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Incomplete Information

• So far, we have learned how to predict equilibrium behavior 
with 2 tools:

• Nash equilibrium (NE) solution concept, with the help of best 
responses.

• Subgame perfect equilibrium (SPE) concept, by applying 
backward induction.

• We have explored games of complete information: every 
player could perfectly predict her opponent’s payoff in every 
contingency.

• However, many strategic settings in real life involve 
elements of incomplete information.
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Incomplete Information

• Examples:
• Firms can observe their own production costs, but do not 

perfectly observe their rivals’ costs. 
• An incumbent firm may have reliable information about 

market demand, while a new entrant has limited information.
• Bidders in auctions know how much they are willing to pay 

for the object being sold, but usually cannot observe other 
bidders’ valuation.

• In these scenarios, players need to compare payoffs in 
expectation.
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Extending NE to Games of 
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Games of Incomplete Information

• About notation:
1. A player’s “type” is used to represent her private 

information.
• With 2 firms privately observing their costs, every firm 𝑖𝑖’s type 

is its production cost, high 𝑐𝑐𝐻𝐻 or low 𝑐𝑐𝐿𝐿, where 𝑐𝑐𝐻𝐻 > 𝑐𝑐𝐿𝐿 ≥ 0.
• In auctions, a bidder’s type denotes her valuation for the object 

being sold, 𝜈𝜈 > 0.

2. The strategies of player 𝑖𝑖 are expressed as a function of her 
type.
• With 2 firms privately informed, a production strategy specifies 

how many units firm 𝑖𝑖 produces as a function of its costs.
• In auctions, a bidding strategy specifies how much player 𝑖𝑖 bids 

as a function of her valuation of the object, 𝑏𝑏𝑖𝑖(𝜈𝜈).
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Games of Incomplete Information

• Best response. Player 𝑖𝑖 regards strategy 𝑠𝑠𝑖𝑖 as a “best 
response” to her rival’s strategy 𝑠𝑠𝑗𝑗 if 𝑠𝑠𝑖𝑖 yields a weakly 
higher expected payoff than any other available strategy 𝑠𝑠𝑖𝑖′
against 𝑠𝑠𝑗𝑗.

• We are considering expected payoffs.
• Consider the example of 2 firms:

• Firm 𝑖𝑖 observes its own production cost, 𝑐𝑐𝐻𝐻, but does not observe that 
of its rival.

• A production strategy 𝑞𝑞𝑖𝑖(𝑐𝑐𝐻𝐻) is its best response to its rival 𝑗𝑗’s output 
level if 𝑞𝑞𝑖𝑖(𝑐𝑐𝐻𝐻) yields a higher expected profit than any other different 
production.

• Firm 𝑖𝑖 must have an optimal production strategy for each of its 
possible types (e.g., costs). 
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Games of Incomplete Information

• Bayesian Nash Equilibrium (BNE). A strategy profile (𝑠𝑠𝑖𝑖∗, 𝑠𝑠𝑗𝑗∗)
is Bayesian Nash equilibrium if every player chooses a best 
response (evaluated in expectation) given her rivals’ 
strategies.

• Players select mutual best responses to each other’s 
strategies, where best responses are “lists” specifying which 
strategy a player chooses for each of her possible types.
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Games of Incomplete Information

• Example 15.1: Cournot competition, with asymmetric 
information about costs.

• Consider a duopoly game where 2 firms compete on 
quantities and face inverse demand 𝑝𝑝 = 1 − 𝑞𝑞1 − 𝑞𝑞2.

• Firm 1 is an incumbent with 𝑀𝑀𝑀𝑀1 = 0, which every firm can 
accurately estimate.

• Firm 2 privately observes its marginal costs, which can be low, 
𝑀𝑀𝑀𝑀2 = 0, or high, 𝑀𝑀𝑀𝑀2 = 1/4.

• Because firm 2 is newcomer, firm 1 cannot accurately 
observes firm 2’s costs, but it assigns equal probability to firm 
2 having low and high costs.
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Games of Incomplete Information

• Example 15.1 (continued):
• Firm 2’s best response. 

• When firm 2 has low costs (𝑀𝑀𝑀𝑀2 = 0), its PMP is
max
𝑞𝑞2𝐿𝐿≥0

𝜋𝜋2𝐿𝐿 = (1 − 𝑞𝑞1 − 𝑞𝑞2𝐿𝐿)𝑞𝑞2𝐿𝐿 .

• Differentiating with respect to 𝑞𝑞2𝐿𝐿, and solving for 𝑞𝑞2𝐿𝐿,
1 − 𝑞𝑞1 − 2𝑞𝑞2𝐿𝐿 = 0 ⟹ 𝑞𝑞2𝐿𝐿 𝑞𝑞1 =

1
2
−

1
2
𝑞𝑞1.

• When firm 2 has high costs (𝑀𝑀𝑀𝑀2 = 1/4), its PMP is

max
𝑞𝑞2𝐻𝐻≥0

𝜋𝜋2𝐻𝐻 = 1 − 𝑞𝑞1 − 𝑞𝑞2𝐻𝐻 𝑞𝑞2𝐻𝐻 −
1
4
𝑞𝑞2𝐻𝐻 .

• Differentiating and solving for 𝑞𝑞2𝐻𝐻,

1 − 𝑞𝑞1 − 2𝑞𝑞2𝐻𝐻 −
1
4

= 0 ⟹ 𝑞𝑞2𝐻𝐻 𝑞𝑞1 =
3
8
−

1
2
𝑞𝑞1.

Intermediate Microeconomic Theory 11

(𝐵𝐵𝐵𝐵𝐵𝐵2𝐿𝐿(𝑞𝑞1))

(𝐵𝐵𝐵𝐵𝐵𝐵2𝐻𝐻(𝑞𝑞1))



Games of Incomplete Information

• Example 15.1 (continued):
• Comparing the best response function under low and high 

costs, for a given output level of firm 1,
𝑞𝑞2𝐿𝐿(𝑞𝑞1) > 𝑞𝑞2𝐻𝐻(𝑞𝑞1).

Graphically, 𝑞𝑞2𝐿𝐿(𝑞𝑞1) and 𝑞𝑞2𝐻𝐻(𝑞𝑞1) are parallel to each other, but 
𝑞𝑞2𝐿𝐿(𝑞𝑞1) originates at 1

2
, while 𝑞𝑞2𝐻𝐻(𝑞𝑞1) originates at 3

8
≅ 0.375.

• Firm 1. Firm 1 (uninformed player) seeks to maximize its 
expected profits because it does not observe firm 2’s costs.

• Firm 1’s PMP is

max
𝑞𝑞1≥0

𝜋𝜋1 =
1
2

1 − 𝑞𝑞1 − 𝑞𝑞2𝐿𝐿 𝑞𝑞1 +
1
2

(1 − 𝑞𝑞1 − 𝑞𝑞2𝐻𝐻)𝑞𝑞1 = 1 − 𝑞𝑞1 −
𝑞𝑞2𝐿𝐿

2
−
𝑞𝑞2𝐻𝐻

2
𝑞𝑞1.
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Games of Incomplete Information
• Example 15.1 (continued):

• Differentiating with respect to 𝑞𝑞1, and solving for 𝑞𝑞1,

1 − 2𝑞𝑞1 −
𝑞𝑞2𝐿𝐿

2
−
𝑞𝑞2𝐻𝐻

2
= 0,

𝑞𝑞1 𝑞𝑞2𝐿𝐿, 𝑞𝑞2𝐻𝐻 =
1
2
−

1
4
𝑞𝑞2𝐿𝐿 −

1
4
𝑞𝑞2𝐻𝐻 .

• We found 3 best response functions, which can be solved to 
obtain the 3 unknown output levels, 𝑞𝑞1, 𝑞𝑞2𝐿𝐿, and 𝑞𝑞2𝐻𝐻.

• Inserting 𝑞𝑞2𝐿𝐿 𝑞𝑞1 and 𝑞𝑞2𝐻𝐻 𝑞𝑞1 into 𝑞𝑞1 𝑞𝑞2𝐿𝐿, 𝑞𝑞2𝐻𝐻 , and solving for 𝑞𝑞1,

𝑞𝑞1 =
1
2
−

1
4

1
2
−

1
2
𝑞𝑞1 −

1
4

3
8
−

1
2

11 ,

𝑞𝑞1 =
9 + 8𝑞𝑞1

32
⟹ 𝑞𝑞1 =

3
8

.
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Games of Incomplete Information

• Example 15.1 (continued):
• Inserting this result into firm 2’s best response function, first 

when having low cost,

𝑞𝑞2𝐿𝐿
3
8

=
1
2
−

1
2

3
8

=
5

16
,

and then when having high costs,

𝑞𝑞2𝐻𝐻
3
8

=
3
2
−

1
2

3
8

=
3

16
.

• Therefore, the BNE of this duopoly game with incomplete 
information prescribes production levels

𝑞𝑞1, 𝑞𝑞2𝐿𝐿 , 𝑞𝑞2𝐻𝐻 =
3
8

,
5

16
,

3
16

.
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Auctions

• Auctions are a larger part of the economic landscape:
• Since Babylon in 500 b.c. and during the Roman Empire, in 193 a.c.

• 1595 the Oxford English Dictionary first included the term auction.

• Auction houses Sotheby’s and Christie’s founded in 1744 and 1766.

• Websites such as eBay, with $9 billion in total revenue in 2017 and 
thousands of employees worldwide, and QuiBids.

• Also used by governments to sell:
• Treasure bonds.
• Airwaves (3G and 4G technology): British 3G telecom licenses 

generated $34 billion the so-called “the biggest auction ever”.
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Auctions

• Consider 𝑁𝑁 bidders, each bidder 𝑖𝑖 has a valuation 𝜈𝜈𝑖𝑖 for an 
object.

• There is one seller.
• We can design many different rules for the auction:

1. Firs-price auction (FPA). The winner is the bidder submitting the 
highest bid, and she must pay the highest bid (which is hers).

2. Second-price auction (SPA). The winner is the bidder submitting 
the highest bid, and she must pay the second-highest bid.

3. Third-price auction. The winner is the bidder submitting the 
highest bid, but she must pay the third-highest bid.

4. All-pay auction. The winner is the bidder submitting the highest 
bid, but every single bidder must pay the price she submitted.
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Auctions

• All auctions can be interpreted as allocation mechanisms
with 2 main ingredients:

1. An allocation rule (“who gets the object”):
• The allocation rule for most auctions determines that the object is 

allocated to the bidder submitting the highest bid.
• The object could be assigned through a lottery, where 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑤𝑤𝑖𝑖𝑤𝑤 =

𝑏𝑏1
𝑏𝑏1+𝑏𝑏2+⋯+𝑏𝑏𝑁𝑁

, as in Chinese auctions.

2. A payment rule (“how much each bidder pays”):
• In FPA, the individual submitting the highest bid pays here own bid, 

while everybody else pays zero.
• In SPA, the individual submitting the highest bid pays the second-

highest bid, and everybody else pays zero.
• In all-pay auction, every individual must pay the bid she submitted.
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Second-Price Auctions
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Second-Price Auctions

• Bidding your own valuation, 𝑏𝑏𝑖𝑖(𝜐𝜐𝑖𝑖), is a weakly dominant 
strategy for all players.

• Submitting a bid equal to your valuation, 𝑏𝑏𝑖𝑖 𝜐𝜐𝑖𝑖 = 𝜐𝜐𝑖𝑖, yields 
an expected profit equal or higher than that of submitting any 
other bid, 𝑏𝑏𝑖𝑖 𝜐𝜐𝑖𝑖 ≠ 𝜐𝜐𝑖𝑖.

• To show this bidding strategy is an equilibrium outcome, 
1. Examine bidder 𝑖𝑖’s expected payoff 𝑏𝑏𝑖𝑖 𝜐𝜐𝑖𝑖 = 𝜐𝜐𝑖𝑖

(“First case”).
2. Compare with what she would obtain from 𝑏𝑏𝑖𝑖 𝜐𝜐𝑖𝑖 < 𝜐𝜐𝑖𝑖

(“Second case”).
3. Compare with what she would obtain from 𝑏𝑏𝑖𝑖 𝜐𝜐𝑖𝑖 > 𝜐𝜐𝑖𝑖

(“Third case”).
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Second-Price Auctions

1. First case: Bidding your valuation, 𝑏𝑏𝑖𝑖 𝜐𝜐𝑖𝑖 = 𝜐𝜐𝑖𝑖.
1a) If the highest competing bid lies below her bid, ℎ𝑖𝑖 < 𝑏𝑏𝑖𝑖, 

where ℎ𝑖𝑖 = max
𝑗𝑗≠1

{𝑏𝑏𝑖𝑖},

• bidder 𝑖𝑖 wins, and obtains a net payoff of 𝜈𝜈𝑖𝑖 − ℎ𝑖𝑖. 

2a) If the highest competing bid lies above her bid, ℎ𝑖𝑖 > 𝑏𝑏𝑖𝑖,
• bidder 𝑖𝑖 loses the auction, earning zero payoff.

We do not consider the case when her bid coincides with the 
highest bid, 𝑏𝑏𝑖𝑖 = ℎ𝑖𝑖, and a tie occurs;
• Ties are solved by randomly assigning the object to the bidders 

who submitted the highest bids.
• Bidder 𝑖𝑖’s expected payoff becomes 1

2
(𝜈𝜈𝑖𝑖 − ℎ𝑖𝑖), but earns zero 

expected payoff because 𝑏𝑏𝑖𝑖 = ℎ𝑖𝑖.
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Second-Price Auctions

2. Second case: Bidding below your valuation, 𝑏𝑏𝑖𝑖 𝜐𝜐𝑖𝑖 < 𝜐𝜐𝑖𝑖.

2a) If the highest competing bid lies below her bid, ℎ𝑖𝑖 < 𝑏𝑏𝑖𝑖,
• bidder 𝑖𝑖 still wins the auction, and obtains the same net 

payoff as when she does not shade her bid, 𝜈𝜈𝑖𝑖 − ℎ𝑖𝑖. 
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Second-Price Auctions

2. Second case: Bidding below your valuation, 𝑏𝑏𝑖𝑖 𝜐𝜐𝑖𝑖 < 𝜐𝜐𝑖𝑖.

2b) If the highest competing bid is between her bid and bidder 
𝑖𝑖’s valuation,  𝑏𝑏𝑖𝑖 < ℎ𝑖𝑖 < 𝜈𝜈𝑖𝑖,
• bidder 𝑖𝑖 loses, making zero payoff. 
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Second-Price Auctions

2. Second case: Bidding below your valuation, 𝑏𝑏𝑖𝑖 𝜐𝜐𝑖𝑖 < 𝜐𝜐𝑖𝑖.

2c) If the highest competing bid is higher than her valuation, 
ℎ𝑖𝑖 > 𝑣𝑣𝑖𝑖
• bidder 𝑖𝑖 loses, yielding the same outcome as when 𝑏𝑏𝑖𝑖 =
𝜈𝜈𝑖𝑖.
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Second-Price Auctions

3. Third case: Bidding above your valuation, 𝑏𝑏𝑖𝑖 𝜐𝜐𝑖𝑖 > 𝜐𝜐𝑖𝑖.

3a) If the highest competing bid lies below bidder 𝑖𝑖’s valuation, 
ℎ𝑖𝑖 < 𝑣𝑣𝑖𝑖,
• she still wins, earning a payoff of 𝜈𝜈𝑖𝑖 − ℎ𝑖𝑖, which coincides 

with that when 𝑏𝑏𝑖𝑖 = 𝑣𝑣𝑖𝑖.
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Second-Price Auctions

3. Third case: Bidding above your valuation, 𝑏𝑏𝑖𝑖 𝜐𝜐𝑖𝑖 > 𝜐𝜐𝑖𝑖.

3b) If the highest competing bid lies between her valuation and 
her bid 𝜈𝜈𝑖𝑖 < ℎ𝑖𝑖 < 𝑏𝑏𝑖𝑖,
• bidder 𝑖𝑖 still wins the object but earns a negative payoff 

because 𝜈𝜈𝑖𝑖 − ℎ𝑖𝑖 < 0. 
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Second-Price Auctions

3. Third case: Bidding above your valuation, 𝑏𝑏𝑖𝑖 𝜐𝜐𝑖𝑖 > 𝜐𝜐𝑖𝑖.

3c) If the highest competing bid lies above her bid, ℎ𝑖𝑖 > 𝑏𝑏𝑖𝑖,
• bidder 𝑖𝑖 loses, earning a zero payoff. 
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Second-Price Auctions

• Summary:
• When bidder 𝑖𝑖 shades her bid, 𝑏𝑏𝑖𝑖 < 𝜈𝜈𝑖𝑖, she obtains the same 

or lower payoff than when she submits a bid that coincides 
with her valuation, 𝑏𝑏𝑖𝑖 = 𝜈𝜈𝑖𝑖.

• She does not have incentives to shade her bid.
• When bidder 𝑖𝑖 submits a bid above her valuation, 𝑏𝑏𝑖𝑖 > 𝜈𝜈𝑖𝑖, her 

payoff either coincides with her valuation, or becomes strictly 
lower.

• She does not have incentives to deviate from her 
equilibrium bid.

• Hence, there is no bidding strategy that provides a strictly 
higher payoff than 𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 = 𝜈𝜈𝑖𝑖 in the SPA.
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Second-Price Auctions

• Remark:
• The equilibrium bidding strategy in the SPA is unaffected by:

• The number of bidders in the auction, 𝑁𝑁.
• An increase in N does  not emphasize or ameliorate the  

incentives that very bidder has to submit 𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 = 𝜈𝜈𝑖𝑖.

• Their risk aversion preferences.
• Results remain when bidders evaluate their net payoff, 
𝜈𝜈𝑖𝑖 − ℎ𝑖𝑖, according to a concave utility function, such as 
𝑢𝑢 𝑥𝑥 = 𝑥𝑥𝛼𝛼. For a given value of ℎ𝑖𝑖, her expected payoff 
from 𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 = 𝜈𝜈𝑖𝑖, would be weakly larger than deviating.

• How valuations for an object are distributed (e.g., 
uniform, normal or exponential distribution).
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First-Price Auctions
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Privately Observed Valuations

• Auctions are strategic scenarios where players choose their 
strategies in an incomplete information context:

• Every bidder knows her own valuation, 𝑣𝑣𝑖𝑖, but does not 
observe other bidders’ valuation, 𝑣𝑣𝑗𝑗.

• Bidder 𝑖𝑖 knows the probability distribution behind 𝑣𝑣𝑗𝑗.
• Example:

𝑣𝑣𝑖𝑖 = �$10 with probabilty 0.4
$5 with probability 0.6

• More generally, 
𝐵𝐵 𝜈𝜈 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏(𝑣𝑣𝑗𝑗 < 𝜈𝜈)

• We will assume that every bidder’s valuation for the object is 
drawn from a uniform distribution function between 0 and 1. 
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Privately Observed Valuations

• Union distribution function, 𝜈𝜈𝑗𝑗~𝑈𝑈[0,1].

• If bidder 𝑖𝑖’s valuation is 𝜈𝜈, valuations to the left in the horizonal axis 
represent points where 𝜈𝜈𝑗𝑗 < 𝜈𝜈. The mapping to the vertical axis 
gives 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝜈𝜈𝑗𝑗 < 𝜈𝜈 = 𝐵𝐵 𝜈𝜈 = 𝜈𝜈.

Intermediate Microeconomic Theory 32

Figure 15.3



Privately Observed Valuations

• Union distribution function, 𝜈𝜈𝑗𝑗~𝑈𝑈[0,1].

• Valuations to the right side of 𝜈𝜈 describe points where 𝜈𝜈𝑗𝑗 > 𝜈𝜈. 
Mapping these points into the vertical axis gives 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝜈𝜈𝑗𝑗 > 𝜈𝜈 =
1 − 𝐵𝐵 𝜈𝜈 = 1 − 𝜈𝜈.
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Equilibrium Bidding in First-Price Auctions

• Submitting 𝑏𝑏𝑖𝑖 > 𝜈𝜈𝑖𝑖, is a dominated strategy.
• Her expected utility becomes, 
𝐸𝐸𝑈𝑈𝑖𝑖 𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑤𝑤𝑖𝑖𝑤𝑤 × 𝜈𝜈𝑖𝑖 − 𝑏𝑏𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏(𝑙𝑙𝑝𝑝𝑠𝑠𝑙𝑙) × 0,

which becomes negative regardless of the probability of 
wining since 𝜈𝜈𝑖𝑖 − 𝑏𝑏𝑖𝑖 < 0.

• Submitting 𝑏𝑏𝑖𝑖 = 𝜈𝜈𝑖𝑖, is also dominated strategy.
• Her expected utility would be zero,

𝐸𝐸𝑈𝑈𝑖𝑖 𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑤𝑤𝑖𝑖𝑤𝑤 × 𝜈𝜈𝑖𝑖 − 𝑏𝑏𝑖𝑖 .

• Equilibrium bidding in FPA imply 𝑏𝑏𝑖𝑖 > 𝜈𝜈𝑖𝑖, known as “bid 
shading”.
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Equilibrium Bidding in First-Price Auctions

• “Bid shading”: If bidder 𝑖𝑖’s valuation is 𝜈𝜈𝑖𝑖, her bid must be a 
share of her true valuation, 𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 = 𝑎𝑎 � 𝜈𝜈𝑖𝑖 , where 𝑎𝑎 ∈
(0,1)
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Equilibrium Bidding in First-Price Auctions

• What is the precise value of the bid shading parameter 𝑎𝑎? 

• To answer this question, we must describe bidder 𝑖𝑖’s 
expected utility from submitting a bid 𝑥𝑥, when her valuation 
of the object is 𝜈𝜈𝑖𝑖,

𝐸𝐸𝑈𝑈𝑖𝑖 𝑥𝑥 𝜈𝜈𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑤𝑤𝑖𝑖𝑤𝑤 × 𝜈𝜈𝑖𝑖 − 𝑥𝑥 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏(𝑙𝑙𝑝𝑝𝑠𝑠𝑙𝑙) × 0.

• We need to characterize 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑤𝑤𝑖𝑖𝑤𝑤 :
• Upon submitting 𝑏𝑏𝑖𝑖 = 𝑥𝑥, bidder 𝑗𝑗 can anticipate that bidder 
𝑖𝑖’s valuation is 𝑥𝑥

𝑎𝑎
, by inverting the bidding function 𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 =

𝑥𝑥 = 𝑎𝑎 × 𝜈𝜈𝑖𝑖.
• For a bid 𝑥𝑥, bidder 𝑗𝑗 can use the symmetric bidding function 
𝑎𝑎 × 𝜈𝜈𝑖𝑖 to “recover” bidder 𝑖𝑖’s valuation, 𝑥𝑥

𝑎𝑎
, that generated a 

bid of $𝑥𝑥.

Intermediate Microeconomic Theory 36



Figure 15.5

Equilibrium Bidding in First-Price Auctions

• The probability of winning is 
𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑏𝑏𝑖𝑖 > 𝑏𝑏𝑗𝑗 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑥𝑥 > 𝑏𝑏𝑗𝑗 .
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Figure 15.6

Equilibrium Bidding in First-Price Auctions

• Or from the point of view of valuations,

𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑏𝑏𝑖𝑖 > 𝑏𝑏𝑗𝑗 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑥𝑥
𝑎𝑎

> 𝜈𝜈𝑗𝑗 = 𝑥𝑥
𝑎𝑎

(since 𝜈𝜈𝑗𝑗~𝑈𝑈[0,1]).
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Equilibrium Bidding in First-Price Auctions

• Plugging the probability of winning into bidder 𝑖𝑖’s expecting 
utility from submitting a bid of 𝑥𝑥 in the FPA, 

𝐸𝐸𝑈𝑈𝑖𝑖 𝑥𝑥 𝜈𝜈𝑖𝑖 =
𝑥𝑥
𝑎𝑎
𝜈𝜈𝑖𝑖 − 𝑥𝑥 =

𝜈𝜈𝑖𝑖𝑥𝑥 − 𝑥𝑥2

𝑎𝑎
.

• Taking firs-order conditions with respect to 𝑥𝑥,
𝜈𝜈𝑖𝑖 − 2𝑥𝑥

𝑎𝑎
= 0,

and solving for 𝑥𝑥 yields bidder 𝑖𝑖’s optimal bidding function:

𝑥𝑥 𝜈𝜈𝑖𝑖 =
1
2
𝜈𝜈𝑖𝑖

• It informs bidder 𝑖𝑖 how much to bid as a function of her privately  
observed valuation of the object, 𝜈𝜈𝑖𝑖.
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Equilibrium Bidding in First-Price Auctions

• Bidder 𝑖𝑖’s optimal function, 𝑥𝑥 𝜈𝜈𝑖𝑖 = 1
2
𝜈𝜈𝑖𝑖.

• When 𝑁𝑁 = 2, bid 𝑖𝑖 shades her bid in half.
• For instance, when 𝜈𝜈𝑖𝑖 = $0.75, her optimal bid becomes 
1
2

0.75 = $0.375.
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First-Price Auctions with N 
Bidders

• With 𝑁𝑁 bidders, the probability of bidder 𝑖𝑖 winning the 
auction when submitting a bid of $𝑥𝑥 is

• Hence, bidder 𝑖𝑖’s expected utility from submitting 𝑥𝑥 is

𝐸𝐸𝑈𝑈𝑖𝑖 𝑥𝑥 𝜈𝜈𝑖𝑖 =
𝑥𝑥
𝑎𝑎

𝑁𝑁−1
𝜈𝜈𝑖𝑖 − 𝑥𝑥 .
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𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑤𝑤𝑖𝑖𝑤𝑤 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑥𝑥
𝑎𝑎

> 𝜈𝜈1 � ⋯ � 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑥𝑥
𝑎𝑎

> 𝜈𝜈𝑖𝑖−1 � 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑥𝑥
𝑎𝑎

> 𝜈𝜈𝑖𝑖+1 � ⋯ � 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑥𝑥
𝑎𝑎

> 𝜈𝜈𝑁𝑁

=
𝑥𝑥
𝑎𝑎
� ⋯

𝑥𝑥
𝑎𝑎
�
𝑥𝑥
𝑎𝑎
� ⋯

𝑥𝑥
𝑎𝑎

=
𝑥𝑥
𝑎𝑎

𝑁𝑁−1
,

where we evaluate the probability that the valuation of all other 𝑁𝑁 − 1 bidders lies 
below the valuation 𝜈𝜈𝑖𝑖 = 𝑥𝑥

𝑎𝑎
, which generates a bid of $𝑥𝑥.

𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑤𝑤𝑖𝑖𝑤𝑤



First-Price Auctions with N 
Bidders

• The bidder expected utility can be rewritten as

𝐸𝐸𝑈𝑈𝑖𝑖 𝑥𝑥 𝜈𝜈𝑖𝑖 =
1

𝑎𝑎𝑁𝑁−1
𝑥𝑥𝑁𝑁−1𝜈𝜈𝑖𝑖 − 𝑥𝑥𝑁𝑁−1𝑥𝑥 =

1
𝑎𝑎𝑁𝑁−1

𝑥𝑥𝑁𝑁−1𝜈𝜈𝑖𝑖 − 𝑥𝑥𝑁𝑁

• Taking first-order conditions with respect to 𝑥𝑥,
1

𝑎𝑎𝑁𝑁−1
𝑁𝑁 − 1 𝑥𝑥𝑁𝑁−2𝜈𝜈𝑖𝑖 − 𝑁𝑁𝑥𝑥𝑁𝑁−1 = 0,

• Rearranging and solving for 𝑥𝑥,
𝑥𝑥𝑁𝑁−1

𝑥𝑥𝑁𝑁−2
=
𝑁𝑁 − 1
𝑁𝑁

𝜈𝜈𝑖𝑖 ,

𝑥𝑥 𝑁𝑁−1 −(𝑁𝑁−2) =
𝑁𝑁 − 1
𝑁𝑁

𝜈𝜈𝑖𝑖 ,

𝑥𝑥 𝜈𝜈𝑖𝑖 =
𝑁𝑁 − 1
𝑁𝑁

𝜈𝜈𝑖𝑖 .
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𝑥𝑥 𝑁𝑁−1 −(𝑁𝑁−2) = 𝑥𝑥



First-Price Auctions with N 
Bidders

• Optimal bidding function 𝑥𝑥 𝜈𝜈𝑖𝑖 = 𝑁𝑁−1
𝑁𝑁
𝜈𝜈𝑖𝑖 .

• Bid shading is ameliorated as 𝑁𝑁 increases. 
• When 𝑁𝑁 is extremely large, bidder 𝑖𝑖’s bid almost coincides with her 

valuation. The bidding function approaches the 45-degree line.
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FPA with Risk-Averse Bidders

• Utility function is concave in income, e.g., 𝑢𝑢 𝑥𝑥 = 𝑥𝑥𝑎𝑎.
• 0 < 𝛼𝛼 ≤ 1 denotes bidder 𝑖𝑖’s risk aversion parameter.
• When 𝛼𝛼 = 1, she is risk neutral.

• 𝑵𝑵 = 𝟐𝟐: 
• The probability of winning is unaffected because a symmetric 

bidding function 𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 = 𝑎𝑎 � 𝜈𝜈𝑖𝑖 for every bidder 𝑖𝑖, where 𝑎𝑎 ∈
(0,1).

• The probability that bidder 𝑖𝑖 wins the auction against 
bidder 𝑗𝑗 is

𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑏𝑏𝑖𝑖 > 𝑏𝑏𝑗𝑗 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑥𝑥 > 𝑏𝑏𝑗𝑗 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏
𝑥𝑥
𝑎𝑎

> 𝜈𝜈𝑗𝑗 =
𝑥𝑥
𝑎𝑎

.
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FPA with Risk-Averse Bidders

• 𝑵𝑵 = 𝟐𝟐 (cont.):
• Bidder 𝑖𝑖’s expected utility from participating in the auction is

𝐸𝐸𝑈𝑈𝑖𝑖 𝑥𝑥 𝜈𝜈𝑖𝑖 =
𝑥𝑥
𝑎𝑎

× (𝜈𝜈𝑖𝑖 − 𝑥𝑥)𝛼𝛼 .

• Taking first-order conditions with respect to 𝑥𝑥,
1
𝑎𝑎

(𝜈𝜈𝑖𝑖 − 𝑥𝑥)𝛼𝛼−
𝑥𝑥
𝑎𝑎
𝛼𝛼 𝜈𝜈𝑖𝑖 − 𝑥𝑥 𝛼𝛼−1 = 0,

and solving for 𝑥𝑥, 

𝑥𝑥 𝜈𝜈𝑖𝑖 =
1

1 + 𝛼𝛼
𝜈𝜈𝑖𝑖 .
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FPA with Risk-Averse Bidders

• 𝑵𝑵 = 𝟐𝟐 (cont.):
• When 𝛼𝛼 = 1 (risk-neutral bidder), 𝑥𝑥 𝜈𝜈𝑖𝑖 = 𝜈𝜈𝑖𝑖

2
.

• When 𝛼𝛼 decreases (more risk aversion), 𝑥𝑥 𝜈𝜈𝑖𝑖 increases. 
Specifically, 𝜕𝜕𝑥𝑥 𝜈𝜈𝑖𝑖

𝜕𝜕𝛼𝛼
= − 𝜈𝜈𝑖𝑖

1+𝛼𝛼 2 < 0.

• When 𝛼𝛼 → 0, 𝑥𝑥 𝜈𝜈𝑖𝑖 = 𝜈𝜈𝑖𝑖.
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FPA with Risk-Averse Bidders

• 𝑵𝑵 = 𝟐𝟐 (cont.):
• Optimal bidding function 1

1+𝛼𝛼
𝜈𝜈𝑖𝑖 .

• Bid shading is ameliorated as bidders become more risk averse.
• The bidding function approaches the 45-degree line as 𝛼𝛼 → 0.
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FPA with Risk-Averse Bidders

• 𝑵𝑵 = 𝟐𝟐 (cont.):
• Consider bidder 𝑖𝑖 reduces her bid from 𝑏𝑏𝑖𝑖 to 𝑏𝑏𝑖𝑖 − 𝜀𝜀, 

• if she wins the auction, she obtains an additional profit of 
𝜀𝜀 because she has to pay a lower price;

• but, lowering her bid increases her probability of losing. 

• Intuition: For a risk-averse bidder, the positive effect of 
getting the object at a cheaper price is offset by the negative 
effect of increasing the probability of losing the auction. 
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FPA with Risk-Averse Bidders

• 𝑵𝑵 ≥ 𝟐𝟐: 
• We know that the probability bidder 𝑖𝑖 wins the auction is

• Bidder 𝑖𝑖’s expected utility from participating in the auction is

𝐸𝐸𝑈𝑈𝑖𝑖 𝑥𝑥 𝜈𝜈𝑖𝑖 =
𝑥𝑥
𝑎𝑎

𝑁𝑁−1
× (𝜈𝜈𝑖𝑖 − 𝑥𝑥)𝛼𝛼 .

• Differentiating with respect to 𝑥𝑥,

(𝑁𝑁 − 1)
𝑥𝑥
𝑎𝑎

𝑁𝑁−2
(𝜈𝜈𝑖𝑖 − 𝑥𝑥)𝛼𝛼

1
𝑎𝑎
−

𝑥𝑥
𝑎𝑎

𝑁𝑁−1
𝛼𝛼 𝜈𝜈𝑖𝑖 − 𝑥𝑥 𝛼𝛼−1 = 0,
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𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑤𝑤𝑖𝑖𝑤𝑤 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑥𝑥
𝑎𝑎

> 𝜈𝜈1 � ⋯ � 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑥𝑥
𝑎𝑎

> 𝜈𝜈𝑖𝑖−1 � 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑥𝑥
𝑎𝑎

> 𝜈𝜈𝑖𝑖+1 � ⋯ � 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝑥𝑥
𝑎𝑎

> 𝜈𝜈𝑁𝑁

=
𝑥𝑥
𝑎𝑎
� ⋯

𝑥𝑥
𝑎𝑎
�
𝑥𝑥
𝑎𝑎
� ⋯

𝑥𝑥
𝑎𝑎

=
𝑥𝑥
𝑎𝑎

𝑁𝑁−1
,



FPA with Risk-Averse Bidders

• 𝑵𝑵 ≥ 𝟐𝟐 (cont.): 

𝑥𝑥
𝑎𝑎

𝑁𝑁−1
𝜈𝜈𝑖𝑖 − 𝑥𝑥 𝛼𝛼−1 𝑁𝑁 − 1 𝜈𝜈𝑖𝑖 + 𝑁𝑁 − 1 + 𝛼𝛼 𝑥𝑥 = 0.

• Solving for 𝑥𝑥, we find the equilibrium bidding function

𝑥𝑥 𝜈𝜈𝑖𝑖 =
𝑁𝑁 − 1

𝑁𝑁 − 1 + 𝛼𝛼
𝜈𝜈𝑖𝑖 .

• When 𝑁𝑁 = 2,

𝑥𝑥 𝜈𝜈𝑖𝑖 =
2 − 1

2 − 1 + 𝛼𝛼
𝜈𝜈𝑖𝑖 =

1
1 + 𝛼𝛼

𝜈𝜈𝑖𝑖 .
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FPA with Risk-Averse Bidders

• 𝑵𝑵 ≥ 𝟐𝟐 (cont.): 

• When 𝑁𝑁 = 3, 

𝑥𝑥 𝜈𝜈𝑖𝑖 =
3 − 1

3 − 1 + 𝛼𝛼
𝜈𝜈𝑖𝑖 =

2
2 + 𝛼𝛼

𝜈𝜈𝑖𝑖 .

• More generally, 
𝜕𝜕𝑥𝑥 𝜈𝜈𝑖𝑖
𝜕𝜕𝑁𝑁

=
𝛼𝛼𝜈𝜈𝑖𝑖

𝑁𝑁 − 1 + 𝛼𝛼 2 > 0.

As 𝑁𝑁 increases, bidders become more aggressive.
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Efficiency in Auctions
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Efficiency in Auctions

• Auctions are efficient if the bidder with the highest 
valuation for the object is the person receiving the object.

• Otherwise, the outcome of the auction would open the door 
to negotiation and arbitrage.

• FPA and SPA are efficient because the bidder with the 
highest valuation submits the highest bid, winning the 
auction and receiving the object.
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Efficiency in Auctions

• Chinese (or lottery) auctions are no necessarily efficient.

• For an auction to satisfy efficiency:
• Bids must be increasing in a player’s valuation.
• The probability of winning the auction must be 100% is 

a bidder submits the highest bid.
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Common-Value Auctions
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Common-Value Auctions

• In some auctions might assign the same value to the object 
(common value).

• Example: Government sales of oil leases.
• Firms cannot observe the exact volume of oil in the reservoir, 

or how difficult it will be to extract.
• They can make estimations and assign a value to the object 

(profits from oil lease) within a narrow range, 𝜈𝜈 ∈
10,11, … , 20] in million dollars.

• The value in profits that all firms assign to the oil lease is 
common.

• The estimate 𝑙𝑙𝑖𝑖 that each firm 𝑖𝑖 receives about this common 
value is potentially different. It can be upward-biased, 𝑙𝑙𝑖𝑖 > 𝜈𝜈
and downward-biased, 𝑙𝑙𝑖𝑖 < 𝜈𝜈. 
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Common-Value Auctions

• Consider bidders 𝐴𝐴 and 𝐵𝐵, each receiving an estimate 𝑙𝑙𝐴𝐴 and 𝑙𝑙𝐵𝐵, 
where 𝑙𝑙𝐴𝐴 > 𝜈𝜈 > 𝑙𝑙𝐵𝐵.

• If every bidder submits a bid that shades her estimate by 1$,
𝑏𝑏𝐴𝐴 = 𝑙𝑙𝐴𝐴 − 1, and 𝑏𝑏𝐵𝐵 = 𝑙𝑙𝐵𝐵 − 1, where 𝑏𝑏𝐴𝐴 > 𝑏𝑏𝐵𝐵.

• A submits are more aggressive bid because 𝑙𝑙𝐴𝐴 > 𝑙𝑙𝐵𝐵.

• Bidder 𝐴𝐴 wins but her payoff could be negative if her margin after 
paying bid 𝑏𝑏𝐴𝐴 is negative, 

𝜈𝜈 − 𝑏𝑏𝐴𝐴 = 𝜈𝜈 − 𝑙𝑙𝐴𝐴 − 1 < 0 ⟹ 𝜈𝜈 + 1 < 𝑙𝑙𝐴𝐴.

• The winner’s curse: Winning the auction means that the winner 
probably received an overestimated signal  of the true value.
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Common-Value Auctions

• To avoid the winner’s curse, participants in common-value 
auctions must significantly shade their bid to account for over or 
underestimation.

• Example: The winner’s curse in the classroom. 
• Your instructor shows up in the class with a glass full of 

nickels. 
• The monetary value you assign to the jar (value of the coins) 

coincides with that of your classmates.
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Common-Value Auctions

• Example: The winner’s curse in the classroom (cont.). 
• None can accurately estimate the number of nickels because 

you can look at the jar only for a few seconds, gathering 
imprecise information.

• It is usual to find that the winner ends up submitting a bid 
above the jar’s true value.
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A Look at Behavioral Economics–
Experiments with Auctions
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Experiments with Auctions

• Controlled experiments have been developed to test whether 
individuals bid according to 𝑏𝑏𝑖𝑖(𝜈𝜈𝑖𝑖).

• Individual valuations for the object are randomly distributed prior 
to the auction period.

• In each period, the bidder submitting the highest bid earns a profit 
equal to her valuation minus the auction price, while other bidders 
earn zero profit.

• Most studies indicate that individuals tend to bid more 
aggressively than what would be expected according to 𝑏𝑏𝑖𝑖(𝜈𝜈𝑖𝑖).

• However, comparative statics remain. They tend to bid more 
aggressively when competing against more bidders, when their 
valuation is higher, and when they are risk averse.
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Appendix. First-Price Auctions
in More General Settings
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FPA in More General Settings

• We extend the analysis of section 15.5 allowing for 
valuations to be drawn from a general cumulative 
distribution, 𝐵𝐵(𝜈𝜈𝑖𝑖), with positive density in all its support, 
𝑓𝑓 𝜈𝜈𝑖𝑖 > 0.

• Writing expected utility.
• Bidder 𝑖𝑖’s UMP is

max
𝑏𝑏𝑖𝑖≥0

𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏(𝑤𝑤𝑖𝑖𝑤𝑤)(𝜈𝜈𝑖𝑖 − 𝑏𝑏𝑖𝑖).

• Bidder 𝑖𝑖 wins the auction when her bid exceeds that of bidder 
𝑗𝑗, 𝑏𝑏𝑗𝑗 < 𝑏𝑏𝑖𝑖, which is equivalent to 𝜈𝜈𝑗𝑗 < 𝜈𝜈𝑖𝑖. This probability can 
be expressed as

𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝜈𝜈𝑗𝑗 < 𝜈𝜈𝑖𝑖 = 𝐵𝐵 𝜈𝜈𝑖𝑖 .
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FPA in More General Settings

• Writing expected utility (cont.).
• When bidder 𝑖𝑖’s faces 𝑁𝑁 − 1 rivals, her probability of winning 

the auction is the probability that her valuation exceeds that 
of all other 𝑁𝑁 − 1 bidders.

• We can write this probability as

𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝜈𝜈𝑗𝑗 < 𝜈𝜈𝑖𝑖 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝜈𝜈𝑘𝑘 < 𝜈𝜈𝑖𝑖 × ⋯× 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏 𝜈𝜈𝑙𝑙 < 𝜈𝜈𝑖𝑖
= 𝐵𝐵 𝜈𝜈𝑖𝑖 × 𝐵𝐵 𝜈𝜈𝑖𝑖 × ⋯ × 𝐵𝐵 𝜈𝜈𝑖𝑖 = 𝐵𝐵(𝜈𝜈𝑖𝑖)𝑁𝑁−1.

where 𝑗𝑗 ≠ 𝑘𝑘 ≠ 𝑙𝑙 represents 𝑖𝑖’s rivals.
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FPA in More General Settings

• Writing expected utility (cont.).
• As a result, the expected PMP can be written as:

max
𝑏𝑏𝑖𝑖≥0

𝐵𝐵(𝜈𝜈𝑖𝑖)𝑁𝑁−1(𝜈𝜈𝑖𝑖 − 𝑏𝑏𝑖𝑖) .

• Using this bidding function, we can write 𝑏𝑏𝑖𝑖 𝑣𝑣𝑖𝑖 = 𝑥𝑥𝑖𝑖, where 
𝑥𝑥𝑖𝑖 ∈ ℝ+ represents bidder 𝑖𝑖’s bid when her valuation is 𝑣𝑣𝑖𝑖.

• Applying the inverse 𝑏𝑏−1(�) on both sides, 𝑣𝑣𝑖𝑖 = 𝑏𝑏𝑖𝑖−1 𝑣𝑣𝑖𝑖 .

• Then, 𝐵𝐵(𝜈𝜈𝑖𝑖)𝑁𝑁−1 can be written as 𝐵𝐵(𝑏𝑏𝑖𝑖−1 𝑥𝑥𝑖𝑖 )𝑁𝑁−1.
• Ant the PMP becomes

max
𝑥𝑥𝑖𝑖≥0

𝐵𝐵 𝑏𝑏𝑖𝑖−1 𝑥𝑥𝑖𝑖
𝑁𝑁−1

𝜈𝜈𝑖𝑖 − 𝑥𝑥𝑖𝑖 .
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FPA in More General Settings

• Finding equilibrium bids.
• Differentiating with respect to 𝑥𝑥𝑖𝑖, 

− 𝐵𝐵 𝑏𝑏𝑖𝑖−1 𝑥𝑥𝑖𝑖
𝑁𝑁−1

+ 𝑁𝑁 − 1 𝐵𝐵 𝑏𝑏𝑖𝑖−1 𝑥𝑥𝑖𝑖
𝑁𝑁−2

𝑓𝑓 𝑏𝑏𝑖𝑖−1(𝑥𝑥𝑖𝑖)
𝜕𝜕𝑏𝑏𝑖𝑖−1 𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

𝜈𝜈𝑖𝑖 − 𝑥𝑥𝑖𝑖 = 0
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FPA in More General Settings

• Finding equilibrium bids (cont.)

• Because 𝑏𝑏𝑖𝑖−1 𝑥𝑥𝑖𝑖 = 𝑣𝑣𝑖𝑖 and 𝜕𝜕𝑏𝑏𝑖𝑖
−1 𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 1
𝑏𝑏′𝑏𝑏𝑖𝑖

−1 𝑥𝑥𝑖𝑖
, this expression 

simplifies to

− 𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−1 + 𝑁𝑁 − 1 𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝜈𝜈𝑖𝑖
1
𝑏𝑏′𝜈𝜈𝑖𝑖

𝜈𝜈𝑖𝑖 − 𝑥𝑥𝑖𝑖 = 0,

𝑁𝑁 − 1 𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝜈𝜈𝑖𝑖 𝜈𝜈𝑖𝑖 − 𝑁𝑁 − 1 𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝜈𝜈𝑖𝑖 𝑥𝑥𝑖𝑖 = 𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−1𝑏𝑏′𝜈𝜈𝑖𝑖 ,

𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−1𝑏𝑏′𝜈𝜈𝑖𝑖 + 𝑁𝑁 − 1 𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝜈𝜈𝑖𝑖 𝜈𝜈𝑖𝑖 = 𝑁𝑁 − 1 𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝜈𝜈𝑖𝑖 𝑥𝑥𝑖𝑖 .
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FPA in More General Settings

• Finding equilibrium bids (cont.).

• Because the left side is 𝜕𝜕 𝐹𝐹 𝜈𝜈𝑖𝑖 𝑁𝑁−1𝑏𝑏𝑖𝑖(𝜈𝜈𝑖𝑖)
𝜕𝜕𝜈𝜈𝑖𝑖

, 

𝜕𝜕 𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−1𝑏𝑏𝑖𝑖(𝜈𝜈𝑖𝑖)
𝜕𝜕𝜈𝜈𝑖𝑖

= 𝑁𝑁 − 1 𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝜈𝜈𝑖𝑖 𝑥𝑥𝑖𝑖 .

• Integrating both sides,

𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−1𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 = �
0

𝜈𝜈𝑖𝑖
𝑁𝑁 − 1 𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝜈𝜈𝑖𝑖 𝜈𝜈𝑖𝑖𝑑𝑑𝜈𝜈𝑖𝑖 .

• Applying integration by parts on the right side,

�
0

𝜈𝜈𝑖𝑖
𝑁𝑁 − 1 𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−2𝑓𝑓 𝜈𝜈𝑖𝑖 𝜈𝜈𝑖𝑖𝑑𝑑𝜈𝜈𝑖𝑖 = 𝐵𝐵(𝜈𝜈𝑖𝑖)𝑁𝑁−1𝜈𝜈𝑖𝑖 − �

0

𝜈𝜈𝑖𝑖
𝐵𝐵(𝜈𝜈𝑖𝑖)𝑁𝑁−1𝑑𝑑𝜈𝜈𝑖𝑖 .
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FPA in More General Settings

• Finding equilibrium bids (cont.).
• The first—order condition can be written as:

𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−1𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 = F(𝜈𝜈𝑖𝑖)𝑁𝑁−1𝜈𝜈𝑖𝑖 − �
0

𝜈𝜈𝑖𝑖
𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−1𝑑𝑑𝜈𝜈𝑖𝑖 .

• Dividing both side by 𝐵𝐵(𝜈𝜈𝑖𝑖)𝑁𝑁−1, and solving for the 
equilibrium bidding function, 𝑏𝑏𝑖𝑖(𝜈𝜈𝑖𝑖),

𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 = 𝜈𝜈𝑖𝑖 −
∫0
𝜈𝜈𝑖𝑖 𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−1𝑑𝑑𝜈𝜈𝑖𝑖
𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−1 .

• The bidding function 𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 constitutes the BNE of the FPA 
when bidder’s valuations are distributed according to 𝐵𝐵(𝜈𝜈𝑖𝑖).
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FPA in More General Settings
• Uniformly distributed valuations.

• When 𝐵𝐵 𝜈𝜈𝑖𝑖 = 𝜈𝜈𝑖𝑖,
𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−1 = 𝜈𝜈𝑖𝑖𝑁𝑁−1,

�
0

𝜈𝜈𝑖𝑖
𝐵𝐵 𝜈𝜈𝑖𝑖 𝑁𝑁−1𝑑𝑑𝜈𝜈𝑖𝑖 =

1
𝑁𝑁
𝜈𝜈𝑖𝑖𝑁𝑁 .

• The bidding function is, 

𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 = 𝜈𝜈𝑖𝑖 −
1
𝑁𝑁 𝜈𝜈𝑖𝑖

𝑁𝑁

𝜈𝜈𝑖𝑖𝑁𝑁−1
= 𝜈𝜈𝑖𝑖

𝑁𝑁 − 1
𝑁𝑁

.

• When 𝑁𝑁 = 2, 𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 = 𝜈𝜈𝑖𝑖
2

, and when 𝑁𝑁 = 3, 𝑏𝑏𝑖𝑖 𝜈𝜈𝑖𝑖 = 2𝜈𝜈𝑖𝑖
3

.
• As more bidders participate in the auction, every bidder 𝑖𝑖

submits a more aggressive bid because there is a higher 
probability that another bidder 𝑗𝑗 has a higher valuation.
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