 - We know that the probability bidder i wins the auction is

$$prob(win) = prob\left(\frac{x}{a} > \nu_1\right) \cdot \dots \cdot prob\left(\frac{x}{a} > \nu_{i-1}\right) \cdot prob\left(\frac{x}{a} > \nu_{i+1}\right) \cdot \dots \cdot prob\left(\frac{x}{a} > \nu_N\right)$$
$$= \frac{x}{a} \cdot \dots \cdot \frac{x}{a} \cdot \frac{x}{a} \cdot \dots \cdot \frac{x}{a} = \left(\frac{x}{a}\right)^{N-1},$$

• Bidder i's expected utility from participating in the auction is

$$EU_i(x|\nu_i) = \left(\frac{x}{a}\right)^{N-1} \times (\nu_i - x)^{\alpha}.$$

Differentiating with respect to x,

$$\left[(N-1) \left(\frac{x}{a} \right)^{N-2} (\nu_i - x)^{\alpha} \right] \frac{1}{a} - \left(\frac{x}{a} \right)^{N-1} \alpha (\nu_i - x)^{\alpha - 1} = 0,$$

• $N \geq 2$ (cont.):

$$\left(\frac{x}{a}\right)^{N-1} (\nu_i - x)^{\alpha - 1} [(N-1)\nu_i + (N-1+\alpha)x] = 0.$$

• Solving for x, we find the equilibrium bidding function

$$x(\nu_i) = \frac{N-1}{N-1+\alpha}\nu_i.$$

• When N = 2,

$$x(\nu_i) = \frac{2-1}{2-1+\alpha}\nu_i = \frac{1}{1+\alpha}\nu_i.$$

- $N \ge 2$ (cont.):
 - When N=3,

$$x(\nu_i) = \frac{3-1}{3-1+\alpha}\nu_i = \frac{2}{2+\alpha}\nu_i.$$

More generally,

$$\frac{\partial x(\nu_i)}{\partial N} = \frac{\alpha \nu_i}{(N-1+\alpha)^2} > 0.$$

As *N* increases, bidders become more aggressive.

Efficiency in Auctions

Efficiency in Auctions

- Auctions are efficient if the bidder with the highest valuation for the object is the person receiving the object.
 - Otherwise, the outcome of the auction would open the door to negotiation and arbitrage.
- FPA and SPA are efficient because the bidder with the highest valuation submits the highest bid, winning the auction and receiving the object.

Efficiency in Auctions

- Chinese (or lottery) auctions are no necessarily efficient.
- For an auction to satisfy efficiency:
 - Bids must be increasing in a player's valuation.
 - The probability of winning the auction must be 100% is a bidder submits the highest bid.

- In some auctions might assign the same value to the object (common value).
 - Example: Government sales of oil leases.
 - Firms cannot observe the exact volume of oil in the reservoir, or how difficult it will be to extract.
 - They can make estimations and assign a value to the object (profits from oil lease) within a narrow range, $\nu \in \{10,11,\dots,20\}$ in million dollars.
 - The value in profits that all firms assign to the oil lease is common.
 - The estimate e_i that each firm i receives about this common value is potentially different. It can be upward-biased, $e_i > \nu$ and downward-biased, $e_i < \nu$.

- Consider bidders A and B, each receiving an estimate e_A and e_B , where $e_A > \nu > e_B$.
- If every bidder submits a bid that shades her estimate by 1\$,

$$b_A = e_A - 1$$
, and $b_B = e_B - 1$, where $b_A > b_B$.

- A submits are more aggressive bid because $e_A > e_B$.
- Bidder A wins but her payoff could be negative if her margin after paying bid b_A is negative,

$$\nu - b_A = \nu - (e_A - 1) < 0 \implies \nu + 1 < e_A.$$

 The winner's curse: Winning the auction means that the winner probably received an overestimated signal of the true value.

- To avoid the winner's curse, participants in common-value auctions must significantly shade their bid to account for over or underestimation.
- Example: The winner's curse in the classroom.
 - Your instructor shows up in the class with a glass full of nickels.
 - The monetary value you assign to the jar (value of the coins) coincides with that of your classmates.

- Example: The winner's curse in the classroom (cont.).
 - None can accurately estimate the number of nickels because you can look at the jar only for a few seconds, gathering imprecise information.
 - It is usual to find that the winner ends up submitting a bid above the jar's true value.

A Look at Behavioral Economics— Experiments with Auctions

Experiments with Auctions

- Controlled experiments have been developed to test whether individuals bid according to $b_i(v_i)$.
 - Individual valuations for the object are randomly distributed prior to the auction period.
 - In each period, the bidder submitting the highest bid earns a profit equal to her valuation minus the auction price, while other bidders earn zero profit.
- Most studies indicate that individuals tend to bid more aggressively than what would be expected according to $b_i(v_i)$.
- However, comparative statics remain. They tend to bid more aggressively when competing against more bidders, when their valuation is higher, and when they are risk averse.

Appendix. First-Price Auctions in More General Settings

- We extend the analysis of section 15.5 allowing for valuations to be drawn from a general cumulative distribution, $F(v_i)$, with positive density in all its support, $f(v_i) > 0$.
- Writing expected utility.
 - Bidder i's UMP is

$$\max_{b_i \ge 0} prob(win)(v_i - b_i).$$

• Bidder i wins the auction when her bid exceeds that of bidder $j, b_j < b_i$, which is equivalent to $v_j < v_i$. This probability can be expressed as

$$prob(v_j < v_i) = F(v_i).$$

- Writing expected utility (cont.).
 - When bidder i's faces N-1 rivals, her probability of winning the auction is the probability that her valuation exceeds that of all other N-1 bidders.
 - We can write this probability as

$$prob(\nu_{j} < \nu_{i}) \times prob(\nu_{k} < \nu_{i}) \times \cdots \times prob(\nu_{l} < \nu_{i})$$

$$= F(\nu_{i}) \times F(\nu_{i}) \times \cdots \times F(\nu_{i}) = F(\nu_{i})^{N-1}.$$

$$N-1 \text{ times}$$

where $j \neq k \neq l$ represents i's rivals.

- Writing expected utility (cont.).
 - As a result, the expected PMP can be written as:

$$\max_{b_i \ge 0} F(\nu_i)^{N-1} (\nu_i - b_i).$$

- Using this bidding function, we can write $b_i(v_i) = x_i$, where $x_i \in \mathbb{R}_+$ represents bidder i's bid when her valuation is v_i .
- Applying the inverse $b^{-1}(\cdot)$ on both sides, $v_i = b_i^{-1}(v_i)$.
- Then, $F(v_i)^{N-1}$ can be written as $F(b_i^{-1}(x_i))^{N-1}$.
- Ant the PMP becomes

$$\max_{x_i \ge 0} F\left(b_i^{-1}(x_i)\right)^{N-1} (\nu_i - x_i).$$

- Finding equilibrium bids.
 - Differentiating with respect to x_i ,

$$-\left[F\left(b_{i}^{-1}(x_{i})\right)^{N-1}\right] + (N-1)F\left(b_{i}^{-1}(x_{i})\right)^{N-2}f\left(b_{i}^{-1}(x_{i})\right)\frac{\partial b_{i}^{-1}(x_{i})}{\partial x_{i}}(v_{i}-x_{i}) = 0$$

- Finding equilibrium bids (cont.)
 - Because $b_i^{-1}(x_i)=v_i$ and $\frac{\partial b_i^{-1}(x_i)}{\partial x_i}=\frac{1}{b'b_i^{-1}(x_i)}$, this expression simplifies to

$$-[F(\nu_i)^{N-1}] + (N-1)F(\nu_i)^{N-2}f(\nu_i)\frac{1}{b'\nu_i}(\nu_i - x_i) = 0,$$

$$(N-1)F(\nu_i)^{N-2}f(\nu_i)\nu_i - (N-1)F(\nu_i)^{N-2}f(\nu_i)x_i = F(\nu_i)^{N-1}b'\nu_i,$$

$$F(\nu_i)^{N-1}b'\nu_i + (N-1)F(\nu_i)^{N-2}f(\nu_i)\nu_i = (N-1)F(\nu_i)^{N-2}f(\nu_i)x_i.$$

- Finding equilibrium bids (cont.).
 - Because the left side is $\frac{\partial [F(v_i)^{N-1}b_i(v_i)]}{\partial v_i}$,

$$\frac{\partial [F(\nu_i)^{N-1}b_i(\nu_i)]}{\partial \nu_i} = (N-1)F(\nu_i)^{N-2}f(\nu_i)x_i.$$

Integrating both sides,

$$F(\nu_i)^{N-1}b_i(\nu_i) = \int_0^{\nu_i} (N-1)F(\nu_i)^{N-2}f(\nu_i)\nu_i d\nu_i.$$

Applying integration by parts on the right side,

$$\int_0^{\nu_i} (N-1)F(\nu_i)^{N-2}f(\nu_i)\nu_i d\nu_i = F(\nu_i)^{N-1}\nu_i - \int_0^{\nu_i} F(\nu_i)^{N-1} d\nu_i.$$

- Finding equilibrium bids (cont.).
 - The first—order condition can be written as:

$$F(\nu_i)^{N-1}b_i(\nu_i) = F(\nu_i)^{N-1}\nu_i - \int_0^{\nu_i} F(\nu_i)^{N-1}d\nu_i.$$

• Dividing both side by $F(v_i)^{N-1}$, and solving for the equilibrium bidding function, $b_i(v_i)$,

$$b_i(v_i) = v_i - \frac{\int_0^{v_i} F(v_i)^{N-1} dv_i}{F(v_i)^{N-1}}.$$
Bid shading

• The bidding function $b_i(v_i)$ constitutes the BNE of the FPA when bidder's valuations are distributed according to $F(v_i)$.

- Uniformly distributed valuations.
 - When $F(\nu_i) = \nu_i$, $F(\nu_i)^{N-1} = {\nu_i}^{N-1},$

$$\int_0^{\nu_i} F(\nu_i)^{N-1} d\nu_i = \frac{1}{N} \nu_i^N.$$

The bidding function is,

$$b_i(\nu_i) = \nu_i - \frac{\frac{1}{N}\nu_i^N}{\nu_i^{N-1}} = \nu_i \left(\frac{N-1}{N}\right).$$

- When N = 2, $b_i(v_i) = \frac{v_i}{2}$, and when N = 3, $b_i(v_i) = \frac{2v_i}{3}$.
- As more bidders participate in the auction, every bidder *i* submits a more aggressive bid because there is a higher probability that another bidder *j* has a higher valuation.