Intermediate Microeconomic Theory Tools and Step-by-Step Examples

Chapter 11: Price Discrimination and Bundling

Outline

- Price Discrimination
 - First-Degree Price Discrimination
 - Second-Degree Price Discrimination
 - Third-Degree Price Discrimination
- Bundling

Price Discrimination

Price Discrimination

Can the monopolist do even better? YES!

 The monopolist could increase its profits if it could charge different prices to specific customer ("price discriminate").

Price Discrimination

- Three types of price discrimination:
 - First-degree:
 - The monopolist sets a *different price for each customer* coinciding with her willingness-to-pay (WTP).
 - Second-degree:
 - The monopolist offers a *quantity discount* to buyers purchasing a large amount of the product.
 - Third-degree:
 - The monopolist charges *different prices to different* groups of customers, each with a different demand curve.

Conditions for Price Discrimination

- The monopolist can price discriminate under the following conditions:
 - *No arbitrage*. The good cannot be resold from a consumer to another.
 - Otherwise, individuals with a low WTP would purchase the good at a low price and resell to individuals with a high WTP.
 - Information about WTP. The monopolist needs some information about customers' WTP for its good.
 - While detailed information about WTP is rarely observed, firms at least can gather information for various groups of customers.

- The monopolist charges to every consumer *i* a price that coincides with her maximum WTP.
- Personalized price:
 - If the monopolist faces inverse demand p(q) = a bq, it charges:
 - A price p = a to the individual with higher WTP;
 - A price p = a \$0.01 to the individual with the 2nd-highest WTP;
 - etc.
- The monopolist stops this pricing strategy when p = MC(q) because customers with WTP below MC(q) would entail a per-unit loss.

- The firm extracts all the surplus from every consumer (the area below the demand curve and above the marginal cost function).
- The output produced under first-degree price discrimination, q^{FD}, coincides with that under perfectly competitive market, q^{PC}, because at q^{PC}, the demand curve crosses the firms' marginal cost, p(q) = MC(q).

- *Example 11.1:* First-degree price discrimination.
 - Consider a monopolist facing inverse demand curve p(q) = a bq, where a, b > 0, and total cost function is TC(q) = cq, where c > 0.
 - *Uniform price*. The monopolist would produce

$$MR(q) = MC(q),$$

$$a - 2bq = c \Longrightarrow q^{M} = \frac{a - c}{2b},$$

which entails a monopoly price of

$$p^M = a - b\frac{a-c}{2b} = \frac{a+c}{2},$$

with profits $\pi^M = \frac{(a-c)^2}{4b}$.

- *Example 11.1* (continued):
 - First-degree price discrimination. The monopolist produces an output level where p(q) = MC(q),

$$a - bq = c \Longrightarrow q^{FD} = \frac{a - c}{b}.$$

• Profits coincides with the area of the triangle below the demand curve p(q) = a - bq, and above marginal cost c,

- *Example 11.1* (continued):
 - Profits under first-degree price discrimination exceeds those under uniform (unique) price, $\pi^{FD} > \pi^M$

$$\frac{(a-c)^2}{2b} > \frac{(a-c)^2}{4b},$$
$$\frac{1}{2b} > \frac{1}{4} \Longrightarrow 4b > 2b.$$

• If the monopolist faces p(q) = 10 - q (i.e., a = 10, b = 1) and c = 2,

$$\pi^{M} = \frac{(a-c)^{2}}{4b} = \frac{(10-2)^{2}}{4} = \$16,$$
$$\pi^{FD} = \frac{(a-c)^{2}}{2b} = \frac{(10-2)^{2}}{2} = \$32.$$

Intermediate Microeconomic Theory

- Summary:
 - First-degree price discrimination extracts all possible surplus from consumers.
 - However, the monopolist needs a massive amount of information. It needs to know the maximum WTP for every buyer.
 - First-degree discrimination is is relatively uncommon.
 - *Example*: Free Application for Federal Student Aid (FAFSA)
 - The form that the students submit includes relatively detailed information about the student and her family's income, which is highly correlated with their WTP for education.

- The monopolist offers a quantity discount to individuals willing to purchase several units, such as discounts in bulk.
- The monopolist charges at least two prices:
 - One for each of the first q_1 units,
 - E.g., $p_1 =$ \$4 for the first 3 units.
 - Another for each unit beyond q_1 units,
 - E.g., $p_2 = \$2$ for all units after 3.
- *Example*: Utilities, such as electricity and water, and in mass transit systems.

- There are three unknowns that the firm needs to determine:
 - Where should the monopolist set the boundary, q_1 , where customers can start benefiting from quantity discount?
 - Which price should the monopolist set for each unit in the first block, p_1 ?
 - Which price should it set for each unit in the second block, p_2 ?

• To find these three unknowns, we set up the following monopolist problem:

$$\max_{q_1,q_2} \underbrace{p_1 q_1}_{TR_1} + \underbrace{p_2 (q_2 - q_1)}_{TR_2} - TC(q_2),$$

where $TR_1 = p_1q_1$ denotes total revenue from units in the first block, from q = 0 to $q = q_1$;

 $TR_2 = p_2(q_2 - q_1)$ is total revenue from units in the second block, from q_1 to q_2 ;

 $TC(q_2)$ is total cost evaluated at q_2 because the firm produces a total of q_2 units.

• This problem ask: Choose the number of units in the first block, q_1 , and in the second block, $q_2 - q_1$, to maximize profits from both blocks.

- Example 11.3: Second-degree price discrimination.
 - Consider a monopolist facing inverse demand function p(q) = 10 q.
 - The firm total cost function is TC(q) = cq, where c > 0.
 - The monopolist's PMP is

$$\max_{q_1,q_2} \pi = \underbrace{(10-q_1)}_{p_1} q_1 + \underbrace{(10-q_2)}_{p_2} (q_2-q_1) - cq_2.$$

• Differentiating with respect to q_1 ,

$$\frac{\partial \pi}{\partial q_1} = 10 - 2q_1 - (10 - q_2) = 0,$$

$$-2q_1 + q_2 = 0 \Longrightarrow q_1 = \frac{q_2}{2}.$$

Intermediate Microeconomic Theory

- *Example 11.3* (continued):
 - Differentiating now with respect to q_2 ,

$$\frac{\partial \pi}{\partial q_2} = 10 - 2q_2 + q_1 - c = 0,$$
$$q_2 = \frac{10 + q_1 - c}{2}.$$

• Inserting the expression for q_1 into the expression for q_2 ,

$$q_{2} = \frac{10 + \frac{q_{2}}{2} - c}{2},$$

$$3q_{2} + 2c = 20 \Rightarrow q_{2} = \frac{2(10 - c)}{3}.$$

• Inserting this result into q_1 , $q_1 = \frac{10-c}{3}$.

- *Example 11.3* (continued):
 - We find the optimal prices for each block by plugging q_1 , and q_2 into the inverse demand function,

$$p(q_1) = 10 - \frac{10 - c}{3} = \frac{20 + c}{3},$$
$$p(q_2) = 10 - \frac{2(10 - c)}{3} = \frac{2(5 + c)}{3}.$$

• Numerical example. If marginal cost is c = \$4,

•
$$q_1 = \frac{10-4}{3} = 2$$
 units at $p_1 = \frac{20+4}{3} =$ \$8/unit in the 1st block.
• $q_2 = \frac{2(10-4)}{3} = 4$ units, implying $q_2 - q_1 = 4 - 2 = 2$ units in the 2nd block at $p_2 = \frac{2(5+4)}{3} =$ \$6/unit.

- *Example 11.3* (continued):
 - These prices an output levels generate profits of

 $\pi = (8 \times 2) + (6 \times 2) - (4 \times 4) = \$12.$

- If instead, the monopolist charged a uniform price for all its customers,
 - Output q^M would solve to $10 2q = 4 \Rightarrow q^M = 3$ units.
 - At price of $p^M = 10 3 =$ \$7.
 - Profits would be only $\pi^{M} = (7 \times 3) (4 \times 3) =$ \$9.
- As expected, the monopolist increases its profits by price discriminating.

Non-linear pricing

- Uniform pricing is known as "linear pricing."
 - Price per unit is the same, regardless of how many units the consumer purchases.
- Second-price discrimination is known as "non-linear pricing."
 - Price per unit is not constant in output.

- The monopolist charges different prices to group of customers with different demands.
 - Its needs to identify which group the customer belongs to.
- Mathematically, the monopolist treats each group of customers as a separate monopoly.
 - Customers in one group cannot resell the good to customers in another group (i.e., there is no arbitrage condition).
- The monopolist finds the marginal revenue curve for each demand function, and it sets each of them equal to the firm's marginal cost.

- *Example 11.4: Third-degree price discrimination.*
 - Consider a small town with only one movie-theater.
 - As a monopolist, the movie theater faces 2 groups of customers, which it can easily distinguish by checking if they have student ID:
 - Students, who have a lower WTP, captured by $p_1(q) = 10 q$.
 - Non-students, who have a higher WTP, measured by $p_2(q) = 25 q$.
 - The marginal cost of a ticket is the same for both types of customers, MC =\$3.

- *Example 11.4* (continued):
 - The monopolist seeks to maximize its profits from both groups,

$$\max_{q_1,q_2} \pi = \pi_1 + \pi_2 = \underbrace{(10 - q_1)q_1 - 3q_1}_{\pi_1} + \underbrace{(25 - q_2)q_2 - 3q_2}_{\pi_2}.$$

• Differentiating with respect to q_1 ,

$$10 - 2q_1 = 3 \Rightarrow q_1 = 3.5$$
 tickets.

• Differentiating with respect to q_2 ,

$$25 - 2q_2 = 3 \Rightarrow q_2 = 11$$
 tickets.

- *Example 11.4* (continued):
 - Since profits from each group only depends on the number of tickets sold to that group, the PMP can alternative written as two separate problems:

$$\max_{q_1} \pi_1 = (10 - q_1)q_1 - 3q_1, \qquad (Students)$$
$$\max_{q_2} \pi_2 = (25 - q_2)q_2 - 3q_2. \qquad (Non-students)$$

- The firm treats each group as a separate monopoly, setting the monopoly rule MR = MC:
 - Students: $MR_1 = MC$,

$$10 - 2q_1 = 3 \Longrightarrow q_1 = 3.5$$
 units.
 $p_1 = 10 - 3.5 = $6.5.$

• *Example 11.4* (continued):

• Non-students:
$$MR_2 = MC$$
,

$$25 - 2q_2 = 3 \implies q_2 = 11$$
 units.
 $p_2 = 25 - 11 = $14.$

• As a result, total profits become

$$\pi = \pi_1 + \pi_2 = [(6.5 \times 3.5) - (3 \times 3.5)] + [(14 \times 11) - (3 \times 11)]$$

= 12.25 + 121
= \$133.25.

Screening

- In example 11.3, students pay much less than non-students at movies (\$6.50 vs. \$14).
- Customers might try to pose as part of the low-demand group to buy at a lower price:

What can the monopolist do to avoid such a strategy?

Screening

- The firm can use screening to infer the customer's unobserved demand. Screening must satisfy key properties to work:
 - 1) It must be perfectly observable.
 - 2) It must be strongly correlated with the customer's WTP.
- Example:

A student ID can be observable by an employee of the movie theater, and it is negatively correlated with the customer's WTP.

- *Example*: You can buy a desktop computer as a whole (monitor + CPU + keyboard + mouse) or buy each unit separately.
- Three forms of bundling:
 - *No bundling*, the firm does not bundle any good, e.g., the buyer can purchase each part of the computer separately.
 - *Pure bundling*, the firm allows the buyer to purchase either the bundle, e.g., the whole computer, or no good at all.
 - Mixed bundling, the firm sets prices for each individual item and for the bundle, the buyer can choose whether to buy an item or the bundle.
- The monopolist can increase profits by offering pure bundling as long as the customer's demand for the different items is negatively correlated.

- Example 11.5: Bundling.
 - Consider a monopolist selling computers.

Tab	le	11	.1

	CPU	Monitor	Both items (Computer)
Consumer 1 WTP	\$500	\$100 <i>β</i>	$500 + 100\beta$
Consumer 2 WTP	\$500α	\$100	$$500\alpha + 100
Average cost (cost/unit)	\$400	\$80	\$400 + \$80

- Consumer 1 has the higher WTP for the CPU, but the lower for monitor.
- Consumer 2 has the higher WTP for the monitor, but the lower for CPU.
- Assume, consumer 1 has a higher WTP for the bundling, $\$500 + \$100\beta > \$500\alpha + \$100.$

- *Example 11.5* (continued):
 - *No bundling*. The firm sells the <u>CPU</u> either at \$500 or $$500\alpha$, where $$500 > 500α .

СРО	\$500 <i>α</i>	\$500
Which consumer buy?	1 and 2	1
Profits	= $(2 \times 500\alpha)$ - (2×400) = 1,000 α - 800	= 500 - 400 = 100

• The firm will choose to entice both consumers only if

 $1,000\alpha - 800 > 100 \Longrightarrow \alpha > 0.9.$

• The firm entices both types of consumers when consumer 2's WTP for the CPU is relatively close to that of consumer 1 (i.e., α closer to 1).

- *Example 11.5* (continued):
 - *No bundling*. The firm sells the monitor either at \$100 or $$100\beta$.

Monitor	\$100 <i>β</i>	\$100
Which consumer buy?	1 and 2	2
Profits	= $(2 \times 100\beta) - (2 \times 80)$ = $200\beta - 160$	= 100 - 80 = 20

- The firm will choose to entice both consumers only if $200\beta 160 > 20 \Longrightarrow \beta > 0.9$.
- The firm entices both types of consumers as long as consumer 1's WTP for the monitor is relatively close to that of consumer 2 (i.e., β closer to 1).

- *Example 11.5* (continued):
 - *Bundling*. With pure bundling, the firm has 2 pricing options to sells the <u>whole computer</u>.

Bundle	$$500\alpha + 100	$500 + 100\beta$		
Which consumer buy?	1 and 2	1		
Profits	= $2 \times (500\alpha + 100) - (2 \times 480)$ = $1,000\alpha - 760$	$= (500 + 100\beta) - 480$ $= 20 + 100\beta$		
The firm will choose to entice both consumers only if				
$1,000\alpha - 760 > 20 + 100\beta$,				
	$\alpha > 0.78 + 0.1\beta \equiv \overline{\alpha}.$			

• We analyze what happens in six regions.

- *Example 11.5* (continued):
 - Bundling (cont.).

- *Example 11.5* (continued):
 - *Bundling* (cont.).

Region I. If $\alpha > 0.9$ and $\beta > 0.9$, condition $\alpha > \overline{\alpha}$ holds.

The firm prefers to sell the CPU, the monitor, and the bundle to both customers.

It prefers to sell the bundle rather the separated items because

 $1,000\alpha - 760 > 1,000\alpha - 800 + 200\beta - 160,$ Profits from bundle Profits from CPU Profits from monitor $-760 > 200\beta - 960,$ $\beta < 1,$ which holds by assumption (negative correlated demands)

- Example 11.5 (continued):
 - *Bundling* (cont.).

Region II. If $\alpha > 0.9$ but $\beta < 0.9$, condition $\alpha > \overline{\alpha}$ still holds.

- Example 11.5 (continued):
 - *Bundling* (cont.).

Region III. If $\alpha < 0.9$, $\beta > 0.9$, and $\alpha > \overline{\alpha}$.

The firm sells the monitor and the bundle to both consumers, but CPU to customer 1 alone.

The firm offers bundling because

$$1,000\alpha - 760 > 100 + 200\beta - 160,$$

Profits from bundle Profits from CPU Profits from monitor

$$1,000\alpha > 700 + 200\beta,$$

$$\alpha > 0.7 + 0.2\beta.$$

- Example 11.5 (continued):
 - *Bundling* (cont.).

Region III. If $\alpha < 0.9$, $\beta > 0.9$ and $\alpha > \overline{\alpha}$ (cont.).

If we plot the line $\alpha = 0.7 + 0.2\beta$, Region III is divided in two areas:

- In the area above the dashed line, $\alpha > 0.7 + 0.2\beta$ holds, and the firm prefers to bundle.
- In the area below the dashed line, this condition is violated, and the firm sells each item separately.

- Example 11.5 (continued):
 - *Bundling* (cont.).

Region IV. If $\alpha < 0.9$, $\beta > 0.9$, and $\alpha > \overline{\alpha}$.

The firm sells the bundle to both customers, the CPU to customer 1 alone, and the monitor to customer 2 alone.

- *Example 11.5* (continued):
 - *Bundling* (cont.).

Region V. If $\alpha < 0.9$, $\beta > 0.9$, and $\alpha < \overline{\alpha}$.

The firm sells the monitor to both customers, the CPU to customer 1 alone, and the bundle to customer 1 alone.

- *Example 11.5* (continued):
 - *Bundling* (cont.).

Region VI. If $\alpha < 0.9$, $\beta < 0.9$, and $\alpha < \overline{\alpha}$.

The firm sells the CPU to customer 1 alone, the monitor to customer 2 alone, and the bundle to customer 1 alone.

Offering bundling is unprofitable because

- *Example 11.5* (continued):
 - In summary:
 - The firm finds bundle profitable in Regions I, II, and IV, which can be defined by condition $\alpha > \overline{\alpha}$, and in the top area of Region III, defined by $\alpha > 0.7 + 0.2\beta$.

• Otherwise, the firm sells each item separately.