# Intermediate Microeconomic Theory <br> Tools and Step-by-Step Examples 

Chapter 11:
Price Discrimination and Bundling

## Outline

- Price Discrimination
- First-Degree Price Discrimination
- Second-Degree Price Discrimination
- Third-Degree Price Discrimination
- Bundling


## Price Discrimination

## Price Discrimination

Can the monopolist do even better? YES!


Figure 11.1

- The monopolist could increase its profits if it could charge different prices to specific customer ("price discriminate").


## Price Discrimination

- Three types of price discrimination:
- First-degree:
- The monopolist sets a different price for each customer coinciding with her willingness-to-pay (WTP).
- Second-degree:
- The monopolist offers a quantity discount to buyers purchasing a large amount of the product.
- Third-degree:
- The monopolist charges different prices to different groups of customers, each with a different demand curve.


## Conditions for Price Discrimination

- The monopolist can price discriminate under the following conditions:
- No arbitrage. The good cannot be resold from a consumer to another.
- Otherwise, individuals with a low WTP would purchase the good at a low price and resell to individuals with a high WTP.
- Information about WTP. The monopolist needs some information about customers' WTP for its good.
- While detailed information about WTP is rarely observed, firms at least can gather information for various groups of customers.


## First-Degree Price Discrimination

## First-Degree Price Discrimination

- The monopolist charges to every consumer $i$ a price that coincides with her maximum WTP.
- Personalized price:
- If the monopolist faces inverse demand $p(q)=a-b q$, it charges:
- A price $p=a$ to the individual with higher WTP;
- A price $p=a-\$ 0.01$ to the individual with the $2^{\text {nd }}$-highest WTP;
- etc.
- The monopolist stops this pricing strategy when $p=$ $M C(q)$ because customers with WTP below $M C(q)$ would entail a per-unit loss.


## First-Degree Price Discrimination

- The firm extracts all the surplus from every consumer (the area below the demand curve and above the marginal cost function).
- The output produced under first-degree price discrimination, $q^{F D}$, coincides with that under perfectly competitive market, $q^{P C}$, because at $q^{P C}$, the demand curve crosses the firms' marginal cost, $p(q)=M C(q)$.


Figure 11.2

## First-Degree Price Discrimination

- Example 11.1: First-degree price discrimination.
- Consider a monopolist facing inverse demand curve $p(q)=$ $a-b q$, where $a, b>0$, and total cost function is $T C(q)=$ $c q$, where $c>0$.
- Uniform price. The monopolist would produce

$$
\begin{aligned}
& M R(q)=M C(q), \\
& a-2 b q=c \Rightarrow q^{M}=\frac{a-c}{2 b},
\end{aligned}
$$

which entails a monopoly price of

$$
p^{M}=a-b \frac{a-c}{2 b}=\frac{a+c}{2},
$$

with profits $\pi^{M}=\frac{(a-c)^{2}}{4 b}$.

## First-Degree Price Discrimination

- Example 11.1 (continued):
- First-degree price discrimination. The monopolist produces an output level where $p(q)=M C(q)$,

$$
a-b q=c \Rightarrow q^{F D}=\frac{a-c}{b} .
$$

- Profits coincides with the area of the triangle below the demand curve $p(q)=a-b q$, and above marginal cost $c$,

$$
\pi^{F D}=\frac{1}{2} \underbrace{(a-c)}_{\text {Height }} \underbrace{\left(\frac{a-c}{b}-0\right)}_{\text {Base }}=\frac{(a-c)^{2}}{2 b}
$$



Figure 11.2

## First-Degree Price Discrimination

- Example 11.1 (continued):
- Profits under first-degree price discrimination exceeds those under uniform (unique) price, $\pi^{F D}>\pi^{M}$

$$
\begin{aligned}
& \frac{(a-c)^{2}}{2 b}>\frac{(a-c)^{2}}{4 b} \\
& \frac{1}{2 b}>\frac{1}{4} \Rightarrow 4 b>2 b
\end{aligned}
$$

- If the monopolist faces $p(q)=10-q$ (i.e., $a=10, b=1$ ) and $c=2$,

$$
\begin{aligned}
& \pi^{M}=\frac{(a-c)^{2}}{4 b}=\frac{(10-2)^{2}}{4}=\$ 16 \\
& \pi^{F D}=\frac{(a-c)^{2}}{2 b}=\frac{(10-2)^{2}}{2}=\$ 32
\end{aligned}
$$

## First-Degree Price Discrimination

- Summary:
- First-degree price discrimination extracts all possible surplus from consumers.
- However, the monopolist needs a massive amount of information. It needs to know the maximum WTP for every buyer.
- First-degree discrimination is is relatively uncommon.
- Example: Free Application for Federal Student Aid (FAFSA)
- The form that the students submit includes relatively detailed information about the student and her family's income, which is highly correlated with their WTP for education.


## Second-Degree Price Discrimination

## Second-Degree Price Discrimination

- The monopolist offers a quantity discount to individuals willing to purchase several units, such as discounts in bulk.
- The monopolist charges at least two prices:
- One for each of the first $q_{1}$ units,
- E.g., $p_{1}=\$ 4$ for the first 3 units.
- Another for each unit beyond $q_{1}$ units,
- E.g., $p_{2}=\$ 2$ for all units after 3.
- Example: Utilities, such as electricity and water, and in mass transit systems.


## Second-Degree Price Discrimination

- There are three unknowns that the firm needs to determine:
- Where should the monopolist set the boundary, $q_{1}$, where customers can start benefiting from quantity discount?
- Which price should the monopolist set for each unit in the first block, $p_{1}$ ?
- Which price should it set for each unit in the second block, $p_{2}$ ?


## Second-Degree Price Discrimination

- To find these three unknowns, we set up the following monopolist problem:

$$
\max _{q_{1}, q_{2}} \underbrace{p_{1} q_{1}}_{T R_{1}}+\underbrace{p_{2}\left(q_{2}-q_{1}\right)}_{T R_{2}}-T C\left(q_{2}\right),
$$

where $T R_{1}=p_{1} q_{1}$ denotes total revenue from units in the first block, from $q=$ 0 to $q=q_{1}$;
$T R_{2}=p_{2}\left(q_{2}-q_{1}\right)$ is total revenue from units in the second block, from $q_{1}$ to $q_{2}$;
$T C\left(q_{2}\right)$ is total cost evaluated at $q_{2}$ because the firm produces a total of $q_{2}$ units.

- This problem ask: Choose the number of units in the first block, $q_{1}$, and in the second block, $q_{2}-q_{1}$, to maximize profits from both blocks.


## Second-Degree Price Discrimination

- Example 11.3: Second-degree price discrimination.
- Consider a monopolist facing inverse demand function $p(q)=10-q$.
- The firm total cost function is $T C(q)=c q$, where $c>0$.
- The monopolist's PMP is

$$
\max _{q_{1}, q_{2}} \pi=\overbrace{\underbrace{\left(10-q_{1}\right)}_{p_{1}} q_{1}}^{\tau R_{1}}+\overbrace{\underbrace{\left(10-q_{2}\right)}_{p_{2}}\left(q_{2}-q_{1}\right)}^{T R_{2}}-\overbrace{c q_{2}}^{\tau C\left(q_{2}\right)} .
$$

- Differentiating with respect to $q_{1}$,

$$
\begin{aligned}
& \frac{\partial \pi}{\partial q_{1}}=10-2 q_{1}-\left(10-q_{2}\right)=0 \\
& \quad-2 q_{1}+q_{2}=0 \Rightarrow q_{1}=\frac{q_{2}}{2}
\end{aligned}
$$

## Second-Degree Price Discrimination

- Example 11.3 (continued):
- Differentiating now with respect to $q_{2}$,

$$
\begin{gathered}
\frac{\partial \pi}{\partial q_{2}}=10-2 q_{2}+q_{1}-c=0, \\
q_{2}=\frac{10+q_{1}-c}{2} .
\end{gathered}
$$

- Inserting the expression for $q_{1}$ into the expression for $q_{2}$,

$$
\begin{gathered}
q_{2}=\frac{\stackrel{\overbrace{1}}{\overbrace{\frac{q_{2}}{2}}^{q_{1}}-c}}{2} \\
3 q_{2}+2 c=20 \Rightarrow q_{2}=\frac{2(10-c)}{3}
\end{gathered}
$$

- Inserting this result into $q_{1}, q_{1}=\frac{10-c}{3}$.


## Second-Degree Price Discrimination

- Example 11.3 (continued):
- We find the optimal prices for each block by plugging $q_{1}$, and $q_{2}$ into the inverse demand function,

$$
\begin{gathered}
p\left(q_{1}\right)=10-\frac{10-c}{3}=\frac{20+c}{3}, \\
p\left(q_{2}\right)=10-\frac{2(10-c)}{3}=\frac{2(5+c)}{3} .
\end{gathered}
$$

- Numerical example. If marginal cost is $c=\$ 4$,
- $q_{1}=\frac{10-4}{3}=2$ units at $p_{1}=\frac{20+4}{3}=\$ 8 /$ unit in the $1^{\text {st }}$ block.
- $q_{2}=\frac{2(10-4)}{3}=4$ units, implying $q_{2}-q_{1}=4-2=2$ units in the $2^{\text {nd }}$ block at $p_{2}=\frac{2(5+4)}{3}=\$ 6 /$ unit.


## Second-Degree Price Discrimination

- Example 11.3 (continued):
- These prices an output levels generate profits of

$$
\pi=(8 \times 2)+(6 \times 2)-(4 \times 4)=\$ 12
$$

- If instead, the monopolist charged a uniform price for all its customers,
- Output $q^{M}$ would solve to $10-2 q=4 \Rightarrow q^{M}=3$ units.
- At price of $p^{M}=10-3=\$ 7$.
- Profits would be only $\pi^{M}=(7 \times 3)-(4 \times 3)=\$ 9$.
- As expected, the monopolist increases its profits by price discriminating.


## Non-linear pricing

- Uniform pricing is known as "linear pricing."
- Price per unit is the same, regardless of how many units the consumer purchases.
- Second-price discrimination is known as "non-linear pricing."
- Price per unit is not constant in output.


## Third-Degree Price Discrimination

## Third-Degree Price Discrimination

- The monopolist charges different prices to group of customers with different demands.
- Its needs to identify which group the customer belongs to.
- Mathematically, the monopolist treats each group of customers as a separate monopoly.
- Customers in one group cannot resell the good to customers in another group (i.e., there is no arbitrage condition).
- The monopolist finds the marginal revenue curve for each demand function, and it sets each of them equal to the firm's marginal cost.


## Third-Degree Price Discrimination

- Example 11.4: Third-degree price discrimination.
- Consider a small town with only one movie-theater.
- As a monopolist, the movie theater faces 2 groups of customers, which it can easily distinguish by checking if they have student ID:
- Students, who have a lower WTP, captured by $p_{1}(q)=10-q$.
- Non-students, who have a higher WTP, measured by $p_{2}(q)=25-q$.
- The marginal cost of a ticket is the same for both types of customers, $M C=\$ 3$.


## Third-Degree Price Discrimination

- Example 11.4 (continued):
- The monopolist seeks to maximize its profits from both groups,

$$
\max _{q_{1}, q_{2}} \pi=\pi_{1}+\pi_{2}=\underbrace{\left(10-q_{1}\right) q_{1}-3 q_{1}}_{\pi_{1}}+\underbrace{\left(25-q_{2}\right) q_{2}-3 q_{2}}_{\pi_{2}} .
$$

- Differentiating with respect to $q_{1}$,

$$
10-2 q_{1}=3 \Rightarrow q_{1}=3.5 \text { tickets. }
$$

- Differentiating with respect to $q_{2}$,

$$
25-2 q_{2}=3 \Rightarrow q_{2}=11 \text { tickets. }
$$

## Third-Degree Price Discrimination

- Example 11.4 (continued):
- Since profits from each group only depends on the number of tickets sold to that group, the PMP can alternative written as two separate problems:

$$
\begin{aligned}
\max _{q_{1}} \pi_{1} & =\left(10-q_{1}\right) q_{1}-3 q_{1} \\
\max _{q_{2}} \pi_{2} & =\left(25-q_{2}\right) q_{2}-3 q_{2}
\end{aligned}
$$

- The firm treats each group as a separate monopoly, setting the monopoly rule $M R=M C$ :
- Students: $M R_{1}=M C$,

$$
\begin{aligned}
10-2 q_{1}=3 \Rightarrow q_{1} & =3.5 \text { units. } \\
p_{1} & =10-3.5=\$ 6.5 .
\end{aligned}
$$

## Third-Degree Price Discrimination

- Example 11.4 (continued):
- Non-students: $M R_{2}=M C$,

$$
\begin{aligned}
25-2 q_{2}=3 \Rightarrow q_{2} & =11 \text { units. } \\
p_{2} & =25-11=\$ 14 .
\end{aligned}
$$

- As a result, total profits become

$$
\begin{aligned}
\pi=\pi_{1}+\pi_{2}= & {[(6.5 \times 3.5)-(3 \times 3.5)]+[(14 \times 11)-(3 \times 11)] } \\
& =12.25+121 \\
& =\$ 133.25 .
\end{aligned}
$$

## Screening

- In example 11.3, students pay much less than non-students at movies (\$6.50 vs. \$14).
- Customers might try to pose as part of the low-demand group to buy at a lower price:

What can the monopolist do to avoid such a strategy?

## Screening

- The firm can use screening to infer the customer's unobserved demand. Screening must satisfy key properties to work:

1) It must be perfectly observable.
2) It must be strongly correlated with the customer's WTP.

- Example:

A student ID can be observable by an employee of the movie theater, and it is negatively correlated with the customer's WTP.

## Bundling

## Bundling

- Example: You can buy a desktop computer as a whole (monitor + CPU + keyboard + mouse) or buy each unit separately.
- Three forms of bundling:
- No bundling, the firm does not bundle any good, e.g., the buyer can purchase each part of the computer separately.
- Pure bundling, the firm allows the buyer to purchase either the bundle, e.g., the whole computer, or no good at all.
- Mixed bundling, the firm sets prices for each individual item and for the bundle, the buyer can choose whether to buy an item or the bundle.
- The monopolist can increase profits by offering pure bundling as long as the customer's demand for the different items is negatively correlated.


## Bundling

- Example 11.5: Bundling.
- Consider a monopolist selling computers.

Table 11.1

|  | CPU | Monitor | Both items (Computer) |
| :--- | :---: | :---: | :---: |
| Consumer 1 WTP | $\$ 500$ | $\$ 100 \beta$ | $\$ 500+\$ 100 \beta$ |
| Consumer 2 WTP | $\$ 500 \alpha$ | $\$ 100$ | $\$ 500 \alpha+\$ 100$ |
| Average cost (cost/unit) | $\$ 400$ | $\$ 80$ | $\$ 400+\$ 80$ |$\alpha, \beta \in(0,1)$

- Consumer 1 has the higher WTP for the CPU, but the lower for monitor.
- Consumer 2 has the higher WTP for the monitor, but the lower for CPU.
- Assume, consumer 1 has a higher WTP for the bundling,

$$
\$ 500+\$ 100 \beta>\$ 500 \alpha+\$ 100
$$

## Bundling

- Example 11.5 (continued):
- No bundling. The firm sells the CPU either at $\$ 500$ or $\$ 500 \alpha$, where $\$ 500>\$ 500 \alpha$.

| CPU | $\$ 500 \alpha$ | $\$ 500$ |
| :--- | ---: | :--- |
| Which consumer buy? | 1 and 2 | 1 |
| Profits | $=(2 \times 500 \alpha)$ | $=500-400$ |
|  | $-(2 \times 400)$ <br> $=1,000 \alpha-800$ | $=100$ |

- The firm will choose to entice both consumers only if

$$
1,000 \alpha-800>100 \Rightarrow \alpha>0.9
$$

- The firm entices both types of consumers when consumer 2's WTP for the CPU is relatively close to that of consumer 1 (i.e., $\alpha$ closer to 1).


## Bundling

- Example 11.5 (continued):
- No bundling. The firm sells the monitor either at $\$ 100$ or $\$ 100 \beta$.

| Monitor | $\$ 100 \beta$ | $\$ 100$ |
| :--- | :---: | :---: |
| Which consumer buy? | 1 and 2 | 2 |
| Profits | $=(2 \times 100 \beta)-(2 \times 80)$ <br> $=200 \beta-160$ | $=100-80$ |

- The firm will choose to entice both consumers only if

$$
200 \beta-160>20 \Rightarrow \beta>0.9
$$

- The firm entices both types of consumers as long as consumer 1's WTP for the monitor is relatively close to that of consumer 2 (i.e., $\beta$ closer to 1).


## Bundling

- Example 11.5 (continued):
- Bundling. With pure bundling, the firm has 2 pricing options to sells the whole computer.

| Bundle | $\$ 500 \alpha+\$ 100$ | $\$ 500+\$ 100 \beta$ |
| :---: | :---: | :---: |
| Which consumer buy? | 1 and 2 | 1 |
| Profits | $=2 \times(500 \alpha+100)-(2 \times$ <br>  | $480)$ |

- The firm will choose to entice both consumers only if

$$
\begin{gathered}
1,000 \alpha-760>20+100 \beta \\
\alpha>0.78+0.1 \beta \equiv \bar{\alpha}
\end{gathered}
$$

- We analyze what happens in six regions.


## Bundling

- Example 11.5 (continued):
- Bundling (cont.).



## Bundling

- Example 11.5 (continued):
- Bundling (cont.).

Region I. If $\alpha>0.9$ and $\beta>0.9$, condition $\alpha>\bar{\alpha}$ holds.
The firm prefers to sell the CPU, the monitor, and the bundle to both customers.

It prefers to sell the bundle rather the separated items because

$$
\begin{gathered}
\underbrace{1,000 \alpha-760}_{\text {Profits from bundle }}>\underbrace{1,000 \alpha-800}_{\text {Profits from CPU }}+\underbrace{200 \beta-160}_{\text {Profits from monitor }} \\
-760>200 \beta-960 \\
\beta<1
\end{gathered}
$$


which holds by assumption (negative correlated demands)

## Bundling

- Example 11.5 (continued):
- Bundling (cont.).

Region II. If $\alpha>0.9$ but $\beta<0.9$, condition $\alpha>\bar{\alpha}$ still holds.
The firm sells the CPU and the bundle to both customers, and the monitor to customer 2 alone.

The firm offers bundling given that

$$
\begin{aligned}
& \underbrace{1,000 \alpha-760}_{\text {Profits from bundle }} \gg \underbrace{1,000 \alpha-800}_{\text {Profits from CPU }}+\underbrace{20}_{\text {Profits from monitor }} \\
& 780>760
\end{aligned}
$$



## Bundling

- Example 11.5 (continued):
- Bundling (cont.).

Region III. If $\alpha<0.9, \beta>0.9$, and $\alpha>\bar{\alpha}$.
The firm sells the monitor and the bundle to both consumers, but CPU to customer 1 alone.

The firm offers bundling because

$$
\begin{aligned}
& \underbrace{1,000 \alpha-760}_{\text {Profits from bundle }}>\underbrace{100}_{\text {Profits from CPU }}+\underbrace{20}_{\text {Profi }} \\
& 1,000 \alpha>700+200 \beta, \\
& \alpha>0.7+0.2 \beta .
\end{aligned}
$$



## Bundling

- Example 11.5 (continued):
- Bundling (cont.).

Region III. If $\alpha<0.9, \beta>0.9$ and $\alpha>\bar{\alpha}$ (cont.).


If we plot the line $\alpha=0.7+0.2 \beta$,
Region III is divided in two areas:

- In the area above the dashed line, $\alpha>0.7+0.2 \beta$ holds, and the firm prefers to bundle.
- In the area below the dashed line, this condition is violated, and the firm sells each item separately.


## Bundling

- Example 11.5 (continued):
- Bundling (cont.).

Region IV. If $\alpha<0.9, \beta>0.9$, and $\alpha>\bar{\alpha}$.
The firm sells the bundle to both customers, the CPU to customer 1 alone, and the monitor to customer 2 alone.

The firm offers bundling because


$$
\begin{gathered}
1,000 \alpha>880 \\
\alpha>0.88
\end{gathered}
$$

Because condition $\alpha>\bar{\alpha}$ is satisfied, and cutoff $\bar{\alpha}$
 reaches its highest point at $0.88, \alpha>0.88$ holds.

## Bundling

- Example 11.5 (continued):
- Bundling (cont.).

Region V. If $\alpha<0.9, \beta>0.9$, and $\alpha<\bar{\alpha}$.
The firm sells the monitor to both customers, the CPU to customer 1 alone, and the bundle to customer 1 alone.

The firm does not offer bundling because
$\underbrace{20+100 \beta}_{\text {Profits from bundle }}<\underbrace{100}_{\text {Profits from CPU }}+\underbrace{200 \beta-160,}_{\text {Profits from monitor }}$

$$
\begin{gathered}
80<100 \beta, \\
0.8<\beta,
\end{gathered}
$$

which holds because $\beta>0.9$ is satisfied by all points
 in this region.

## Bundling

- Example 11.5 (continued):
- Bundling (cont.).

Region VI. If $\alpha<0.9, \beta<0.9$, and $\alpha<\bar{\alpha}$.
The firm sells the CPU to customer 1 alone, the monitor to customer 2 alone, and the bundle to customer 1 alone.

Offering bundling is unprofitable because

$$
\begin{array}{r}
\underbrace{20+100 \beta}_{\text {Profits from bundle }}<\underbrace{100}_{\text {Profits from CPU }} \\
\\
\\
100 \beta<100 \\
\beta<1
\end{array}
$$

which holds by assumption (negative correlated
 demands)

## Bundling

- Example 11.5 (continued):
- In summary:
- The firm finds bundle profitable in Regions I, II, and IV, which can be defined by condition $\alpha>\bar{\alpha}$, and in the top area of Region III, defined by $\alpha>0.7+0.2 \beta$.

- Otherwise, the firm sells each item separately.

