# Intermediate Microeconomic Theory <br> Tools and Step-by-Step Examples 

Chapter 10: Monopoly

## Outline

- Barriers to entry
- Profit Maximization Problem (PMP)
- Common Misunderstandings of Monopoly
- The Lernex Index and Inverse Elasticity Pricing Rule
- Multiplant Monopolist
- Welfare Analysis under Monopoly
- Advertising in Monopoly
- Monopsony


## Barriers to Entry

## Barriers to entry

"Why do monopolies exist in the first place if they are bad for society?"

- Structural barriers: Incumbent firms may have advantages that are unattractive for potential entrants.
- Cost advantage (e.g., superior technology)
- Demand advantage (e.g., large group of loyal customers)
- Legal barriers: Incumbents firms may be legally protected.
- Example: Patents.
- Strategic barriers: Incumbent firms can take actions to deter entry, by building a reputation of being a tough competitor.
- Example: Price wars.


## Profit Maximization Problem (PMP)

## Profit Maximization Problem

- In a monopolized industry,
- A single firm decides the output level, $q=Q$.
- A change in $q$ affects market prices, as measured by the inverse demand function $p(q)$, which decreases in $q$.
- Example (linear inverse demand):

$$
p(q)=a-b q, \text { where } a, b>0
$$

- When the monopolist sells few units (low values of $q$ ), consumers are willing to pay a relatively high price for the scarce good.
- As the firm offers more units (larger values of $q$ ), consumers are willing to pay less for the relatively abundant good.


## Profit Maximization Problem

- PMP: The monopolist chooses its output $q$ to maximize its profits $\pi$

$$
\max _{q} \pi=T R(q)-T C(q)=p(q) q-T C(q)
$$

- Differentiating with respect to $q$,

$$
p(q)+\frac{\partial p(q)}{\partial q} q-\frac{\partial T C(q)}{\partial q}=0
$$

- Rearranging,

$$
\underbrace{p(q)+\frac{\partial p(q)}{\partial q}}_{\text {Marginal revenue, } M R(q)} q=\underbrace{\partial q}_{\text {Marginal cost, } M C(q)}
$$

## Profit Maximization Problem

- Therefore, to maximize profits, the monopolist increases its output $q$ until

$$
M R(q)=M C(q)
$$

- If $M R(q)>M C(q)$, the monopolist would have incentives to increase output $q$ because its revenues increases more than its cost.
- If $M R(q)<M C(q)$, the monopolist would have incentives to decrease its output $q$.


## Profit Maximization Problem

- A closer look at marginal revenue,

$$
M R(q)=\underbrace{p(q)}_{\text {Positive effect }}+\underbrace{\frac{\partial p(q)}{\partial q} q .}_{\text {Negative effect }}
$$

- When monopolist increases output by 1 unit, this additional unit produces 2 effects on firm's revenue:
- Positive effect. If the firm sells 1 more unit, it earns $p(q)$, and the firm's revenue increases.
- Negative effect. When offering 1 more unit, the firm needs to decrease the price of previous units sold, $\frac{\partial p(q)}{\partial q}<0$.
- In summary, the total effect of increasing output must exactly offset the additional costs of producing 1 more unit, $M R(q)=M C(q)$.


## Profit Maximization Problem

- Example 10.1: Positive and negative effects of selling more units.
- Consider $p(q)=10-3 q$. If the firm were to marginally increase its output,

$$
\begin{aligned}
\operatorname{MR}(q) & =p(q)+\frac{\partial p(q)}{\partial q} q \\
& =(10-3 q)+(-3) q \\
& =10-6 q .
\end{aligned}
$$

- If the firm sells $q=2$ units,

$$
T R(2)=p(2) 2=(10-3 \times 2) 2=\$ 8
$$

## Profit Maximization Problem

- Example 10.1 (continued):
- Evaluating $M R(q)$ at $q=2$ units yields

$$
M R(2)=(10-3 \times 2)+(-3) 2=4-6=-\$ 2
$$

- The monopolist's revenue experiences:
- A positive effect of $\$ 4$ because it now sells 1 more unit at price $\$ 4$.
- A negative effect because selling 1 more unit entails applying a price discount of $\$ 3$ on all previous units.
- Overall, these two effect generates a total (net) decrease in revenue of $\$ 2$.


## Profit Maximization Problem

- Example 10.2: Finding marginal revenue with linear demand.
- Consider $p(q)=a-b q$. Marginal revenue is

$$
M R(q)=p(q)+\frac{\partial p(q)}{\partial q} q=(a-b q)+(-b) q=a-2 b q
$$



## Profit Maximization Problem

- Two properties of marginal revenue curve:

1) $M R(q)$ lies below the demand curve. We need,

$$
\begin{gathered}
M R(q) \leq p(q) \\
p(q)+\frac{\partial p(q)}{\partial q} q \leq p(q) \rightarrow \frac{\partial p(q)}{\partial q} q \leq 0
\end{gathered}
$$

2) $M R(q)$ and the demand curve originate at the same height.
At $q=0$,

$$
p(0)=a-b \times 0=a
$$

$M R(0)=p(0)+\frac{\partial p(q)}{\partial q} q=p(0)=a$.


## Profit Maximization Problem

- Example 10.3: Finding monopoly output with linear demand.
- Consider $p(q)=a-b q$, and $T C(q)=c q$, where $c>0$.
- The monopolist maximizes its profits by solving

$$
\max _{q} \pi=T R(q)-T C(q)=\underbrace{(a-b q) q}_{T R}-\underbrace{c q}_{T C} .
$$

- Differentiating with respect to q yields

$$
a-2 b q-c=0
$$

- Rearranging,

$$
\underbrace{a-2 b q}_{M R(q)}=\underbrace{c}_{M C(q)}
$$

## Profit Maximization Problem

- Example 10.3 (continued):
- Rearranging,

$$
a-c=2 b q .
$$

- Solving for output $q$,

$$
q^{M}=\frac{a-c}{2 b} .
$$

- We find the monopoly price by inserting this output into the inverse demand function

$$
\begin{aligned}
p\left(q^{M}\right) & =a-b q^{M}=a-b\left(\frac{a-c}{2 b}\right) \\
& =\frac{2 a b-b(a-c)}{2 b}=\frac{a+c}{2}
\end{aligned}
$$

## Profit Maximization Problem

- Example 10.3 (continued):


Figure 10.2

## Profit Maximization Problem

- Example 10.3 (continued):
- Monopoly profits are

$$
\begin{aligned}
\pi^{M} & =p\left(q^{M}\right) q^{M}-c q^{M} \\
& =\frac{a+c}{2} \cdot \frac{a-c}{2 b}-c \frac{a-c}{2 b} \\
& =\left(\frac{a+c}{2}-c\right) \frac{a-c}{2 b} \\
& =\frac{(a-c)^{2}}{4 b} .
\end{aligned}
$$

## Profit Maximization Problem

- Example 10.3 (continued):
- Consumer surplus under this monopoly is


Figure 10.2

## Profit Maximization Problem

- Example 10.3 (continued):
- If inverse demand is $p(q)=10-q$ (i.e., $a=10$ and $b=1$ ), and $T C(q)=4 q$ (i.e., $c=4$ )
- $q^{M}=\frac{a-c}{2 b}=\frac{10-4}{2}=3$ units.
- $p^{M}=a-b q^{M}=\$ 7$.
- $\pi^{M}=\frac{(a-c)^{2}}{4 b}=\frac{(10-4)^{2}}{4}=\frac{36}{4}=\$ 9$.
- $C S^{M}=\frac{(a-c)^{2}}{8 b}=\frac{(10-4)^{2}}{8}=\frac{36}{8}=\$ 4.5$.


## Common misunderstandings of Monopoly

## Common Misunderstandings

1. Monopolies do not set infinitely high prices.

- While the monopolist is the only firm in its industry, it faces a demand curve $p(q)$, such as $p(q)=a-b q$.
- Setting higher prices might be attractive but could lead to fewer sales.
- This trade-off implies the monopolist does not set an infinitely high price because it would imply no sales at all.
- In example 10.3, any price above $p=\$ a$ (e.g., $\$ 10$ if $a=$ 10) entails no sales.


## Common Misunderstandings

2. The monopolist does not have a supply curve.

- A common misunderstanding is to consider that $q^{M}$, where $M R(q)=M C(q)$, constitutes the monopolist's supply curve.
- In perfectly competitive markets, the firm observes the given market price offers the output that satisfies $p=M C(q)$, obtaining the supply function $q(p)$.
- In a monopoly, the monopolist determines output and price simultaneously.
- In example 10.3, when the monopolist chooses $q^{M}=3$ units, it simultaneously determines $p^{M}=10-3=\$ 7$, not allowing the firm to choose different output levels for a given market price of $p^{M}=\$ 7$.


## Common Misunderstandings

3. The monopolist produces in the elastic portion of the demand curve.

- Goods with few (or no) close substitutes tend to have a relatively inelastic demand curve.
- Monopolies often produce goods with no close substitutes. However, it is does not mean that it produces in the inelastic portion of the demand curve.


## Common Misunderstandings

3. The monopolist produces in the elastic portion of the demand curve.

- Consider the formula of price elasticity of demand

$$
\varepsilon_{q, p}=\frac{\% \Delta q}{\% \Delta p^{\prime}}
$$

- If the monopolist produces in the inelastic portion of the demand curve, $\left|\varepsilon_{q, p}\right|<1$, an increase in price by $1 \%$ reduces sales by less than $1 \%$. It would increase its price, as sales would not be greatly affected but it would not be profit maximizing.
- If it produces in the elastic segment, $\left|\varepsilon_{q, p}\right|>1$, an increase in price by $1 \%$ reduces sales by more than $1 \%$. The firm does not have incentives to adjust its price.


## Common Misunderstandings

- Example 10.5: Price elasticity of output $q^{M}$ under linear demand.
- Consider the monopolist in example 10.3, facing $p(q)=10-q$.
- We found $q^{M}=3$ units, and $p^{M}=\$ 7$.
- We find price elasticity as

$$
\varepsilon_{q, p}=\frac{\% \Delta q}{\% \Delta p}=\frac{\Delta q}{\Delta p} \cdot \frac{p}{q}
$$

- If the change in price is small, $\varepsilon_{q, p}=\frac{\partial q(p)}{\partial p} \cdot \frac{p}{q}$.


## Common Misunderstandings

- Example 10.5 (continued):
- From the inverse demand function, we obtain the direct demand function, $q(p)=10-p$. Then,

$$
\varepsilon_{q, p}=\frac{\partial q(p)}{\partial p} \cdot \frac{p^{M}}{q^{M}}=-1 \frac{7}{3} \cong-2.33 .
$$

- If the monopolist increases prices by $1 \%$, its sales decrease by 2.33\%.
- Therefore, $\left|\varepsilon_{q, p}\right|=2.33>1 \rightarrow$ the monopolist sets a price $p^{M}$ lying in the elastic portion of the demand curve.


# The Lernex Index and Inverse Elasticity Pricing Rule 

## The Lernex Index

- We can rewrite the profit-maximizing condition for the monopolist, $M R(q)=M C(q)$, to show a relationship between margin, $p-M C(q)$, and price elasticity, $\varepsilon_{q, p}$,

$$
p(q)+\frac{\partial p(q)}{\partial q} q=M C(q)
$$

- Marginal revenue can be rearranged as

$$
\begin{gathered}
M R(q)=p\left(1+\frac{\partial p(q)}{\partial q} \cdot \frac{q}{p}\right) \\
M R(q)=p\left(1+\frac{1}{\frac{\partial q(p)}{\partial p} \cdot \frac{p}{q}}\right)=p\left(1+\frac{1}{\varepsilon_{q, p}}\right) .
\end{gathered}
$$

## The Lernex Index

- Substituting this expression of $M R(q)$ into $M R(q)=M C(q)$,

$$
p\left(1+\frac{1}{\varepsilon_{q, p}}\right)=M C(q)
$$

- Rearranging, $p+p \frac{1}{\varepsilon_{q, p}}=M C(q)$, or $\boldsymbol{p}-\boldsymbol{M C}(\boldsymbol{q})=-\boldsymbol{p} \frac{\mathbf{1}}{\varepsilon_{q, p}}$.
- Dividing both sides by $p$ yields,

$$
\frac{p-M C(q)}{p}=-\frac{1}{\varepsilon_{q, p}} .
$$

- Which is known as the "Lernex Index":
- A monopolist's ability to set a price above marginal cost is inversely related to the price elasticity of demand.


## The Lernex Index

- The "Lernex Index" is also known as the "markup index" because it measures the price markup over marginal cost.
- As demand becomes relatively elastic, (i.e., a more negative number) the price markup decreases.
- Example: If $\varepsilon_{q, p}=-4$,

$$
-\frac{1}{\varepsilon_{q, p}}=-\frac{1}{-4}=0.25
$$

price markup over marginal cost decreases to $25 \%$.

## The Lernex Index

- As demand becomes relatively inelastic, the price markup increases.
- Example: If $\varepsilon_{q, p}=-0.5$,

$$
-\frac{1}{\varepsilon_{q, p}}=-\frac{1}{-0.5}=2
$$

price markup of $200 \%$.

## The Lernex Index

- Example 10.6: Lernex index with a linear demand.
- Consider market inverse demand function is $p(q)=10-q$.
- Solving for $q$, we obtain direct demand $q(p)=10-p$.
- Which yields and elasticity of

$$
\begin{aligned}
\varepsilon_{q, p} & =\frac{\partial q(p)}{\partial p} \cdot \frac{p}{q} \\
& =-1 \frac{p}{10-p} .
\end{aligned}
$$

## The Lernex Index

- Example 10.6 (continued):
- Assuming $M C(q)=4$, the Lernex Index becomes

$$
\begin{gathered}
\frac{p-M C(q)}{p}=-\frac{1}{\varepsilon_{q, p}}, \\
\frac{p-4}{p}=-\left(\frac{1}{-1 \frac{p}{10-p}}\right) .
\end{gathered}
$$

## The Lernex Index

- Example 10.6 (continued):
- Rearranging terms,

$$
\frac{p-4}{p}=\frac{10-p}{p}
$$

- Which simplifies to

$$
p-4=10-p
$$

- And solving for price, $p=\$ 7$.


## The Lernex Index

- Example 10.7: Lernex index with constant elasticity demand.
- Consider monopolist facing demand curve

$$
q(p)=5 p^{\varepsilon}
$$

- Assuming $M C(q)=\$ 4$, the Lernex Index becomes

$$
\frac{p-4}{p}=-\frac{1}{\varepsilon_{q, p}}
$$

## The Lernex Index

- Example 10.7 (continued):
- If demand curve is $q(p)=5 p^{-2}$ (i.e., $\varepsilon=-2$ ),

$$
\frac{p-4}{p}=-\frac{1}{-2},
$$

which simplifies to $2 p-8=p$, or $p=\$ 8$.

- If demand function changes to $q(p)=5 p^{-5}$,

$$
p=\frac{20}{4}=\$ 5 .
$$

As demand becomes more elastic, price decreases.

## Inverse elasticity pricing rule (IEPR)

- Using the Lernex index, and solving for price

$$
\begin{gathered}
\frac{p-M C(q)}{p}=-\frac{1}{\varepsilon_{q, p}} \\
p=\frac{M C(q)}{1+\frac{1}{\varepsilon_{q, p}}}
\end{gathered}
$$

which is known as the "inverse elasticity price rule" (IEPR)

- Example: If $M C(q)=\$ 4$ and $\varepsilon_{q, p}=-2$,

$$
p=\frac{4}{1+\frac{1}{-2}}=\frac{4}{\frac{1}{2}}=\$ 8 .
$$

## Multiplant Monopoly

## Multiplant Monopoly

- Consider a monopoly producing in two plants (factories),
- $q_{1}$ is the output produced in plant 1 ,
- $q_{2}$ is the output produced in plant 2 ,
- $Q=q_{1}+q_{2}$ represents total output across plants.
- The monopolist maximizes the joint profits from both plants

$$
\begin{aligned}
\max _{q_{1}, q_{2}} \pi= & \pi_{1}+\pi_{2}=\underbrace{T R_{1}\left(q_{1}, q_{2}\right)-T C_{1}\left(q_{1}\right)}_{\pi_{1}}+\underbrace{T R_{2}\left(q_{1}, q_{2}\right)-T C_{2}\left(q_{2}\right)}_{\pi_{2}} \\
& =\left[p\left(q_{1}, q_{2}\right) \times q_{1}-T C_{1}\left(q_{1}\right)\right] \\
& +\left[p\left(q_{1}, q_{2}\right) \times q_{2}-T C_{2}\left(q_{2}\right)\right] \\
& =p\left(q_{1}, q_{2}\right) \cdot\left(q_{1}+q_{2}\right)-T C_{1}\left(q_{1}\right)-T C_{2}\left(q_{2}\right)
\end{aligned}
$$

## Multiplant Monopoly

- Differentiating with respect to $q_{1}$, yields

$$
\underbrace{p\left(q_{1}, q_{2}\right)+\frac{\partial p\left(q_{1}, q_{2}\right)}{\partial q_{1}}}_{M R_{1}}=\underbrace{\frac{\partial T C_{1}\left(q_{1}\right)}{\partial q_{1}}}_{M C_{1}},
$$

- And differentiating with respect to $q_{2}$,

$$
\underbrace{p\left(q_{1}, q_{2}\right)+\frac{\partial p\left(q_{1}, q_{2}\right)}{\partial q_{2}}}_{M R_{2}}=\underbrace{\frac{\partial T C_{2}\left(q_{2}\right)}{\partial q_{2}}}_{M C_{2}}
$$

- In the special case that $\frac{\partial p\left(q_{1}, q_{2}\right)}{\partial q_{1}}=\frac{\partial p\left(q_{1}, q_{2}\right)}{\partial q_{2}}, M R_{1}=M R_{2}=M R$.
- The multiplant monopoly maximizes its joint profits at

$$
M R=M C_{1}=M C_{2}
$$

## Multiplant Monopoly

- When $\frac{\partial p\left(q_{1}, q_{2}\right)}{\partial q_{1}}=\frac{\partial p\left(q_{1}, q_{2}\right)}{\partial q_{2}}$,

$$
M R_{1}=M R_{2}=M R
$$

- This occurs when prices are affected to the same extent when either plant increases its productions, if

$$
p\left(q_{1}, q_{2}\right)=300-q_{1}-q_{2}
$$

- The multiplant monopoly only needs to equate marginal costs across plants.


## Multiplant Monopoly

- When $\frac{\partial p\left(q_{1}, q_{2}\right)}{\partial q_{1}} \neq \frac{\partial p\left(q_{1}, q_{2}\right)}{\partial q_{2}}$,

$$
M R_{1} \neq M R_{2}
$$

- This may occur if $p\left(q_{1}, q_{2}\right)=300-q_{1}-0.5 q_{2}$.
- The multiplant monopoly maximizes joint profits when $M R_{1}=M C_{1}$ and $M R_{2}=M C_{2}$.


## Multiplant Monopoly

- Example 10.8: Multiplant Monopoly.
- Consider $p(Q)=100-Q=100-q_{1}-q_{2}$
- Assume the monopolist operates 2 plants
- Plant 1 (US) with $T C_{1}\left(q_{1}\right)=5+12 q_{1}+6\left(q_{1}\right)^{2}$
- Plant 2 (Chile) with $T C_{2}\left(q_{2}\right)=5+18 q_{2}+3\left(q_{2}\right)^{2}$
- The monopolist chooses $q_{1}$ and $q_{2}$ to maximize joint profits from both plants

$$
\begin{aligned}
\max _{q_{1} \geq 0, q_{2} \geq 0} \pi=\pi_{1}+\pi_{2}= & \underbrace{\left(100-q_{1}-q_{2}\right) q_{1}-T C_{1}\left(q_{1}\right)}_{\pi_{1}} \\
& +\underbrace{\left(100-q_{1}-q_{2}\right) q_{2}-T C_{2}\left(q_{2}\right)}_{\pi_{2}}
\end{aligned}
$$

## Multiplant Monopoly

- Example 10.8 (continued):
- Differentiating with respect to $q_{1}$,

$$
\begin{gathered}
100-2 q_{1}-q_{2}-12-12 q_{1}-q_{2}=0 \\
88-14 q_{1}-2 q_{2} \\
q_{1}=\frac{44-q_{2}}{7} .
\end{gathered}
$$

- Similarly, differentiating total profits with respect to $q_{2}$,

$$
\begin{gathered}
100-q_{1}-2 q_{2}-18-6 q_{2}-q_{1}=0 \\
82-2 q_{1}-8 q_{2} \\
q_{2}=\frac{41-q_{1}}{4} .
\end{gathered}
$$

## Multiplant Monopoly

- Example 10.8 (continued):
- Inserting the result for $q_{2}$ into $q_{1}$, we obtain

$$
q_{1}=\frac{44-q_{2}}{7}=\frac{44-\left(\frac{41-q_{1}}{4}\right)}{7},
$$

which simplifies to $7 q_{1}=\frac{135+q_{1}}{4}$, yielding an optimal production in the US plant of $q_{1}=5$ units.

- The optimal production in the Chilean plant is $q_{2}=\frac{41-5}{4}=9$ units.
- Aggregate output is $Q=q_{1}+q_{2}=5+9=14$ units.
- In summary, the monopoly produces a share of $\frac{q_{1}}{Q}=\frac{5}{14} \cong 0.35$ in the US plant, and $\frac{q_{2}}{Q}=\frac{9}{14} \cong 0.64$ in the Chilean plant.


## Multiplant Monopoly

- The analysis about how the multiplant monopolist determines $Q$, and how it distributes such production among its plants, $q_{1}$ and $q_{2}$, is analogous to a "cartel" problem.
- A cartel is a group of firms (equivalent to a monopolist with different plants) coordinating their production decisions to increase their joint profits.
- Example: Organization of the Petroleum-Exporting Countries (OPEC).
- Some countries have a lower MC (i.e., lower cost of extracting an additional barrel of oil), such as Saudi Arabia.
- Other countries have higher MC, such as Angola o Venezuela.
- They coordinate their total production and distribute it among the cartel participants.


## Welfare Analysis under Monopoly

## Welfare Analysis

- Output is lower under monopoly than under perfectly competitive industries, entailing a higher price.
- Consumer surplus is much smaller than under perfect competition because customers pay more per unit and buy fewer units.
- In contrast, profits are larger.
- However, the firm's profit gain does not compensate for the loss in consumer surplus, yielding a net loss in social welfare.


## Welfare Analysis



Table 10.1

|  | Perfect Competition | Monopoly | Difference |
| :--- | :--- | :--- | :--- |
| Consumer Surplus | $A+B+C$ | $A$ | $-B-C$ |
| Profits | $D+E+F$ | $D+F+B$ | $B-E$ |
| Welfare | $A+B+C+D+E+F$ | $A+D+F+B$ | $-C-E\}$ |

## Welfare Analysis

- Example 10.9: Finding the deadweight loss of a monopoly.
- Consider $p(q)=10-q$ and $M C(q)=4$.

| Monopoly | Perfect Competition |
| :--- | :--- |
| $q^{M}=3$ units | $q^{P C}=6$ units |
| $p^{M}=\$ 7$ | $p^{P C}=\$ 4$ |
| $C S^{M}=\frac{1}{2}(10-7) 3=\$ 4.50$ | $C S^{P C}=\frac{1}{2}(10-4) 6=\$ 18$ |
| $\pi^{M}=(7 \times 3)-(4 \times 3)=\$ 9$ $\pi^{P C}=(4 \times 6)-(4 \times 6)=\$ 0$ <br> $W^{M}=C S^{M}+\pi^{M}$  <br> $=4.5+9=\$ 13.50$ $W^{P C}=C S^{P C}+\pi^{P C}$ <br>   |  |

$$
W^{P C}-W^{M}=18-13.50=\$ 4.50
$$

## Welfare Analysis

- Example 10.9 (continued):
- Deadweight loss under this monopoly is


Figure 10.4

## Advertising in Monopoly

## Advertising in Monopoly

- When investing in advertising, the monopolist faces a tradeoff: advertising increases demand but it is costly.
- To find the profit-maximizing amount of advertising, $A$,

$$
\max _{A} \pi=T R-T C-A
$$

- We can rewrite this problem as

$$
\begin{aligned}
\max _{A} \pi & =(p \cdot q)-T C(q)-A \\
& =[p \cdot q(p, A)]-T C[q(p, A)]-A .
\end{aligned}
$$

- where $q=q(p, A)$ represents the demand function (sales) which is decreasing $p$ and increasing in $A$.


## Advertising in Monopoly

- Differentiating with respect to the amount of advertising A,

$$
p \frac{\partial q(p, A)}{\partial A}-\frac{\partial T C}{\partial q} \cdot \frac{\partial q(p, A)}{\partial A}-1=0
$$

- Rearranging,

$$
(p-M C) \cdot \frac{\partial q(p, A)}{\partial A}=1
$$

## Advertising in Monopoly

- Let us define the advertising elasticity of demand, $\varepsilon_{q, A}$, as

$$
\varepsilon_{q, A}=\frac{\% \text { increase in } q}{\% \text { increase in } A}=\frac{\frac{\Delta q}{q}}{\frac{\Delta A}{A}}=\frac{\Delta q}{\Delta A} \cdot \frac{A}{q}
$$

- In the case of a small change in $A$, the elasticity $\varepsilon_{q, A}$ can be written as $\varepsilon_{q, A}=\frac{\partial q(p, A)}{\partial A} \cdot \frac{A}{q}$.
- Rearranging, we find $\varepsilon_{q, A} \cdot \frac{q}{A}=\frac{\partial q(p, A)}{\partial A}$.


## Advertising in Monopoly

- Therefore, we can rewrite the profit-maximizing condition as

$$
(p-M C) \underbrace{\varepsilon_{q, A}}_{\frac{\partial q(p, A)}{\partial A}} \cdot \frac{q}{A}=1 .
$$

- Dividing both sides by $\varepsilon_{q, A}$ and rearranging,

$$
p-M C=\frac{1}{\varepsilon_{q, A}} \cdot \frac{A}{q}
$$

- Dividing both sides by $p$, we find

$$
\frac{p-M C}{p}=\frac{1}{\varepsilon_{q, A}} \cdot \frac{A}{p q} .
$$

## Advertising in Monopoly

- From the IERP, we know

$$
\frac{p-M C}{p}=-\frac{1}{\varepsilon_{q, p}}
$$

- Hence,

$$
\begin{gathered}
-\frac{1}{\varepsilon_{q, p}}=\frac{1}{\varepsilon_{q, A}} \cdot \frac{A}{p q} . \\
-\frac{\varepsilon_{q, A}}{\varepsilon_{q, p}}=\frac{A}{p q} .
\end{gathered}
$$

- The right side represents the advertising-to-sales ratio.
- For two markets with the same $\varepsilon_{q, p}$, the advertising-to-sales ratio must be larger in the market where demand is more sensitive to advertising (higher $\varepsilon_{q, A}$ ).


## Advertising in Monopoly

- Example 10.11: Monopolist's optimal advertising ratio.
- Consider a monopolist with price elasticity of demand of $\varepsilon_{q, p}=-1.5$ and advertising elasticity $\varepsilon_{q, A}=0.1$.
- The advertising-to-sales ratio should be

$$
\begin{aligned}
\frac{A}{p q} & =-\frac{\varepsilon_{q, A}}{\varepsilon_{q, p}} \\
& =-\frac{0.1}{-1.5}=0.067
\end{aligned}
$$

- Advertising should account for $6.7 \%$ of this monopolist's total revenue.


## Monopsony

## Monopsony

- Monopsony: only one buyer in the market and several sellers.
- Examples: small labor markets, such as a mine or Walmart superstore in a small town.
- The buyer (employer) will be able to pay less for each hour of labor (lower wages) than if it had to compete against other employers, as in a perfectly competitive market.


## Monopsony

- Consider a firm (e.g., a coal mine) with production function $q=f(L)$, which:
- increases with the number of workers hired, $f^{\prime}(L)>0$,
- but at a decreasing rate, $f^{\prime \prime}(L)<0$.
- The profits of the coal mine is given by

$$
\pi=T R-T C=p q-w(L) L
$$

- The firm extracts $q$ units of coal, each sold at price $p$, yielding $T R=p q$.
- The firm hires $L$ workers, paying each of them a wage of $w(L)$.
- $w^{\prime}(L)>0$, as the firm hires more workers, labor becomes scarce, and a more generous wage must be offered to attract new workers.


## Monopsony

- The monopsonist's PMP is

$$
\max _{L \geq 0} \pi=p q-w(L) L=p f(L)-w(L) L
$$

- Intuitively, this problem says, "choose the number of workers you plan to hire, $L$, so as to maximize your profits."
- Differentiating with respect to $L$,

$$
p f^{\prime}(L)-\left[w(L)+w^{\prime}(L) L\right]=0
$$

- Rearranging,

$$
\underbrace{p f^{\prime}(L)}_{M R P_{L}}=\underbrace{w(L)+w^{\prime}(L) L}_{M E_{L}}
$$

## Monopsony

$$
\underbrace{p f^{\prime}(L)}_{M R P_{L}}=\underbrace{w(L)+w^{\prime}(L) L .}_{M E_{L}}
$$

- $M R P_{L}$ ("marginal revenue product" of labor):
- After hiring 1 more worker (increase in $L$ ), the firm produces $f^{\prime}(L)$ more units of output (e.g., coal), sold at a price $p$.
- $M E_{L}$ ("marginal expenditure" on labor). After hiring 1 more worker, the firm experiences an increase in cost:
- This extra worker must be paid $w(L)$.
- The additional worker is only attracted to the job if the firm offers her a higher salary because labor becomes scarcer. Such a wage increase, $w^{\prime}(L)$, must be passed on to all existing worker, entailing a cost increase of $w^{\prime}(L) L$.


## Monopsony

- Example 10.12: Finding optimal L in monopsony.
- Consider a coal company in a small town with production function $q=100 \times \ln (L)$.
- It faces an international perfectly competitive price of coal, $p=\$ 8$.
- Assume the supply curve for labor is $w(L)=3+\frac{1}{2} L$. Then,

$$
\begin{gathered}
M R P_{L}=p f^{\prime}(L)=8 \times 100 \frac{1}{L}=\frac{800}{L} \\
M E_{L}=w(L)+w^{\prime}(L) L=\left(3+\frac{1}{2} L\right)+\frac{1}{2} L=3+L
\end{gathered}
$$

## Monopsony

- Example 10.12 (continued):


Figure 10.5

## Monopsony

- Example 10.12 (continued):
- Setting $M R P_{L}=M E_{L}$,

$$
\frac{800}{L}=3+L
$$

which expanding yields $800=3 L+L^{2}$ or

$$
L^{2}+3 L-800=0
$$

- Solving for $L$, we find $L=-29.82$ and $L=26.82$. Because the firm must hire a positive number of workers (or zero), we find that $L^{M}=26$ workers is optimal.
- At $L^{M}=26$, wages become $w(26)=3+26 \times \frac{1}{2}=\$ 16$.


## Monopsony

- Example 10.12 (continued):
- Under a perfectly competitive labor market, we have $M R P_{L}=$ $w(L)$, that is,

$$
\frac{800}{L}=3+\frac{1}{2} L,
$$

which expanding yields $800=3 L+\frac{L^{2}}{2}$.

- Solving for $L$, we obtain $L=-43.11$ and $L=37.11$. Then $L^{P C}=37$ is the optimal number of workers.
- At $L^{P C}=37$, wages become $w(37)=3+\frac{1}{2} 37=\$ 21.5$.

