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Simple, Compound, and 
Reduced Lotteries



Simple Lotteries

• Consider a set of possible outcomes (or 
consequences) 𝐶𝐶.

• The set 𝐶𝐶 can include
– simple payoffs 𝐶𝐶 ∈ ℝ (positive or negative)
– consumption bundles 𝐶𝐶 ∈ ℝ𝐿𝐿

• Outcomes are finite (𝑁𝑁 elements in 𝐶𝐶, 𝑛𝑛 =
1,2, … ,𝑁𝑁)

• Probabilities of every outcome are objectively 
known
– 𝑝𝑝1 for outcome 1, 𝑝𝑝2 for outcome 2, etc.



Simple Lotteries

• Simple lottery is a list 
𝐿𝐿 = 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑁𝑁

with 𝑝𝑝𝑛𝑛 ≥ 0 for all 𝑛𝑛 and ∑𝑛𝑛=1𝑁𝑁 𝑝𝑝𝑛𝑛 = 1, where 
𝑝𝑝𝑛𝑛 is interpreted as the probability of 
outcome 𝑛𝑛 occuring.

• In some books, lotteries are described 
including the outcomes too.



Simple Lotteries

• A simple lottery with 2 
possible outcomes

• “Degenerated” 
probability pairs
– at (0,1), outcome 2 

happens with certainty.
– at (1,0), outcome 1 

happens with certainty.
• Strictly positive 

probability pairs
– Individual faces some 

uncertainty, i.e.,  𝑝𝑝1 +
𝑝𝑝2 = 1
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Simple Lotteries

• A simple lottery with 3 
possible outcomes (i.e., 
3-dim. simplex).

• Intercepts represent 
degenerated probabilities 
where one outcome is 
certain.

• Points strictly inside the 
hyperplane connecting 
the three intercepts 
denote a lottery where 
the individual faces 
uncertainty.
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Simple Lotteries

• 2-dim. projection of 
the 3-dim. simplex

• Vertices represent the 
intercepts

• The distance from a 
given point to the side 
of the triangle 
measures the 
probability that the 
outcome represented 
at the opposite vertex 
occurs.
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Simple Lotteries

• A lottery lies on one 
of the boundaries of 
the triangle:
– We can only 

construct segments 
connecting the 
lottery to two of the 
outcomes.

– The probability 
associated with the 
third outcome is zero.
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Compound Lotteries

• Given simple lotteries
𝐿𝐿𝑘𝑘 = 𝑝𝑝1𝑘𝑘,𝑝𝑝2𝑘𝑘, … ,𝑝𝑝𝑁𝑁𝑘𝑘 for 𝑘𝑘 = 1,2, … ,𝐾𝐾

and probabilities 𝛼𝛼𝑘𝑘 ≥ 0 with  ∑𝑘𝑘=1𝐾𝐾 𝛼𝛼𝑘𝑘 = 1, then the 
compound lottery 𝐿𝐿1, 𝐿𝐿2, … , 𝐿𝐿𝐾𝐾;𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝐾𝐾 is the 
risky alternative that yields the simple lottery 𝐿𝐿𝑘𝑘 with 
probability 𝛼𝛼𝑘𝑘 for 𝑘𝑘 = 1,2, … ,𝐾𝐾.
– Think about a compound lottery as a “lottery of lotteries”: 

first, I have probability 𝛼𝛼1 of playing lottery 1, and if that 
happens, I have probability 𝑝𝑝11 of outcome 1 occurring.

– Then, the joint probability of outcome 1 is
𝑝𝑝1 = 𝛼𝛼1 � 𝑝𝑝11 + 𝛼𝛼2 � 𝑝𝑝12 + ⋯+ 𝛼𝛼𝐾𝐾 � 𝑝𝑝1𝐾𝐾



Compound and Reduced Lotteries

• Given that interpretation, the following result 
should come at no surprise: 
– For any compound lottery 

𝐿𝐿1, 𝐿𝐿2, … , 𝐿𝐿𝐾𝐾;𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝐾𝐾 , we can calculate its 
corresponding reduced lottery as the simple lottery 
𝐿𝐿 = 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑁𝑁 that generates the same ultimate 
probability distribution of outcomes.

• The reduced lottery 𝐿𝐿 of any compound lottery 
can be obtained by 

𝐿𝐿 = 𝛼𝛼1𝐿𝐿1 + 𝛼𝛼2𝐿𝐿2 + ⋯+ 𝛼𝛼𝐾𝐾𝐿𝐿𝐾𝐾 ∈ ∆



Reduced Lottery
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Compound and Reduced Lotteries

• Example 1:
– All three lotteries are equally likely
– P outcome 1 = 1
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Compound and Reduced Lotteries

• Example 1 (continued):
– Probability simplex of 

the reduced lottery of 
a compound lottery

– Reduced lottery 𝐿𝐿
assigns the same 
probability weight to 
each simple lottery.



Compound and Reduced Lotteries

• Example 2:
– Both lotteries are equally likely

Reduced Lottery

Outcome 1⟶

Outcome 2⟶

Outcome 3⟶



Compound and Reduced Lotteries

• Example 2 (continued):
– Probability simplex of 

the reduced lottery of 
a compound lottery
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Compound and Reduced Lotteries

• Consumer is indifferent between the two compound 
lotteries which induce the same reduced lottery
– This was illustrated in the previous Examples 1 and 2 

where, despite facing different compound lotteries, 
the consumer obtained the same reduced lottery.

• We refer to this assumption as the Consequentialist 
hypothesis:
– Only consequences, and the probability associated to 

every consequence (outcome) matters, but not the 
route that we follow in order to obtain a given 
consequence.



Preferences over Lotteries

• For a given set of outcomes 𝐶𝐶, consider the 
set of all simple lotteries over 𝐶𝐶, ℒ.

• We assume that the decision maker has a 
complete and transitive preference relation ≿
over lotteries in ℒ, allowing him to compare 
any pair of simple lotteries 𝐿𝐿 and 𝐿𝐿′.
– Completeness: For any two lotteries 𝐿𝐿 and 𝐿𝐿𝐿, 

either 𝐿𝐿 ≿ 𝐿𝐿𝐿 or 𝐿𝐿′ ≿ 𝐿𝐿, or both.
– Transitivity: For any three lotteries 𝐿𝐿, 𝐿𝐿𝐿 and 𝐿𝐿𝐿𝐿, if 
𝐿𝐿 ≿ 𝐿𝐿𝐿 and 𝐿𝐿′ ≿ 𝐿𝐿′′, then 𝐿𝐿 ≿ 𝐿𝐿𝐿𝐿.



Preferences over Lotteries

• Extreme preference for certainty: 
– 𝐿𝐿 ≿ 𝐿𝐿𝐿 if and only if

max
𝑛𝑛∈𝑁𝑁

𝑝𝑝𝑛𝑛 ≥ max
𝑛𝑛∈𝑁𝑁

𝑝𝑝𝑛𝑛′

– The decision maker is only concerned about the 
probability associated with the most likely 
outcome.



Preferences over Lotteries

• Smallest size of the support:
– 𝐿𝐿 ≿ 𝐿𝐿𝐿 if and only if

supp(𝐿𝐿) ≤ supp(𝐿𝐿𝐿)

where supp 𝐿𝐿 = 𝑛𝑛 ∈ 𝑁𝑁: 𝑝𝑝𝑛𝑛> 0 .

– The decision maker prefers the lottery whose 
probability distribution is concentrated over the 
smallest set of possible outcomes.



Preferences over Lotteries
• Lexicographic preferences:

– First, order outcomes from most preferred (outcome 
1) to least preferred (outcome 𝑛𝑛). 

– Then 𝐿𝐿 ≿ 𝐿𝐿𝐿, if and only if
𝑝𝑝1> 𝑝𝑝1′ , or

If 𝑝𝑝1= 𝑝𝑝1′ and 𝑝𝑝2> 𝑝𝑝2′ , or
If 𝑝𝑝1= 𝑝𝑝1′ and 𝑝𝑝2= 𝑝𝑝2′ and 𝑝𝑝3> 𝑝𝑝3′ , or 

…
– The decision maker weakly prefers lottery 𝐿𝐿 to 𝐿𝐿𝐿 if 

outcome 1 is more likely to occur in lottery 𝐿𝐿 than in 
lottery 𝐿𝐿𝐿.

– If outcome 1 is as likely to occur in both lotteries, he 
moves to outcome 2; and so on.



Preferences over Lotteries

• The worst case scenario:
– First, attach a number 𝑣𝑣 𝑧𝑧 to every outcome 𝑧𝑧 ∈
𝐶𝐶, that is, 𝑣𝑣 𝑧𝑧 ∈ ℝ. 

– Then 𝐿𝐿 ≿ 𝐿𝐿𝐿 if and only if

min 𝑣𝑣 𝑧𝑧 : 𝑝𝑝 𝑧𝑧 > 0 > min 𝑣𝑣 𝑧𝑧 : 𝑝𝑝𝑝 𝑧𝑧 > 0

– The decision maker prefers lottery 𝐿𝐿 if the lowest 
utility he can get from playing lottery 𝐿𝐿 is higher 
than the lowest utility he can obtain from playing 
lottery 𝐿𝐿′.



Preferences over Lotteries

• Continuity of preferences over lotteries:
– Continuity 1: For any three lotteries 𝐿𝐿, 𝐿𝐿′, and 𝐿𝐿′′, 

the sets
𝛼𝛼 ∈ 0,1 :𝛼𝛼𝐿𝐿 + 1 − 𝛼𝛼 𝐿𝐿𝐿 ≿ 𝐿𝐿𝐿𝐿 ⊂ [0,1] and
𝛼𝛼 ∈ 0,1 : 𝐿𝐿𝐿𝐿 ≿ 𝛼𝛼𝛼𝛼 + 1 − 𝛼𝛼 𝐿𝐿𝐿 ⊂ [0,1]

are closed.

– Continuity 2: if 𝐿𝐿 ≻ 𝐿𝐿𝐿, then there are 
neighborhoods of 𝐿𝐿 and 𝐿𝐿′, 𝐵𝐵(𝐿𝐿) and 𝐵𝐵(𝐿𝐿′), such 
that for all 𝐿𝐿𝑎𝑎 ∈ 𝐵𝐵(𝐿𝐿) and 𝐿𝐿𝑏𝑏 ∈ 𝐵𝐵(𝐿𝐿′), we have 
𝐿𝐿𝑎𝑎 ≻ 𝐿𝐿𝑏𝑏.



Preferences over Lotteries

• Small changes in the 
probability 
distribution of 
lotteries 𝐿𝐿 and 𝐿𝐿′ do 
not change the 
preference over the 
two lotteries.
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Preferences over Lotteries

• Example:

If 𝐿𝐿 ≻ 𝐿𝐿𝐿, then 𝐿𝐿𝑎𝑎 ≻ 𝐿𝐿𝑏𝑏.



Preferences over Lotteries

• The continuity assumption, as in consumer 
theory, implies the existence of a utility 
function 𝑈𝑈:ℒ → ℝ such that

𝐿𝐿 ≿ 𝐿𝐿𝐿 if and only if 𝑈𝑈(𝐿𝐿) ≥ 𝑈𝑈(𝐿𝐿𝐿)

• However, we first impose an additional 
assumption in order to have a more 
structured utility function.
– The following assumption is related with 

consequentialism: the Independence axiom.



Preferences over Lotteries

• Independence Axiom (IA): a preference 
relation satisfies IA if, for any three lotteries 𝐿𝐿, 
𝐿𝐿′, and 𝐿𝐿′′, and 𝛼𝛼 ∈ 0,1 we have

𝐿𝐿 ≿ 𝐿𝐿𝐿 if and only if
𝛼𝛼𝛼𝛼 + 1 − 𝛼𝛼 𝐿𝐿𝐿𝐿 ≿ 𝛼𝛼𝛼𝛼′ + 1 − 𝛼𝛼 𝐿𝐿𝐿𝐿

• Intuition: If we mix each of two lotteries, 𝐿𝐿
and 𝐿𝐿′, with a third one (𝐿𝐿′′), then the 
preference ordering of the two resulting 
compound lotteries is independent of the 
particular third lottery .
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Preferences over Lotteries

• 𝐿𝐿 ≿ 𝐿𝐿𝐿 if and only if
𝛼𝛼𝛼𝛼 + 1 − 𝛼𝛼 𝐿𝐿𝐿𝐿 ≿ 𝛼𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝐿𝐿𝐿𝐿



Preferences over Lotteries

• Example 1 (intuition):
– The decision maker prefers lottery 𝐿𝐿 to 𝐿𝐿′, 𝐿𝐿 ≿ 𝐿𝐿′

– Construct a compound lottery by a coin toss:
 play lottery 𝐿𝐿 if the head comes up
 play lottery 𝐿𝐿′′ if the tail comes up

– By IA, if 𝐿𝐿 ≿ 𝐿𝐿′, then
1
2
𝐿𝐿 + 1

2
𝐿𝐿′′ ≿ 1

2
𝐿𝐿′ + 1

2
𝐿𝐿𝐿𝐿



Preferences over Lotteries

• Example 2 (violations of IA):
– Extreme preference for certainty
– Consider two simple lotteries 𝐿𝐿 and 𝐿𝐿′ for which 
𝐿𝐿 ∼ 𝐿𝐿′. 

– Construct two compound lotteries for which

1
2
𝐿𝐿 +

1
2
𝐿𝐿 ≁

1
2
𝐿𝐿𝐿 +

1
2
𝐿𝐿

– If 𝐿𝐿 ∼ 𝐿𝐿′, then it must be that 
max 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑛𝑛 = max 𝑝𝑝1′ , 𝑝𝑝2′ , … , 𝑝𝑝𝑛𝑛′



Preferences over Lotteries

• Example 2 (violations of IA):
– Compound lottery  1

2
𝐿𝐿 + 1

2
𝐿𝐿 coincides with simple 

lottery 𝐿𝐿.
– Hence, max 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑛𝑛 is used to evaluate 

lottery 𝐿𝐿.

– But compound lottery  1
2
𝐿𝐿𝐿 + 1

2
𝐿𝐿 is a reduced 

lottery with associated probabilities 

max
1
2
𝑝𝑝1′ +

1
2
𝑝𝑝1, … ,

1
2
𝑝𝑝𝑛𝑛′ +

1
2
𝑝𝑝𝑛𝑛

which might differ from max 𝑝𝑝1′ ,𝑝𝑝2′ , … ,𝑝𝑝𝑛𝑛′ .



Preferences over Lotteries
• Example 2 (violations of IA, a numerical example):

– Consider two simple lotteries
𝐿𝐿 = 0.4, 0.5, 0.1 ,  𝐿𝐿′ = 0.5, 0, 0.5

– Hence, 
max 0.4, 0.5, 0.1 = 0.5 = max 0.5, 0, 0.5

implying that 𝐿𝐿 ∼ 𝐿𝐿′. 
– However, the compound lottery 1

2
𝐿𝐿𝐿 + 1

2
𝐿𝐿 entails 

probabilities 
0.4 + 0.5

2
,
0.5 + 0

2
,
0.1 + 0.5

2
= 0.45, 0.25, 0.3

implying that max 0.45, 0.25, 0.3 = 0.45.



Preferences over Lotteries

• Example 2 (violations of IA, a numerical example):
– Therefore, 

max 0.4, 0.5, 0.1 = 0.5 > 0.45 = max 0.45, 0.25, 0.3

and thus 𝐿𝐿 = 1
2
𝐿𝐿 + 1

2
𝐿𝐿 ≻ 1

2
𝐿𝐿′ + 1

2
𝐿𝐿. 

– This violates the IA, which requires 
1
2
𝐿𝐿 + 1

2
𝐿𝐿 ∼ 1

2
𝐿𝐿𝐿 + 1

2
𝐿𝐿



Preferences over Lotteries

• Example 3 (violations of IA, “worst case scenario”):
– Consider 𝐿𝐿 ≻ 𝐿𝐿′.
– Then, the compound lottery 1

2
𝐿𝐿 + 1

2
𝐿𝐿 does not need 

to be preferred to 1
2
𝐿𝐿𝐿 + 1

2
𝐿𝐿.

– Example: 
 Consider the simple lotteries 𝐿𝐿 = (1,3) and 𝐿𝐿′ = (10,0), 

with probabilities (𝑝𝑝1,𝑝𝑝2) and (𝑝𝑝1′ ,𝑝𝑝2′ ), respectively. 
 This implies 

min 𝑣𝑣 𝑧𝑧 : 𝑝𝑝 𝑧𝑧 > 0 = 1 for lottery 𝐿𝐿
min 𝑣𝑣 𝑧𝑧 : 𝑝𝑝′ 𝑧𝑧 > 0 = 0 for lottery 𝐿𝐿′

 Hence, 𝐿𝐿 ≻ 𝐿𝐿′.



Preferences over Lotteries
• Example 3 (violations of IA, “worst case scenario”):

– Example (continued): 

 However, the compound lottery  1
2
𝐿𝐿 + 1

2
𝐿𝐿′ is  11

2
, 3
2

, 

whose worst possible outcome is  3
2
, which is preferred 

to that of 1
2
𝐿𝐿 + 1

2
𝐿𝐿, which is 1. 

 Hence, despite 𝐿𝐿 ≻ 𝐿𝐿′ over simple lotteries, 

𝐿𝐿 = 1
2
𝐿𝐿 + 1

2
𝐿𝐿 ≺ 1

2
𝐿𝐿 + 1

2
𝐿𝐿𝐿, 

which violates the IA.



Expected Utility Theory



Expected Utility Theory

• The utility function 𝑈𝑈:ℒ → ℝ has the expected 
utility (EU) form if there is an assignment of 
numbers 𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑁𝑁 to the 𝑁𝑁 possible 
outcomes such that, for every simple lottery 𝐿𝐿 =
𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑁𝑁 ∈ ℒ we have

𝑈𝑈 𝐿𝐿 = 𝑝𝑝1𝑢𝑢1 + ⋯+ 𝑝𝑝𝑁𝑁𝑢𝑢𝑁𝑁
– A utility function with the EU form is also referred to 

as a von-Neumann-Morgenstern (vNM) expected 
utility function.

– Note that this function is linear in the probabilities.



Expected Utility Theory

• Hence, a utility function 𝑈𝑈:ℒ → ℝ has the expected 
utility form if and only if it is linear in the probabilities, 
i.e.,

𝑈𝑈 �
𝑘𝑘=1

𝐾𝐾
𝛼𝛼𝑘𝑘𝐿𝐿𝑘𝑘 = �

𝑘𝑘=1

𝐾𝐾
𝛼𝛼𝑘𝑘 � 𝑈𝑈(𝐿𝐿𝑘𝑘)

for any 𝐾𝐾 lotteries 𝐿𝐿𝑘𝑘 ∈ ℒ, 𝑘𝑘 = 1,2, … ,𝐾𝐾, and 
probabilities 𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝐾𝐾 ≥ 0, where  ∑𝑘𝑘=1𝐾𝐾 𝛼𝛼𝑘𝑘 = 1.

• Intuition: the utility of the expected value of the 𝐾𝐾
lotteries, 𝑈𝑈 ∑𝑘𝑘=1𝐾𝐾 𝛼𝛼𝑘𝑘𝐿𝐿𝑘𝑘 , coincides with the expected 
utility of the 𝐾𝐾 lotteries, ∑𝑘𝑘=1𝐾𝐾 𝛼𝛼𝑘𝑘𝑈𝑈(𝐿𝐿𝑘𝑘).



Expected Utility Theory

• Note that the utility of the expected value of playing 
the 𝐾𝐾 lotteries is

𝑈𝑈 �
𝑘𝑘=1

𝐾𝐾
𝛼𝛼𝑘𝑘𝐿𝐿𝑘𝑘 = �

𝑛𝑛
𝑢𝑢𝑛𝑛 � �

𝑘𝑘

𝛼𝛼𝑘𝑘 𝑝𝑝𝑛𝑛𝑘𝑘

where ∑𝑘𝑘 𝛼𝛼𝑘𝑘 𝑝𝑝𝑛𝑛𝑘𝑘 is the total joint probability of 
outcome 𝑛𝑛 occurring.



Expected Utility Theory

• Note that the expected utility from playing the 𝐾𝐾
lotteries is

�
𝑘𝑘=1

𝐾𝐾
𝛼𝛼𝑘𝑘 � 𝑈𝑈 𝐿𝐿𝑘𝑘 = �

𝑘𝑘
𝛼𝛼𝑘𝑘 � �

𝑛𝑛

𝑢𝑢𝑛𝑛 𝑝𝑝𝑛𝑛𝑘𝑘

where ∑𝑛𝑛 𝑢𝑢𝑛𝑛 𝑝𝑝𝑛𝑛𝑘𝑘 is the expected utility from playing a 
given lottery 𝑘𝑘.



Expected Utility Theory

• The EU property is a cardinal property:
– Not only rank matters, the particular number 

resulting form 𝑈𝑈:ℒ → ℝ also matters.
• Hence, the EU form is preserved only under 

increasing linear transformations (a.k.a. affine 
transformations).
– Hence, the expected utility function �𝑈𝑈:ℒ → ℝ is 

another vNM utility function if and only if
�𝑈𝑈 𝐿𝐿 = 𝛽𝛽𝛽𝛽 𝐿𝐿 + 𝛾𝛾

for every 𝐿𝐿 ∈ ℒ, where 𝛽𝛽 > 0.



Expected Utility Theory: 
Representability

• Suppose that the preference relation ≿ satisfies 
rationality, continuity and independence. Then, ≿
admits a utility representation of the EU form.

• That is, we can assign a number 𝑢𝑢𝑛𝑛 to every outcome 
𝑛𝑛 = 1,2, … ,𝑁𝑁 in such a manner that for any two 
lotteries 

𝐿𝐿 = 𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝𝑁𝑁 and 𝐿𝐿′ = 𝑝𝑝1′ ,𝑝𝑝2′ … ,𝑝𝑝𝑁𝑁′
we have 𝐿𝐿 ≿ 𝐿𝐿′ if and only if 𝑈𝑈 𝐿𝐿 ≥ 𝑈𝑈 𝐿𝐿𝐿 , or

�
𝑛𝑛=1

𝑁𝑁
𝑝𝑝𝑛𝑛𝑢𝑢𝑛𝑛 ≥�

𝑛𝑛=1

𝑁𝑁
𝑝𝑝𝑛𝑛′ 𝑢𝑢𝑛𝑛

• Notation: 𝑢𝑢𝑛𝑛 is the utility that the decision maker 
assigns to outcome 𝑛𝑛. It is usually referred as the 
Bernoulli utility function.



Expected Utility Theory: 
Indifference Curves

• Let us next analyze the effect of the IA on 
indifference curves over lotteries.

1)  Indifference curves must be straight lines: 
Recall that from the IA, 𝐿𝐿 ~ 𝐿𝐿′ implies that 

𝛼𝛼𝛼𝛼 + 1 − 𝛼𝛼 𝐿𝐿
𝐿𝐿

~ 𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝐿𝐿′

for all 𝛼𝛼 ∈ 0,1 .



Expected Utility Theory: 
Indifference Curves

Straight indifference curves
2

3

'L

L

1

If ~ ',  then ~ (1 ) 'L L L L Lα α+ −



Expected Utility Theory: 
Indifference Curves

• Why indifference curves must be straight?

– We have that 𝐿𝐿 ~ 𝐿𝐿′, but 𝐿𝐿 ≺ 1
2
𝐿𝐿 + 1

2
𝐿𝐿′. This is 

equivalent to
1
2
𝐿𝐿 +

1
2
𝐿𝐿 ≺

1
2
𝐿𝐿 +

1
2
𝐿𝐿′

– But from the IA we must have 
1
2
𝐿𝐿 +

1
2
𝐿𝐿 ~

1
2
𝐿𝐿 +

1
2
𝐿𝐿′

– Hence, indifference curves must be straight lines 
in order to satisfy the IA.



Expected Utility Theory: 
Indifference Curves

• Curvy indifference curves over lotteries are 
incompatible with the IA

– The compound lottery  1
2
𝐿𝐿 + 1

2
𝐿𝐿′ would not lie on 

the same indifference curve as lottery 𝐿𝐿 and 𝐿𝐿𝐿.
– Hence, the decision maker is not indifferent 

between the compound lotteries  1
2
𝐿𝐿 + 1

2
𝐿𝐿 and 

1
2
𝐿𝐿 + 1

2
𝐿𝐿′. 



Expected Utility Theory: 
Indifference Curves

Curvy indifference curve

2

3

1

L

1 1'
2 2

L L+
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Expected Utility Theory: 
Indifference Curves

2)  Indifference curves must be parallel lines: 
If we have that 𝐿𝐿 ~ 𝐿𝐿′, then by the IA 

1
3
𝐿𝐿 +

2
3
𝐿𝐿′′ ~

1
3
𝐿𝐿′ +

2
3
𝐿𝐿′′

 That is, the convex combination of  𝐿𝐿 and 𝐿𝐿′ with 
a third lottery 𝐿𝐿′′ should also lie on the same 
indifference curve.

 This implies that the indifference curves must be 
parallel lines in order to satisfy the IA.



2

3

1

Expected Utility Theory: 
Indifference Curves

– If compound lotteries 
1
3
𝐿𝐿 + 2

3
𝐿𝐿𝐿𝐿 and 1

3
𝐿𝐿𝐿 +

2
3
𝐿𝐿𝐿𝐿 lie on different 

(nonparallel) 
indifference curves, 
then

1
3
𝐿𝐿 +

2
3
𝐿𝐿′′ ≺

1
3
𝐿𝐿′ +

2
3
𝐿𝐿′′

which violates the IA.

 Nonparallel indifference curves are incompatible 
with the IA.



Expected Utility Theory: 

Violations of the IA:
– Despite the intuitive appeal of the IA, we 

encounter several settings in which decision 
makers violate it.

– We next elaborate on these violations.



Expected Utility Theory: 
Violations of the IA

• Allais’ paradox: 
– Consider a lottery over three possible monetary 

outcomes:

– First choice set:

𝐿𝐿1 = 0,1,0 and  𝐿𝐿1′ = ( 10
100

, 89
100

, 1
100

)
– Second choice set:

𝐿𝐿2 = (0, 11
100

, 89
100

) and  𝐿𝐿2′ = ( 10
100

, 0, 90
100

)

1st prize 2nd prize 3rd prize

$2.5mln $500,000 $0



Expected Utility Theory: 
Violations of the IA

– About 50% students surveyed expressed  𝐿𝐿1 ≻ 𝐿𝐿1′ and 
𝐿𝐿2′ ≻ 𝐿𝐿2.

– These choices violate the IA. 
– To see this, consider that the decision maker’s 

preferences over lotteries have a EU form. Hence, 𝐿𝐿1 ≻
𝐿𝐿1′ implies

𝑢𝑢5 >
10

100
𝑢𝑢25 +

89
100

𝑢𝑢5 +
1

100
𝑢𝑢0

– By the IA, we can add 89
100

𝑢𝑢0 −
89
100

𝑢𝑢5 on both sides

𝑢𝑢5 +
89

100
𝑢𝑢0 −

89
100

𝑢𝑢5 >

10
100

𝑢𝑢25 +
89

100
𝑢𝑢5 +

1
100

𝑢𝑢0 +
89

100
𝑢𝑢0 −

89
100

𝑢𝑢5



Expected Utility Theory: 
Violations of the IA

– Simplifying
11

100
𝑢𝑢5 +

89
100

𝑢𝑢0
EU of 𝐿𝐿2

>
10

100
𝑢𝑢25 +

90
100

𝑢𝑢0
EU of 𝐿𝐿2′

which implies 𝐿𝐿2 ≻ 𝐿𝐿2′ . 

– Did your own choices violate the IA?



Expected Utility Theory: 
Violations of the IA

• Reactions to the Allais’ Paradox:
– Approximation to rationality: people adapt their 

choices as they go.
– Little economic significance: the lotteries involve 

probabilities that are close to zero and one.
– Regret theory: the reason why 𝐿𝐿1 ≻ 𝐿𝐿1′ is because 

I didn’t want to regret a sure win of $500,000.
– Give up the IA in favor of a weaker assumption: 

the betweenness axiom.



Expected Utility Theory: 
Violations of the IA

• Machina’s paradox:
– Consider that 

Trip to Barcelona ≻ Movie about Barcelona ≻ Home

– Now, consider the following two lotteries

𝐿𝐿1 = ( 99
100

, 1
100

, 0) and 𝐿𝐿2 = (0, 99
100

, 1
100

)

– From the previous preferences over certain 
outcomes, how can we know this individual’s 
preferences over lotteries? 
 Using the IA.



Expected Utility Theory: 
Violations of the IA

– From 𝑇𝑇 ≻ 𝑀𝑀 and the IA, we can construct the 
compound lotteries

99
100

𝑇𝑇 +
1

100
𝑀𝑀 ≻

99
100

𝑀𝑀 +
1

100
𝑀𝑀

– From 𝑀𝑀 ≻ 𝐻𝐻 and the IA, we have
99

100
𝑀𝑀 +

1
100

𝑀𝑀 ≻
99

100
𝑀𝑀 +

1
100

𝐻𝐻

– By transitivity,
99

100
𝑇𝑇 +

1
100

𝑀𝑀
𝐿𝐿1

≻
99

100
𝑀𝑀 +

1
100

𝐻𝐻
𝐿𝐿2

– Hence, 𝐿𝐿1 ≻ 𝐿𝐿2. 



Expected Utility Theory: 
Violations of the IA

– Therefore, for preferences over lotteries to be 
consistent with the IA, we need 𝐿𝐿1 ≻ 𝐿𝐿2.

– Many subjects in experimental settings would rather 
prefer 𝐿𝐿2, thus violating the IA.

– Many people explain choosing  𝐿𝐿2 over 𝐿𝐿1 on 
grounds of the disappointment they would 
experience in the case of losing the trip to 
Barcelona, and having to watch a movie instead.
 Similar to regret theory. 



Expected Utility Theory: 
Violations of the IA

• Dutch books:
– In the above two anomalies, actual behavior is 

inconsistent with the IA.
– Can we then rely on the IA?
– What would happen to individuals whose 

behavior violates the IA?
– They would be weeded out of the market because 

they would be open to the acceptance of so-called 
Dutch books, leading them to a sure loss of 
money.



Expected Utility Theory: 
Violations of the IA

– Consider that 𝐿𝐿 ≻ 𝐿𝐿𝐿. By the IA, we should have 
𝛼𝛼𝛼𝛼 + 1 − 𝛼𝛼 𝐿𝐿

𝐿𝐿
≻ 𝛼𝛼𝛼𝛼 + 1 − 𝛼𝛼 𝐿𝐿′

– If, instead, the IA is violated, then 
𝐿𝐿 ≺ 𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝐿𝐿′

– Consider an individual with these preferences, who 
initially owns lottery 𝐿𝐿.

– If we offer him the compound lottery 𝛼𝛼𝛼𝛼 + (1 −
𝛼𝛼)𝐿𝐿′, for a small fee $𝑥𝑥, he would accept such a 
trade.



Expected Utility Theory: 
Violations of the IA

– After the realization stage, he owns either 𝐿𝐿 or 𝐿𝐿𝐿
 If 𝐿𝐿𝐿, then we offer 𝐿𝐿 again for $𝑦𝑦.
 If 𝐿𝐿, then we offer 𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝐿𝐿′ for $𝑦𝑦.

– Either way, he is at the same position as he started 
(owning 𝐿𝐿 or 𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝐿𝐿′), but having lost 
$𝑥𝑥 + $𝑦𝑦 in the process.

– We can repeat this process ad infinitum.
– Hence, individuals with preferences that violate 

the IA would be exploited by microeconomists 
(they would be a “money pump”).



Expected Utility Theory: 
Violations of the IA

• Further reading:
– “Developments in non-expected utility theory: 

The hunt for a descriptive theory of choice under 
risk” (2000) by Chris Starmer, Journal of Economic 
Literature, vol. 38(2) 

– Choices, Values and Frames (2000) by Nobel prize 
winners Daniel Kahneman and Amos Tversky, 
Cambridge University Press. 

– Theory of Decision under Uncertainty (2009) by 
Itzhak Gilboa, Cambridge University Press.



Theories Modifying 
Expected Utility Theory 

1) Weighted utility theory:
– The payoff function from playing lottery 𝐿𝐿 is

𝑉𝑉 𝐿𝐿 = �
𝑥𝑥∈𝐶𝐶

𝑤𝑤𝑖𝑖 � 𝑢𝑢 𝑥𝑥𝑖𝑖

where 

𝑤𝑤𝑖𝑖 = 𝑔𝑔 𝑥𝑥𝑖𝑖 𝑝𝑝 𝑥𝑥𝑖𝑖
∑𝑥𝑥∈𝐶𝐶 𝑔𝑔 𝑥𝑥𝑖𝑖 𝑝𝑝 𝑥𝑥𝑖𝑖

and  𝑔𝑔:𝐶𝐶 → ℝ

– The utility of outcome 𝑥𝑥𝑖𝑖 ∈ 𝐶𝐶 is weighted 
according to:

a) its probability 𝑝𝑝 𝑥𝑥𝑖𝑖
b) outcome 𝑥𝑥𝑖𝑖 itself through function 𝑔𝑔:𝐶𝐶 → ℝ



Theories Modifying 
Expected Utility Theory 

– Example: Consider a lottery with two payoffs 𝑥𝑥1 and 𝑥𝑥2
with probabilities 𝑝𝑝 and 1 − 𝑝𝑝. Then, the weighted utility 
is

𝑉𝑉 𝐿𝐿 = 𝑤𝑤1𝑢𝑢 𝑥𝑥1 + 𝑤𝑤2𝑢𝑢 𝑥𝑥2

=
𝑔𝑔 𝑥𝑥1 𝑝𝑝

𝑔𝑔 𝑥𝑥1 𝑝𝑝 + 𝑔𝑔 𝑥𝑥2 1 − 𝑝𝑝
𝑢𝑢 𝑥𝑥1

+
𝑔𝑔 𝑥𝑥2 1 − 𝑝𝑝

𝑔𝑔 𝑥𝑥1 𝑝𝑝 + 𝑔𝑔 𝑥𝑥2 1 − 𝑝𝑝
𝑢𝑢(𝑥𝑥2)

If 𝑔𝑔 𝑥𝑥𝑖𝑖 = 𝑔𝑔(𝑥𝑥𝑗𝑗) for any 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑗𝑗, then 
𝑉𝑉 𝐿𝐿 = 𝑝𝑝𝑝𝑝 𝑥𝑥1 + 1 − 𝑝𝑝 𝑢𝑢 𝑥𝑥2

which is a standard expected utility function.



Theories Modifying 
Expected Utility Theory 

• The weighted utility theory relies on the same 
axioms as expected utility theory, except for 
the IA, which is relaxed to the “weak 
independence axiom.”
– Weak independence axiom: if we have that 
𝐿𝐿1~𝐿𝐿2, we can find a pair of probabilities 𝛼𝛼 and 𝛼𝛼′
such that
𝛼𝛼𝐿𝐿1 + 1 − 𝛼𝛼 𝐿𝐿3 ~ 𝛼𝛼′𝐿𝐿2 + 1 − 𝛼𝛼′ 𝐿𝐿3

– The IA becomes a special case if 𝛼𝛼 = 𝛼𝛼′.



Theories Modifying 
Expected Utility Theory 

2) Rank dependent utility theory:
– First, rank the outcomes 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 from worst (𝑥𝑥1) to 

best (𝑥𝑥𝑛𝑛)
– Second, apply a probability weighting function 

𝑤𝑤𝑖𝑖 = 𝜋𝜋 𝑝𝑝𝑖𝑖 + ⋯+ 𝑝𝑝𝑛𝑛 − 𝜋𝜋 𝑝𝑝𝑖𝑖+1 + ⋯+ 𝑝𝑝𝑛𝑛
𝑤𝑤𝑛𝑛 = 𝜋𝜋 𝑝𝑝𝑛𝑛

where 𝜋𝜋(⋅) is a non-decreasing transformation function, 
with 𝜋𝜋 0 = 0 and 𝜋𝜋 1 = 1.

– Finally, a rank-dependent utility is

𝑉𝑉 𝐿𝐿 = �
𝑥𝑥∈𝐶𝐶

𝑤𝑤𝑖𝑖 ⋅ 𝑢𝑢(𝑥𝑥𝑖𝑖)



Theories Modifying 
Expected Utility Theory 

– For a lottery with two outcomes, 𝑥𝑥1 and 𝑥𝑥2 where 
𝑥𝑥2 > 𝑥𝑥1, the rank-dependent utility is

𝑉𝑉 𝐿𝐿 = 𝑤𝑤 𝑝𝑝 𝑢𝑢 𝑥𝑥1 + 1 − 𝑤𝑤 𝑝𝑝 𝑢𝑢 𝑥𝑥2

where 𝑝𝑝 is the probability of outcome 𝑥𝑥1.

– This model allows for different weight to be attached 
to each outcome, as opposed to expected utility 
theory models in which the same utility weight is 
attached to all outcomes.



Theories Modifying 
Expected Utility Theory 

– Transformation function 𝜋𝜋(⋅)

π(p)

π(p) = p

π(p) > p
1

0 1
p

π(p)

π(p) = p

π(p) < p

1

0 1
p

Pessimistic π(p) Optimistic π(p)



π(p)

1

0 1
pπ(p) = p

Theories Modifying 
Expected Utility Theory 

• Empirical evidence 
suggests an S-shaped 
transformation 
function. 

• Intuition: individuals 
are pessimistic in rare 
outcomes (i.e., 𝑝𝑝 < 𝑝𝑝), 
but become optimistic 
for outcomes they 
have frequently 
encountered.



Theories Modifying 
Expected Utility Theory 

• The rank-dependent utility theory relies on the 
same axioms as expected utility theory, except 
for the IA, which is replaced by co-monotonic 
independence.



Money Lotteries



Money Lotteries

• We now restrict our attention to lotteries over 
monetary amounts, i.e., 𝐶𝐶 = ℝ.

• Money is continuous variable, 𝑥𝑥 ∈ ℝ, with 
cumulative distribution function (CDF)

𝐹𝐹 𝑥𝑥 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑦𝑦 ≤ 𝑥𝑥 for all 𝑦𝑦 ∈ ℝ
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1

F(x)=x
Uniform 

Distribution

Money Lotteries

• A uniform, continuous CDF, 𝐹𝐹 𝑥𝑥 = 𝑥𝑥
– Same probability weight to every possible payoff 



11/2
x

F(.)

1/2

1

Money Lotteries

• A non-uniform, continuous CDF, 𝐹𝐹 𝑥𝑥
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Money Lotteries

• A non-uniform, 
discrete CDF

𝐹𝐹 𝑥𝑥 =

0 if 𝑥𝑥 < 1
1
4

if 𝑥𝑥 ∈ [1, 4)
3
4

if 𝑥𝑥 ∈ [4, 6)

1 if 𝑥𝑥 ≥ 6
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Money Lotteries

• If 𝑓𝑓 𝑥𝑥 is a density function associated with 
the continuous CDF 𝐹𝐹 𝑥𝑥 , then

𝐹𝐹 𝑥𝑥 = �
−∞

𝑥𝑥
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑
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Money Lotteries

• If 𝑓𝑓 𝑥𝑥 is a density function associated with 
the discrete CDF 𝐹𝐹 𝑥𝑥 , then

𝐹𝐹 𝑥𝑥 = �
𝑡𝑡<𝑥𝑥

𝑓𝑓 𝑡𝑡



Money Lotteries

• We can represent simple lotteries by 𝐹𝐹 𝑥𝑥 .
• For compound lotteries: 

– If the list of CDF’s 𝐹𝐹1 𝑥𝑥 , 𝐹𝐹2 𝑥𝑥 , ..., 𝐹𝐹𝐾𝐾 𝑥𝑥
represent 𝐾𝐾 simple lotteries, each occurring with 
probability 𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝐾𝐾, then the compound 
lottery can be represented as

𝐹𝐹 𝑥𝑥 = �
𝑘𝑘=1

𝐾𝐾
𝛼𝛼𝑘𝑘𝐹𝐹𝑘𝑘 𝑥𝑥

– For simplicity, assume that CDF’s are distributed 
over non-negative amounts of money.



Money Lotteries

– We can express EU as

𝐸𝐸𝐸𝐸 𝐹𝐹 = ∫𝑢𝑢 𝑥𝑥 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 or  ∫𝑢𝑢 𝑥𝑥 𝑑𝑑𝐹𝐹(𝑥𝑥)

where 𝑢𝑢 𝑥𝑥 is an assignment of utility value to every 
non-negative amount of money.

– If there is a density function 𝑓𝑓 𝑥𝑥 associated with 
the CDF 𝐹𝐹(𝑥𝑥), then we can use either of the 
expressions. If there is no, we can only use the latter.

– Note: we do not need to write down the limits of 
integration, since the integral is over the full range of 
possible realizations of 𝑥𝑥.



Money Lotteries

–𝐸𝐸𝐸𝐸 𝐹𝐹 is the mathematical expectation of the 
values of 𝑢𝑢 𝑥𝑥 , over all possible values of 𝑥𝑥.

–𝐸𝐸𝐸𝐸 𝐹𝐹 is linear in the probabilities
 In the discrete probability distribution, 

𝐸𝐸𝐸𝐸 𝐹𝐹 = 𝑝𝑝1 𝑢𝑢1 + 𝑝𝑝2 𝑢𝑢2 + ⋯
– The EU representation is sensitive not only to the 

mean of the distribution, but also to the variance, 
and higher order moments of the distribution of 
monetary payoffs. 
 Let us next analyze this property.



Money Lotteries

• Example: Let us show that if 𝑢𝑢 𝑥𝑥 = 𝛽𝛽𝑥𝑥2 + 𝛾𝛾𝛾𝛾, then 
EU is determined by the mean and the variance alone.
– Indeed, 

𝐸𝐸𝐸𝐸 𝑥𝑥 = �𝑢𝑢 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑥𝑥 = � 𝛽𝛽𝑥𝑥2 + 𝛾𝛾𝛾𝛾 𝑑𝑑𝑑𝑑 𝑥𝑥

= 𝛽𝛽�𝑥𝑥2𝑑𝑑𝑑𝑑 𝑥𝑥

𝐸𝐸 𝑥𝑥2

+ 𝛾𝛾�𝑥𝑥 𝑑𝑑𝑑𝑑 𝑥𝑥

𝐸𝐸 𝑥𝑥

– On the other hand, we know that
𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥 = 𝐸𝐸 𝑥𝑥2 − 𝐸𝐸 𝑥𝑥 2 ⟹
𝐸𝐸 𝑥𝑥2 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥 + 𝐸𝐸 𝑥𝑥 2



Money Lotteries

• Example (continued):
– Substituting 𝐸𝐸 𝑥𝑥2 in 𝐸𝐸𝐸𝐸 𝑥𝑥 ,

𝐸𝐸𝐸𝐸 𝑥𝑥 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑥𝑥 + 𝛽𝛽 𝐸𝐸 𝑥𝑥 2

𝛽𝛽𝛽𝛽 𝑥𝑥2
+ 𝛾𝛾𝐸𝐸 𝑥𝑥

– Hence, the EU is determined by the mean and the 
variance alone.



Money Lotteries

• Recall that we refer to 𝑢𝑢 𝑥𝑥 as the Bernoulli 
utility function, while 𝐸𝐸𝐸𝐸 𝑥𝑥 is the vNM
function.

• We imposed few assumptions on 𝑢𝑢 𝑥𝑥 :
– Increasing in money and continuous

• We must impose an additional assumption:
– 𝑢𝑢 𝑥𝑥 is bounded
– Otherwise, we can end up in relatively absurd 

situations (St. Petersburg-Menger paradox).



Money Lotteries

• St. Petersburg-Menger paradox:
– Consider an unbounded Bernoulli utility function, 
𝑢𝑢 𝑥𝑥 . Then, we can always find an amount of money 
𝑥𝑥𝑚𝑚 such that 𝑢𝑢 𝑥𝑥𝑚𝑚 > 2𝑚𝑚, for every integer 𝑚𝑚.

– Consider a lottery in which we toss a coin repeatedly 
until the tail comes up. We give a monetary payoff of 
𝑥𝑥𝑚𝑚 if the tail is obtained at the 𝑚𝑚th toss.

– The probability that the tail comes up in the mth toss is
1
2
�

1
2
�

1
2
� ⋯ �

1
2

𝑚𝑚 times

=
1

2𝑚𝑚



Money Lotteries
– Then, the EU of this lottery is

𝐸𝐸𝐸𝐸 𝑥𝑥 = �
𝑚𝑚=1

∞ 1
2𝑚𝑚

𝑢𝑢(𝑥𝑥𝑚𝑚)

– But, because of 𝑢𝑢 𝑥𝑥𝑚𝑚 > 2𝑚𝑚, we have that 

𝐸𝐸𝐸𝐸 𝑥𝑥 = �
𝑚𝑚=1

∞ 1
2𝑚𝑚

𝑢𝑢 𝑥𝑥𝑚𝑚 ≥�
𝑚𝑚=1

∞ 1
2𝑚𝑚

2𝑚𝑚

= �
𝑚𝑚=1

∞
1 = + ∞

which implies that this individual would be willing to pay 
infinite amounts of money to be able to play this lottery.

– Hence, we assume that the Bernoulli utility function is 
bounded.



Measuring Risk Preferences



Measuring Risk Preferences
• An individual exhibits risk aversion if 

�𝑢𝑢 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑥𝑥 ≤ 𝑢𝑢 �𝑥𝑥𝑑𝑑𝑑𝑑 𝑥𝑥

for any lottery 𝐹𝐹(�)
• Intuition: 

– The utility of receiving the expected monetary value of playing 
the lottery (right-hand side) is higher than… 

– The expected utility from playing the lottery (left-hand side).
• If this relationship happens with

a) =, we denote this individual as risk neutral
b) <, we denote him as risk averter
c) ≥, we denote him as risk lover.



Measuring Risk Preferences

• Graphical illustration:
– Consider a lottery with two equally likely outcomes, $1 

and $3, with associated utilities of 𝑢𝑢(1) and 𝑢𝑢(3), 
respectively.

– Expected value of the lottery is 𝐸𝐸𝐸𝐸 = 1
2
� 1 + 1

2
� 3 = 2, with 

associated utility of 𝑢𝑢(2).

– Expected utility of the lottery is 1
2
𝑢𝑢 1 + 1

2
𝑢𝑢(3).



Measuring Risk Preferences

• Risk averse individual
– Utility from the expected value of the lottery, 𝑢𝑢(2), 

is higher than the EU from playing the lottery, 
1
2
𝑢𝑢 1 + 1

2
𝑢𝑢(3).

1 2

u(x)

3

u(3)

u(2)

u(1)

x

1 1(1) (3)
2 2

u u+

u(x)



Measuring Risk Preferences

• Risk neutral individual
– Utility from the expected value of the lottery, 𝑢𝑢(2), 

coincides with the EU from playing the lottery,
1
2
𝑢𝑢 1 + 1

2
𝑢𝑢(3).

1 2

u(x)

3

u(3)

u(1)

u(x)

x

1 1(1) (3) (2)
2 2

u u u+ =



Measuring Risk Preferences

• Risk loving individual
– Utility from the expected value of the lottery, 𝑢𝑢(2), 

is lower than the EU from playing the lottery, 
1
2
𝑢𝑢 1 + 1

2
𝑢𝑢(3).

u(x)

1 2 3 x

u(x)

(3)u
1 1(1) (3)
2 2

u u+

(2)u
(1)u



Measuring Risk Preferences

• Certainty equivalent, 𝑐𝑐 𝐹𝐹,𝑢𝑢 : 
– An alternative measure of risk aversion 
– It is the amount of money that makes the 

individual indifferent between playing the lottery 
𝐹𝐹 � , and accepting a certain amount 𝑐𝑐 𝐹𝐹,𝑢𝑢 . 
That is,

𝑢𝑢 𝑐𝑐(𝐹𝐹,𝑢𝑢) = ∫𝑢𝑢 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑥𝑥 or  ∑𝑢𝑢 𝑥𝑥 𝑓𝑓 𝑥𝑥

– 𝑐𝑐(𝐹𝐹,𝑢𝑢) is below (above) the expected value of the 
lottery for risk averse (lover) individuals, and 
exactly coincides for risk neutral individuals. 



Measuring Risk Preferences

– 𝑐𝑐 𝐹𝐹,𝑢𝑢 is the amount of 
money 𝑥𝑥 for which utility 
is equal to the EU of the 
lottery
𝑢𝑢 𝑐𝑐(𝐹𝐹,𝑢𝑢) =

1
2
𝑢𝑢 1 +

1
2
𝑢𝑢 3

– Risk premium (RP): the 
amount that a risk-averse 
person would pay to avoid 
taking a risk:

𝑅𝑅𝑅𝑅 = 𝐸𝐸𝐸𝐸 − 𝑐𝑐 𝐹𝐹,𝑢𝑢 > 0

• Certainty equivalent for a risk averse individual

1 2

u(x)

3

u(3)

u(2)

u(1)

x

c(F,u), Certainty Equivalent

1 1(1) (3)
2 2

u u+

1.87

Risk premium

u(x)



Measuring Risk Preferences

– Individual would have 
to be given an amount 
of money above the 
expected value of the 
lottery in order to 
convince him to “stop 
playing” the lottery:

𝑅𝑅𝑅𝑅 = 𝐸𝐸𝑉𝑉 − 𝑐𝑐 𝐹𝐹,𝑢𝑢 < 0

• Certainty equivalent for a risk lover

1 2

u(x)

3

u(3)

u(2)

u(1)

u(x)

x

c(F,u)Risk
Premium

1 1(1) (3)
2 2

u u+



Measuring Risk Preferences

– The certainty equivalent 
𝑐𝑐 𝐹𝐹,𝑢𝑢 coincides with 
the expected value of 
the lottery. 

– Hence,
𝑅𝑅𝑅𝑅 = 𝐸𝐸𝐸𝐸 − 𝑐𝑐 𝐹𝐹,𝑢𝑢 = 0

• Certainty equivalent for a risk neutral individual

u(x)

1 2 3 x

u(x)
(3)u

1 1(1) (3) (2)
2 2

u u u+ =

(1)u

c(F,u)



Measuring Risk Preferences

• Probability premium, 𝜋𝜋 𝑥𝑥, 𝜀𝜀,𝑢𝑢 :
– An alternative measure of risk aversion 
– It is the excess in winning probability over fair 

odds that makes the individual indifferent 
between the certainty outcome 𝑥𝑥 and a gamble 
between the two outcomes 𝑥𝑥 + 𝜀𝜀 and 𝑥𝑥 − 𝜀𝜀:

𝑢𝑢 𝑥𝑥

=
1
2

+ 𝜋𝜋 𝑥𝑥, 𝜀𝜀,𝑢𝑢 𝑢𝑢 𝑥𝑥 + 𝜀𝜀 +
1
2
− 𝜋𝜋 𝑥𝑥, 𝜀𝜀,𝑢𝑢 𝑢𝑢 𝑥𝑥 − 𝜀𝜀

– Intuition: Better than fair odds must be given for 
the individual to accept the risk.



Measuring Risk Preferences
• The “extra probability” 𝜋𝜋 that is needed to make the 

EU of the lottery coincides with the utility of the 
expected lottery:

𝑢𝑢 2 =
1
2 + 𝜋𝜋 𝑢𝑢 3 +

1
2 − 𝜋𝜋 𝑢𝑢 1



Measuring Risk Preferences

• The following properties are equivalent:
1) The decision maker is risk averse.
2) The Bernoulli utility function 𝑢𝑢 𝑥𝑥 is concave, 

𝑢𝑢′′(𝑥𝑥) ≤ 0.
3) The certainty equivalent is lower than the expected 

value of the lottery, i.e., 𝑐𝑐(𝐹𝐹,𝑢𝑢) ≤ ∫𝑢𝑢 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑥𝑥 .

4) The risk premium is positive, 𝑅𝑅𝑅𝑅 = 𝐸𝐸𝐸𝐸 − 𝑐𝑐 𝐹𝐹,𝑢𝑢 ≥
0.

5) The probability premium is positive for all 𝑥𝑥 and 𝜀𝜀, 
i.e., 𝜋𝜋(𝑥𝑥, 𝜀𝜀,𝑢𝑢) ≥ 0.



Measuring Risk Preferences
• Arrow-Pratt coefficient of absolute risk aversion:

𝑟𝑟𝐴𝐴 𝑥𝑥 = −
𝑢𝑢′′ 𝑥𝑥
𝑢𝑢′ 𝑥𝑥

– Clearly, the greater the curvature of the utility function, 
𝑢𝑢′′(𝑥𝑥), the larger the coefficient 𝑟𝑟𝐴𝐴 𝑥𝑥 .

– But, why do not we simply have 𝑟𝑟𝐴𝐴 𝑥𝑥 = 𝑢𝑢′′(𝑥𝑥)? 
• Because it will not be invariant to positive linear 

transformations of the utility function, such as 𝑣𝑣 𝑥𝑥 = 𝛽𝛽𝛽𝛽 𝑥𝑥 . 
That is, 𝑣𝑣′′ 𝑥𝑥 = 𝛽𝛽𝛽𝛽′′ 𝑥𝑥 is affected by the transformation, but 
the above coefficient of risk aversion is unaffected. 

𝑟𝑟𝐴𝐴 𝑥𝑥 = −
𝛽𝛽𝑢𝑢′′ 𝑥𝑥
𝛽𝛽𝑢𝑢′ 𝑥𝑥

= −
𝑢𝑢′′ 𝑥𝑥
𝑢𝑢′ 𝑥𝑥



Measuring Risk Preferences

• Example (CARA utility function).
– Take 𝑢𝑢 𝑥𝑥 = −𝑒𝑒−𝑎𝑎𝑎𝑎 where 𝑎𝑎 > 0. Then 

𝑟𝑟𝐴𝐴 𝑥𝑥 = −
𝑢𝑢′′ 𝑥𝑥
𝑢𝑢′ 𝑥𝑥

= −
−𝑎𝑎2𝑒𝑒−𝑎𝑎𝑎𝑎

𝑎𝑎𝑒𝑒−𝑎𝑎𝑎𝑎
= 𝑎𝑎

which is constant in wealth 𝑥𝑥.
– The literature refers to this Bernoulli utility 

function as the Constant Absolute Risk Aversion 
(CARA).



Measuring Risk Preferences

• If 𝑟𝑟𝐴𝐴 𝑥𝑥 decreases as we increase wealth 𝑥𝑥, then 
we say that such Bernoulli utility function 
satisfies decreasing absolute risk aversion (DARA)

𝜕𝜕𝑟𝑟𝐴𝐴 𝑥𝑥
𝜕𝜕𝑥𝑥

< 0

• Intuition: wealthier people are willing to bear 
more risk than poorer people. 
– This is NOT due to different utility functions, but 

because the same utility function is evaluated at 
higher/lower wealth levels.



Measuring Risk Preferences

• A sufficient (but not necessary) condition for 
DARA is 𝑢𝑢′′′ 𝑥𝑥 > 0, that is,

𝑟𝑟𝐴𝐴′ 𝑥𝑥 < 0 ⇒
⇍ 𝑢𝑢′′′ 𝑥𝑥 > 0

• For example, when 𝑢𝑢 𝑥𝑥 = −𝑒𝑒−𝑎𝑎𝑎𝑎, its third-
order derivative is 𝑢𝑢′′′ 𝑥𝑥 = 𝑎𝑎3𝑒𝑒−𝑎𝑎𝑎𝑎 > 0.



Measuring Risk Preferences

• Arrow-Pratt coefficient of relative risk aversion:

𝑟𝑟𝑅𝑅 𝑥𝑥 = −𝑥𝑥 � 𝑢𝑢
′′ 𝑥𝑥
𝑢𝑢′ 𝑥𝑥

or   𝑟𝑟𝑅𝑅 𝑥𝑥 = 𝑥𝑥 � 𝑟𝑟𝐴𝐴 𝑥𝑥

– 𝑟𝑟𝑅𝑅 𝑥𝑥 does not vary with the wealth level at which it is 
evaluated.

– We can show that
𝜕𝜕𝑟𝑟𝑅𝑅 𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝑟𝑟𝐴𝐴 𝑥𝑥
+

+ 𝑥𝑥 �
𝜕𝜕𝜕𝜕𝐴𝐴 𝑥𝑥
𝜕𝜕𝜕𝜕

– Therefore, 
𝜕𝜕𝑟𝑟𝑅𝑅 𝑥𝑥
𝜕𝜕𝜕𝜕

< 0 ⇒
⇍

𝜕𝜕𝑟𝑟𝐴𝐴 𝑥𝑥
𝜕𝜕𝜕𝜕

< 0



Measuring Risk Preferences

• Example:
– Take 𝑢𝑢 𝑥𝑥 = 𝑥𝑥𝑏𝑏. Then 

𝑟𝑟𝑅𝑅 𝑥𝑥 = −𝑥𝑥 �
𝑏𝑏 𝑏𝑏 − 1 𝑥𝑥𝑏𝑏−2

𝑏𝑏𝑏𝑏𝑏𝑏−1
= 1 − 𝑏𝑏

for all 𝑥𝑥.
– The literature refers to this Bernoulli utility 

function as the Constant Relative Risk Aversion 
(CRRA).



Measuring Risk Preferences

• Example (continued):
– Consider a CRRA 

utility function 
𝑢𝑢 𝑥𝑥 = 𝑥𝑥𝑏𝑏 for 𝑏𝑏 =
1, 1

2
, 1
3
, 1
4
.

– 𝑟𝑟𝑅𝑅 𝑥𝑥 increases, 
respectively, from 0 
to 1

2
, 2
3
, 3
4
, making the 

utility function more 
concave.
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Measuring Risk Preferences

• A utility function 𝑢𝑢𝐴𝐴 � exhibits more strong risk aversion
than another utility function 𝑢𝑢𝐵𝐵 � if, there is a constant 
𝜆𝜆 > 0,

𝑢𝑢𝐴𝐴′′ 𝑥𝑥1
𝑢𝑢𝐵𝐵′′ 𝑥𝑥1

≥ 𝜆𝜆 ≥
𝑢𝑢𝐴𝐴′ 𝑥𝑥2
𝑢𝑢𝐵𝐵′ 𝑥𝑥2

• In addition, if 𝑥𝑥1 = 𝑥𝑥2, the above condition can be re-
written as

𝑢𝑢𝐴𝐴′′ 𝑥𝑥1
𝑢𝑢𝐴𝐴′ 𝑥𝑥1

≥
𝑢𝑢𝐵𝐵′′ 𝑥𝑥1
𝑢𝑢𝐵𝐵′ 𝑥𝑥1

• Then, 𝑢𝑢𝐴𝐴 � also exhibits more risk aversion than 𝑢𝑢𝐵𝐵 � .



Measuring Risk Preferences

• For two utility functions 𝑢𝑢1 and 𝑢𝑢2, where 𝑢𝑢2
is a concave transformation of 𝑢𝑢1, the 
following properties are equivalent:
1) There exists an increasing concave function 𝜑𝜑 �

such that 𝑢𝑢2 𝑥𝑥 = 𝜑𝜑 𝑢𝑢1 𝑥𝑥 for any 𝑥𝑥. That is, 
𝑢𝑢2 � is more concave than 𝑢𝑢1 � .

2) 𝑟𝑟𝐴𝐴 𝑥𝑥,𝑢𝑢2 ≥ 𝑟𝑟𝐴𝐴 𝑥𝑥,𝑢𝑢1 for any 𝑥𝑥.
3) 𝑐𝑐 𝐹𝐹,𝑢𝑢2 ≤ 𝑐𝑐 𝐹𝐹,𝑢𝑢1 for any lottery 𝐹𝐹 � .
4) 𝜋𝜋 𝑥𝑥, 𝜀𝜀,𝑢𝑢2 ≥ 𝜋𝜋 𝑥𝑥, 𝜀𝜀,𝑢𝑢1 for any 𝑥𝑥 and 𝜀𝜀.



Measuring Risk Preferences

5) Whenever 𝑢𝑢2 � finds a lottery 𝐹𝐹 � at least as 
good as a riskless outcome 𝑥̅𝑥, then 𝑢𝑢1 � also 
finds such a lottery 𝐹𝐹 � at least as good as 𝑥̅𝑥. 
That is

𝐸𝐸𝐸𝐸2 = �𝑢𝑢2 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑥𝑥 ≥ 𝑢𝑢2 𝑥̅𝑥 ⟹

𝐸𝐸𝐸𝐸1 = �𝑢𝑢1 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑥𝑥 ≥ 𝑢𝑢1 𝑥̅𝑥



Measuring Risk Preferences
• Different degrees of risk 

aversion
• 𝑢𝑢1 � and 𝑢𝑢2 � are 

evaluated at the same 
wealth level 𝑥𝑥.

• The same lottery yields a 
larger expected utility for 
the individual with less 
risk averse preferences, 
𝐸𝐸𝐸𝐸1 > 𝐸𝐸𝐸𝐸2.

• 𝑐𝑐 𝐹𝐹,𝑢𝑢2 < 𝑐𝑐(𝐹𝐹,𝑢𝑢1), 
reflecting that individual 
2 is more risk averse.

1 x
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Measuring Risk Preferences
Prudence
• Introduced by Kimball (1990). 
• It measures an individual’s tendency to prepare for future 

risks.
• An individual is considered to be “prudent” if the third 

derivative of his utility function is positive, i.e., 𝑢𝑢′′′ 𝑥𝑥 > 0.
• The formula for absolute prudence is:

𝐾𝐾𝐴𝐴 𝑥𝑥 = −
𝑢𝑢′′′ 𝑥𝑥
𝑢𝑢′′ 𝑥𝑥

• The more prudent the individual becomes, the more 
precautionary saving will this individual prepare for.



Measuring Risk Preferences
Prudence
• The formula for relative prudence is given by 

𝐾𝐾𝑅𝑅 𝑥𝑥 = −𝑥𝑥
𝑢𝑢′′′ 𝑥𝑥
𝑢𝑢′′ 𝑥𝑥

• It also measures the elasticity of concavity of the 
marginal utility function, as follows:

𝐾𝐾𝑅𝑅 𝑥𝑥 = 𝑥𝑥 � 𝐾𝐾𝐴𝐴 𝑥𝑥 = −
𝑑𝑑 log𝑢𝑢′′ 𝑥𝑥
𝑑𝑑 log 𝑥𝑥



Measuring Risk Preferences
• The Arrow-Pratt coefficient of absolute risk aversion, 𝑟𝑟𝐴𝐴 𝑥𝑥 , and 

the coefficient of relative prudence, 𝐾𝐾𝑅𝑅 𝑥𝑥 , are closely related.
• Differentiating 𝑟𝑟𝐴𝐴 𝑥𝑥 yields

𝑟𝑟𝐴𝐴′ 𝑥𝑥 = −
𝑢𝑢′′′ � 𝑢𝑢′ − 𝑢𝑢′′ � 𝑢𝑢′′

𝑢𝑢′ 2

= −
𝑢𝑢′′′

𝑢𝑢′
+

𝑢𝑢′′

𝑢𝑢′

2

Dividing both sides by 𝑟𝑟𝐴𝐴 𝑥𝑥 = ⁄−𝑢𝑢′′ 𝑢𝑢′ yields
𝑟𝑟𝐴𝐴′ 𝑥𝑥
𝑟𝑟𝐴𝐴 𝑥𝑥

= −
𝑢𝑢′′′

𝑢𝑢′
−
𝑢𝑢′

𝑢𝑢′′
+

𝑢𝑢′′

𝑢𝑢′

2

−
𝑢𝑢′

𝑢𝑢′′

=
𝑢𝑢′′′

𝑢𝑢′′
−
𝑢𝑢′′

𝑢𝑢′
= −𝐾𝐾𝐴𝐴 𝑥𝑥 + 𝑟𝑟𝐴𝐴 𝑥𝑥



Measuring Risk Preferences
• Hence, solving for 𝐾𝐾𝐴𝐴 𝑥𝑥 , we obtain

𝐾𝐾𝐴𝐴 𝑥𝑥 = 𝑟𝑟𝐴𝐴 𝑥𝑥 −
𝑟𝑟𝐴𝐴′ 𝑥𝑥
𝑟𝑟𝐴𝐴 𝑥𝑥

• Further multiplying both sides by 𝑥𝑥,

𝑥𝑥 � 𝐾𝐾𝐴𝐴 𝑥𝑥 = 𝑥𝑥 � 𝑟𝑟𝐴𝐴 𝑥𝑥 − 𝑥𝑥 �
𝑟𝑟𝐴𝐴′ 𝑥𝑥
𝑟𝑟𝐴𝐴 𝑥𝑥

• Since 𝐾𝐾𝑅𝑅 𝑥𝑥 = 𝑥𝑥 � 𝐾𝐾𝐴𝐴 𝑥𝑥 and 𝑟𝑟𝑅𝑅 𝑥𝑥 = 𝑥𝑥 � 𝑟𝑟𝐴𝐴 𝑥𝑥 ,

𝐾𝐾𝑅𝑅 𝑥𝑥 = 𝑟𝑟𝑅𝑅 𝑥𝑥 − 𝑥𝑥 �
𝑟𝑟𝐴𝐴′ 𝑥𝑥
𝑟𝑟𝐴𝐴 𝑥𝑥



Measuring Risk Preferences

• Example (CARA utility function).
– Take 𝑢𝑢 𝑥𝑥 = −𝑒𝑒−𝑎𝑎𝑎𝑎 where 𝑎𝑎 > 0. 
– Then, the relative prudence is

𝐾𝐾𝑅𝑅 𝑥𝑥 = 𝑥𝑥 � 𝑎𝑎 − 𝑥𝑥
0
𝑎𝑎

= 𝑥𝑥 � 𝑎𝑎 = 𝑟𝑟𝑅𝑅 𝑥𝑥

which coincides with relative risk aversion.



Measuring Risk Preferences

• Example:
– Take now 𝑢𝑢 𝑥𝑥 = 𝑥𝑥𝑏𝑏. 

– Then 𝑟𝑟𝐴𝐴 𝑥𝑥 = 1−𝑏𝑏
𝑥𝑥

and 𝑟𝑟𝑅𝑅 𝑥𝑥 = 1 − 𝑏𝑏, yielding a 
relative prudence of

𝐾𝐾𝑅𝑅 𝑥𝑥 = 1 − 𝑏𝑏 − 𝑥𝑥 �
⁄− 1 − 𝑏𝑏 𝑥𝑥2

⁄1 − 𝑏𝑏 𝑥𝑥
= 1 − 𝑏𝑏 + 1

= 2 − 𝑏𝑏
– implying that, in this case, 𝐾𝐾𝑅𝑅 𝑥𝑥 > 𝑟𝑟𝑅𝑅 𝑥𝑥 .



Measuring Risk Preferences
Cautiousness
• Cautiousness measures the individual’s tendency to hedge 

against the downside risk of an investment.
• The formula for cautiousness is given by

𝐶𝐶 𝑥𝑥 =
𝐾𝐾𝑅𝑅 𝑥𝑥
𝑟𝑟𝑅𝑅 𝑥𝑥

and a ratio 𝐶𝐶 𝑥𝑥 > 1 implies that 𝐾𝐾𝑅𝑅 𝑥𝑥 > 𝑟𝑟𝑅𝑅 𝑥𝑥 .
• Examples: 

– The CARA utility function yields 𝐶𝐶 𝑥𝑥 = 1.
– The CRRA utility function yields 𝐶𝐶 𝑥𝑥 > 1.



Measuring Risk Preferences
Temperance
• Temperance measures the individual’s tendency to 

reduce the total exposure to risks.
• The formula for temperance is

𝑇𝑇 𝑥𝑥 = −
𝑢𝑢′′′′ 𝑥𝑥
𝑢𝑢′′′ 𝑥𝑥

• An individual is deemed as “temperate” when the 
fourth derivative of his utility function is negative, 
i.e., 𝑢𝑢′′′′ 𝑥𝑥 < 0.



Prospect Theory and Reference-
Dependent Utility



Prospect Theory

• Prospect theory: a decision maker’s total value from 
a list of possible outcomes 𝑥𝑥 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 with 
associated probabilities  𝑝𝑝 = 𝑝𝑝1, 𝑝𝑝2, … ,𝑝𝑝𝑛𝑛 is

𝑣𝑣 𝑥𝑥, 𝑝𝑝 = �
𝑖𝑖=1

𝑛𝑛
𝑤𝑤(𝑝𝑝𝑖𝑖) � 𝑣𝑣(𝑥𝑥𝑖𝑖)

where 
– 𝑤𝑤 𝑝𝑝𝑖𝑖 is a “probability weighting function”
– 𝑣𝑣 𝑥𝑥𝑖𝑖 is the “value function” the individual 

obtains from outcome 𝑥𝑥𝑖𝑖



Prospect Theory

• Three main differences relative to standard 
expected utility theory:

• First, 𝑤𝑤 𝑝𝑝𝑖𝑖 ≠ 𝑝𝑝𝑖𝑖:
– if 𝑤𝑤 𝑝𝑝𝑖𝑖 > 𝑝𝑝𝑖𝑖, individuals overestimate the 

likelihood of outcome 𝑥𝑥𝑖𝑖
– if 𝑤𝑤 𝑝𝑝𝑖𝑖 < 𝑝𝑝𝑖𝑖, individuals underestimate the 

likelihood of outcome 𝑥𝑥𝑖𝑖
– if 𝑤𝑤 𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖, the model coincides with standard 

expected utility theory.



Prospect Theory

• Second, every payoff 𝑥𝑥𝑖𝑖 is evaluated relative to a 
“reference point” 𝑥𝑥0, with the value function 
𝑣𝑣 𝑥𝑥𝑖𝑖 , which is
– Increasing and concave, 𝑣𝑣′′ 𝑥𝑥𝑖𝑖 < 0, for all 𝑥𝑥𝑖𝑖 > 𝑥𝑥0, 

• That is, the individual is risk averse for gains.

– Decreasing and convex, 𝑣𝑣′′ 𝑥𝑥𝑖𝑖 > 0,  for all 𝑥𝑥𝑖𝑖 < 𝑥𝑥0
• That is, the individual is risk lover for losses. 

– Extremes: 
• if 𝑥𝑥0 = 0, the individual is risk averse for all payoffs; 
• if 𝑥𝑥0 = +∞, he is risk lover for all payoffs.



Prospect Theory

• Third, value function 𝑣𝑣 𝑥𝑥𝑖𝑖 has a kink at the 
reference point 𝑥𝑥0.
– The curve becomes steeper for losses (to the left of 
𝑥𝑥0) than for gains (to the right of 𝑥𝑥0).

• Loss aversion:
• A given loss of $a produces a larger disutility than a gain 

of the same amount.



Prospect Theory
• Value function in prospect theory



Prospect Theory

• Example:
– Consider as in Tversky and Kahneman (1992)

𝑤𝑤 𝑝𝑝 = 𝑝𝑝𝛽𝛽

𝑝𝑝𝛽𝛽+ 1−𝑝𝑝 𝛽𝛽
1
𝛽𝛽

and  𝑣𝑣 𝑥𝑥 = 𝑥𝑥𝛼𝛼

where 0 < 𝛼𝛼 < 1 and 0 < 𝛽𝛽 < 1.
• Note that this implies probability weighting, 

but does not consider a value function with 
loss aversion relative to a reference point.



Prospect Theory
• Example (continued): 

– Depicting the probability weighting function



Prospect Theory
• Example:

– A common value function is 
𝑣𝑣 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖𝛼𝛼 if 𝑥𝑥𝑖𝑖 ≥ 𝑥𝑥0, and

= −𝜆𝜆 −𝑥𝑥𝑖𝑖 𝛼𝛼 if 𝑥𝑥𝑖𝑖 < 𝑥𝑥0
where 0 < 𝛼𝛼 ≤ 1, and 𝜆𝜆 ≥ 1 represents loss 
aversion. 
• If 𝜆𝜆 = 1 the individual does not exhibit loss 

aversion.



Prospect Theory
• Example:

• Average estimates 𝜆𝜆 = 2.25 and 𝛽𝛽 = 0.88
• Common simplifications, assume 𝛼𝛼 = 𝛽𝛽 = 1

(which implies no probability weighting, and 
linear value functions), to estimate 𝜆𝜆.



Prospect Theory

• Further reading:
– Nicholas Barberis (2013) “Thirty Years of Prospect 

Theory in Economics: A Review and Assessment,” 
Journal of Economic Perspectives, 27(1), pp. 173-96.

– R. Duncan Luce and Peter C. Fishburn (1991) “Rank 
and sign-dependent linear utility models for binary 
gambles.” Journal of Economic Theory, 53, pp. 75–100.

– Daniel Kahneman and Amos Tversky (1992) “Advances 
in prospect theory: Cumulative representation of 
uncertainty” Journal of Risk and Uncertainty, 5(4), pp. 
297–323.

– Peter Wakker and Amos Tversky (1993) “An 
axiomatization of cumulative prospect theory.” 
Journal of Risk and Uncertainty, 7, pp. 147–176.



Reference-Dependent Utility

• Individual preferences are affected by reference 
points. Thus, gains and losses can be evaluated 
differently.

• Consider a consumption vector 𝑥𝑥 ∈ ℝ𝑛𝑛 which is 
evaluated against a 𝑛𝑛-dimensional reference 
vector 𝑟𝑟 ∈ ℝ𝑛𝑛. Utility function is

𝑢𝑢 𝑥𝑥 𝑟𝑟 = 𝑚𝑚 𝑥𝑥 + 𝑛𝑛(𝑥𝑥|𝑟𝑟)

where 𝑛𝑛 𝑥𝑥𝑘𝑘 𝑟𝑟𝑘𝑘 = 𝜇𝜇 𝑚𝑚𝑘𝑘 𝑥𝑥𝑘𝑘 − 𝑚𝑚𝑘𝑘(𝑟𝑟𝑘𝑘)
measures the gain/loss of consuming 𝑥𝑥𝑘𝑘 units of 
good 𝑘𝑘 relative to its reference amount 𝑟𝑟𝑘𝑘.



Reference-Dependent Utility

• For lotteries with cumulative distribution 
function 𝐹𝐹 𝑥𝑥 ,

𝑈𝑈 𝐹𝐹 𝑟𝑟 = ∫ 𝑢𝑢 𝑥𝑥 𝑟𝑟 𝑑𝑑𝑑𝑑(𝑥𝑥)

• For lotteries over the set of reference points

𝑢𝑢 𝐹𝐹 𝐺𝐺 = ∫ ∫ 𝑢𝑢 𝑥𝑥 𝑟𝑟 𝑑𝑑𝑑𝑑(𝑟𝑟)𝑑𝑑𝑑𝑑(𝑥𝑥)



Reference-Dependent Utility

• Further reading:
– “Reference-Dependent Consumption Plans” 

(2009) by Koszegi and Rabin, American Economic 
Review, vol. 99(3).

– “Rational Choice with Status Quo Bias” (2005) by 
Masatlioglu and Ok, Journal of Economic Theory, 
vol. 121(1).

– “On the complexity of rationalizing behavior” 
(2007) Apesteguia and Ballester, Economics 
Working Papers 1048.



Comparison of Payoff 
Distributions



Comparison of Payoff Distributions

• So far we compared utility functions, but not 
the distribution of payoffs. 

• Two main ideas:
1) 𝐹𝐹 � yields unambiguously higher returns than 

𝐺𝐺 � . We will explore this idea in the definition 
of first order stochastic dominance (FOSD);

2) 𝐹𝐹 � is unambiguously less risky than 𝐺𝐺 � . We 
will explore this idea in the definition of second 
order stochastic dominance (SOSD).



Comparison of Payoff Distributions

• FOSD: 𝐹𝐹 � FOSD 𝐺𝐺 � if, for every non-decreasing 
function 𝑢𝑢:ℝ → ℝ, we have 

�𝑢𝑢 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑥𝑥 ≥ �𝑢𝑢 𝑥𝑥 𝑑𝑑𝐺𝐺 𝑥𝑥

• The distribution of monetary payoffs 𝐹𝐹 � FOSD the 
distribution of monetary payoffs 𝐺𝐺 � if and only if 

𝐹𝐹 𝑥𝑥 ≤ 𝐺𝐺 𝑥𝑥 or  1 − 𝐹𝐹 𝑥𝑥 ≥ 1 − 𝐺𝐺 𝑥𝑥
for every 𝑥𝑥.

• Intuition: For every amount of money 𝑥𝑥, the probability 
of getting at least 𝑥𝑥 is higher under 𝐹𝐹 � than under 
𝐺𝐺 � .



Comparison of Payoff Distributions
• At any given outcome 𝑥𝑥, the probability of 

obtaining prizes above 𝑥𝑥 is higher with lottery 𝐹𝐹 �
than with lottery 𝐺𝐺 � , i.e., 1 − 𝐹𝐹 𝑥𝑥 ≥ 1 − 𝐺𝐺 𝑥𝑥 .
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Comparison of Payoff Distributions

• Example:
– Let us take lotteries 𝐹𝐹 � and 𝐺𝐺 � over discrete 

outcomes.

How can we know if 𝐹𝐹 � FOSD 𝐺𝐺 � ? 



Comparison of Payoff Distributions

• Example (continued):
– 𝐹𝐹 � lies below lottery 𝐺𝐺 � . Hence, 𝐹𝐹 � concentrates 

more probability weight on higher monetary outcomes.
– Thus, 𝐹𝐹 � FOSD 𝐺𝐺 � .
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Comparison of Payoff Distributions
• Example (Binomial distribution):

– Consider the binomial distribution 

𝐹𝐹 𝑥𝑥;𝑁𝑁,𝑝𝑝 =
𝑁𝑁
𝑝𝑝

𝑝𝑝𝑥𝑥 1 − 𝑝𝑝 𝑁𝑁−𝑥𝑥

– where 𝑥𝑥 ∈ 0,𝑁𝑁 . Assuming 𝑁𝑁 = 100 and parameter 𝑝𝑝 increasing from 𝑝𝑝 = 1
4

to 𝑝𝑝 = 1
2

.
Then, 𝐹𝐹 𝑥𝑥; 100,1/2 FOSD 𝐹𝐹 𝑥𝑥; 100,1/4 . 
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Comparison of Payoff Distributions

• We now focus on the riskiness or dispersion of a 
lottery, as opposed to higher/lower returns of 
lottery (FOSD).

• To focus on riskiness, we assume that the CDFs 
we compare have the same mean (i.e., same 
expected return).

• SOSD: 𝐹𝐹 � SOSD 𝐺𝐺 � if, for every non-decreasing 
function 𝑢𝑢:ℝ → ℝ, we have 

�𝑢𝑢 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑥𝑥 ≥ �𝑢𝑢 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑥𝑥
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Comparison of Payoff Distributions
• Example (Mean-Preserving Spread):

– Let us take lotteries 𝐹𝐹 � and 𝐺𝐺 � over discrete outcomes.
– Lottery 𝐺𝐺 � spreads the probability weight of lottery 𝐹𝐹 �

over a larger set of monetary outcomes.
– The mean is nonetheless unaltered (2.5).
– For these two reasons, we say that a CDF is a mean-

preserving spread of the other.

𝐹𝐹(�)

𝐺𝐺(�)



Comparison of Payoff Distributions

• 𝐺𝐺 � is a mean-preserving spread of 𝐹𝐹 � , but 
it is riskier than 𝐹𝐹 � in the SOSD sense.

• Note that neither FOSD the other 
– 𝐹𝐹 � is not above/below 𝐺𝐺 � for all 𝑥𝑥
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Comparison of Payoff Distributions

• Example (Elementary increase in risk):
– 𝐺𝐺 � is an Elementary Increase in Risk (EIR) of 

another CDF 𝐹𝐹 � if 𝐺𝐺 � takes all the probability 
weight of an interval 𝑥𝑥′, 𝑥𝑥′′ and transfers it to 
the end points of this interval, 𝑥𝑥′ and 𝑥𝑥′′, such 
that the mean of the original lottery is preserved.

– EIR is a mean-preserving spread (MPS), but the 
converse is not necessarily true:

𝐸𝐸𝐸𝐸𝐸𝐸 ⇒
⇍ 𝑀𝑀𝑀𝑀𝑀𝑀

– Hence, if 𝐺𝐺 � is an EIR of 𝐹𝐹 � , then 𝐹𝐹 � SOSD 
𝐺𝐺 � .



Comparison of Payoff Distributions

• Example (continued):
– both CDFs 𝐹𝐹 � and 
𝐺𝐺 � maintain the 
same mean.

– 𝐺𝐺 � concentrates 
more probability at 
the end points of the 
interval 𝑥𝑥′, 𝑥𝑥′′ than 
𝐹𝐹 � .
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Comparison of Payoff Distributions

• Hazard rate dominance: The hazard rate of 
lottery 𝐹𝐹 𝑥𝑥 is

𝐻𝐻𝐻𝐻𝐹𝐹 𝑥𝑥 =
𝑓𝑓 𝑥𝑥

1 − 𝐹𝐹 𝑥𝑥
– Intuition: It measures the instantaneous 

probability of an event happening at time 𝑥𝑥 given 
that it did not happen before 𝑥𝑥.

– Example: a computer stops working at exactly 𝑥𝑥
– If 𝐻𝐻𝐻𝐻𝐹𝐹 𝑥𝑥 ≤ 𝐻𝐻𝐻𝐻𝐺𝐺 𝑥𝑥 , lottery 𝐹𝐹 𝑥𝑥 dominates 
𝐺𝐺 𝑥𝑥 in terms of the hazard rate.



Comparison of Payoff Distributions
– Since −𝐻𝐻𝐻𝐻𝐹𝐹 𝑥𝑥 can be expressed as

−𝐻𝐻𝐻𝐻𝐹𝐹 𝑥𝑥 =
𝑑𝑑
𝑑𝑑𝑑𝑑

ln 1 − 𝐹𝐹 𝑥𝑥

– Solving for 𝐹𝐹 𝑥𝑥 ,

𝐹𝐹 𝑥𝑥 = 1 − exp −�
0

𝑥𝑥
𝐻𝐻𝐻𝐻𝐹𝐹 𝑡𝑡 𝑑𝑑𝑑𝑑

– Then,

𝐹𝐹 𝑥𝑥 = 1 − exp −�
0

𝑥𝑥
𝐻𝐻𝐻𝐻𝐹𝐹 𝑡𝑡 𝑑𝑑𝑑𝑑

≤ 1 − exp −�
0

𝑥𝑥
𝐻𝐻𝐻𝐻𝐺𝐺 𝑡𝑡 𝑑𝑑𝑑𝑑 = 𝐺𝐺 𝑥𝑥

– Thus, 𝐻𝐻𝐻𝐻𝐹𝐹 𝑥𝑥 ≤ 𝐻𝐻𝐻𝐻𝐺𝐺 𝑥𝑥 implies that 𝐹𝐹 𝑥𝑥 FOSD 𝐺𝐺 𝑥𝑥 .



Comparison of Payoff Distributions

• Reverse hazard rate: The reverse hazard rate of 
lottery 𝐹𝐹 𝑥𝑥 is

𝑅𝑅𝐻𝐻𝐻𝐻𝐹𝐹 𝑥𝑥 =
𝑓𝑓 𝑥𝑥
𝐹𝐹 𝑥𝑥

– Intuition: It measures the probability that, 
conditional on the realized payoff in the lottery 
being equal or lower than 𝑥𝑥, the payoff you receive 
is exactly 𝑥𝑥.

– If 𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹 𝑥𝑥 ≥ 𝑅𝑅𝑅𝑅𝑅𝑅𝐺𝐺 𝑥𝑥 , lottery 𝐹𝐹 𝑥𝑥 dominates 
𝐺𝐺 𝑥𝑥 in terms of the reverse hazard sense.



Comparison of Payoff Distributions
– Integrating both sides, we obtain

�
𝑥𝑥

∞
𝑅𝑅𝑅𝑅𝑅𝑅 𝑡𝑡 𝑑𝑑𝑑𝑑 = �

𝑥𝑥

∞ 𝑑𝑑
𝑑𝑑𝑡𝑡 ln 𝐹𝐹(𝑡𝑡) 𝑑𝑑𝑑𝑑

= ln𝐹𝐹 ∞ − ln𝐹𝐹 𝑥𝑥 = −ln𝐹𝐹 𝑥𝑥 .
– where the last steps use 𝐹𝐹 ∞ = 1 and ln 1 = 0. Solving for 
𝐹𝐹 𝑥𝑥 ,we have

𝐹𝐹 𝑥𝑥 = exp −�
𝑥𝑥

∞
𝑅𝑅𝑅𝑅𝑅𝑅 𝑡𝑡 𝑑𝑑𝑑𝑑

– Therefore, if 𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹 𝑥𝑥 ≥ 𝑅𝑅𝑅𝑅𝑅𝑅𝐺𝐺 𝑥𝑥 , then

𝐹𝐹 𝑥𝑥 = exp −�
𝑥𝑥

∞
𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹 𝑡𝑡 𝑑𝑑𝑑𝑑 ≤ exp −�

𝑥𝑥

∞
𝑅𝑅𝑅𝑅𝑅𝑅𝐺𝐺(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝐺𝐺 𝑥𝑥

– which simplifies to 𝐹𝐹 𝑥𝑥 ≤ 𝐺𝐺 𝑥𝑥 . 
– That is, 𝑅𝑅𝑅𝑅𝑅𝑅 dominance implies FOSD dominance; but the converse 

is not necessarily true.



Comparison of Payoff Distributions

• Likelihood ratio: The likelihood ratio of a 
lottery 𝐹𝐹 𝑥𝑥 is

𝐿𝐿𝐿𝐿𝐹𝐹 =
𝑓𝑓 𝑦𝑦
𝑓𝑓 𝑥𝑥

for any two payoffs 𝑥𝑥 and 𝑦𝑦, where 𝑦𝑦 > 𝑥𝑥.
– 𝐹𝐹 𝑥𝑥 dominates 𝐺𝐺 𝑥𝑥 in terms of likelihood ratio if

𝑓𝑓 𝑥𝑥
𝑔𝑔 𝑥𝑥

≤
𝑓𝑓 𝑦𝑦
𝑔𝑔 𝑦𝑦



Comparison of Payoff Distributions

• 𝐿𝐿𝐿𝐿 dominance implies 𝐻𝐻𝐻𝐻 dominance:
– Let us rewrite 𝐿𝐿𝐿𝐿 dominance as 

𝑔𝑔 𝑦𝑦
𝑔𝑔 𝑥𝑥

≤
𝑓𝑓 𝑦𝑦
𝑓𝑓 𝑥𝑥

– Then, for all 𝑥𝑥,

�
𝑥𝑥

∞𝑔𝑔 𝑦𝑦
𝑔𝑔 𝑥𝑥

𝑑𝑑𝑑𝑑 ≤ �
𝑥𝑥

∞𝑓𝑓 𝑦𝑦
𝑓𝑓 𝑥𝑥

𝑑𝑑𝑑𝑑

– Simplifying
1−𝐺𝐺 𝑥𝑥
𝑔𝑔 𝑥𝑥

≤ 1−𝐹𝐹 𝑥𝑥
𝑓𝑓 𝑥𝑥

or 𝑓𝑓 𝑥𝑥
1−𝐹𝐹 𝑥𝑥

≤ 𝑔𝑔 𝑥𝑥
1−𝐺𝐺 𝑥𝑥

which implies 𝐻𝐻𝐻𝐻𝐹𝐹 𝑥𝑥 ≤ 𝐻𝐻𝐻𝐻𝐺𝐺 𝑥𝑥 .



Comparison of Payoff Distributions

• Summary:
– 𝐿𝐿𝐿𝐿 dominance implies 𝐻𝐻𝐻𝐻 dominance
– 𝐻𝐻𝐻𝐻 and 𝑅𝑅𝑅𝑅𝑅𝑅 dominance imply FOSD.



Appendix 5.1:
State-Dependent Utility



State-Dependent Utility

• So far the decision maker only cared about the 
payoff arising from every outcome of the 
lottery.

• Now we assume that the decision maker cares 
not only about his monetary outcomes, but 
also about the state of nature that causes 
every outcome.
– That is, 𝑢𝑢state 1 𝑥𝑥 ≠ 𝑢𝑢state 2 𝑥𝑥 for given 𝑥𝑥.



State-Dependent Utility

• Let us assume that each of the possible monetary 
payoffs in a lottery is generated by an underlying 
cause (i.e., an underlying state of nature).

• Examples:
– The monetary payoff of an insurance policy is 

generated by a car accident
 State of nature = {car accident, no car accident}

– The monetary payoff of a corporate stock is 
generated by the state of the economy
 State of nature = {economic growth, economic 

depression}



State-Dependent Utility

• Generally, let 𝑠𝑠 ∈ 𝑆𝑆 denote a state of nature, 
where 𝑆𝑆 is a finite set.

• Every state 𝑠𝑠 has a well-defined, objective 
probability 𝜋𝜋𝑠𝑠 ≥ 0.

• A random variable is function 𝑔𝑔: 𝑆𝑆 → ℝ, that 
maps states into monetary payoffs.



State-Dependent Utility

• Examples (revisited):
– Car accident: the random variable assigns a 

monetary value to the state of nature car 
accident, and to the state of nature no accident.

State of nature Probability Monetary payoff
Car accident 𝜋𝜋accident Damage + Deductible – Premium =  $1,000
No car accident 𝜋𝜋no accident Premium = -$50



State-Dependent Utility

• Examples (revisited):
– Corporate stock: the random variable assigns a 

monetary value to the state of nature economic 
growth, and to the state of nature economic 
depression.

State of nature Probability Monetary payoff
Economic growth 𝜋𝜋growth Dividends, higher price of shares = $250

Economic depression 𝜋𝜋depression No dividends, loss if we sell shares = -$125



State-Dependent Utility
• Every random variable 𝑔𝑔 � can be used to represent 

lottery 𝐹𝐹 � over monetary payoffs as

𝐹𝐹 𝑥𝑥 = �
𝑠𝑠: 𝑔𝑔 𝑠𝑠 ≤𝑥𝑥

𝜋𝜋𝑠𝑠

where {𝑠𝑠: 𝑔𝑔 𝑠𝑠 ≤ 𝑥𝑥} represents all those states of 
nature 𝑠𝑠 that generate a monetary payoff 𝑔𝑔 𝑠𝑠 ∈ ℝ
below a cutoff payoff 𝑥𝑥.

• The random variable 𝑔𝑔 � generates a monetary payoff 
for every state of nature 𝑠𝑠 ∈ 𝑆𝑆, and since 𝑆𝑆 is finite, we 
can represent this list of monetary payoffs as 

𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑆𝑆 ∈ ℝ+
𝑆𝑆

where 𝑥𝑥𝑠𝑠 is the monetary payoff corresponding to state 
of nature 𝑠𝑠.



State-Dependent Utility

• Example:
– A random variable 𝑔𝑔 �

describes the 
monetary outcome 
associated to the four 
states of nature 𝑆𝑆 =
{1,2,3,4}. 

– Outcomes are ordered 
from low to high, i.e., 
𝑥𝑥1 ≤ 𝑥𝑥2 ≤ 𝑥𝑥3 ≤ 𝑥𝑥4.

Prob.

1
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State-Dependent Utility

• Example (continued):
– Hence, 

𝐹𝐹 𝑥𝑥1 = 𝜋𝜋1 = 1
2

𝐹𝐹 𝑥𝑥2 = 𝜋𝜋1 + 𝜋𝜋2 = 1
2

+ 1
4

= 3
4

𝐹𝐹 𝑥𝑥3 = 𝜋𝜋1 + 𝜋𝜋2 + 𝜋𝜋3 = 1
2

+ 1
4

+ 0 = 3
4

𝐹𝐹 𝑥𝑥4 = 𝜋𝜋1 + 𝜋𝜋2 + 𝜋𝜋3 + 𝜋𝜋4 = 1

• Disadvantage of 𝐹𝐹 𝑥𝑥 :
– For a given 𝑥𝑥, we cannot keep track of which 

state(s) of nature that generated 𝑥𝑥.



State-Dependent Utility: 
Extended EU representation

• We now have a preference relation ≿ ranks 
lists of monetary payoffs 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑆𝑆 ∈ ℝ+

𝑆𝑆 .
• Note the similarity of this setting with that in 

consumer theory:
– Preferences over bundles then, preferences over 

lists of monetary payoffs here.
– Since 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑆𝑆 ∈ ℝ+

𝑆𝑆 specifies one payoff for 
each state of nature, this list is also referred to as 
contingent commodities.



State-Dependent Utility: 
Extended EU representation

• Preference relation ≿ has an Extended EU 
representation if for every 𝑠𝑠 ∈ 𝑆𝑆, there is a function 
𝑢𝑢𝑆𝑆:ℝ+ → ℝ (mapping the monetary outcome of state 
𝑠𝑠, 𝑥𝑥𝑠𝑠, into a utility value in ℝ), such that for any two 
lists of monetary outcomes 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑆𝑆 ∈ ℝ+

𝑆𝑆 and 
𝑥𝑥1′ , 𝑥𝑥2′ , … , 𝑥𝑥𝑆𝑆′ ∈ ℝ+

𝑆𝑆 , 
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑆𝑆 ≿ 𝑥𝑥1′ ,𝑥𝑥2′ , … , 𝑥𝑥𝑆𝑆′ iff 

�
𝑠𝑠

𝜋𝜋𝑠𝑠𝑢𝑢𝑠𝑠 𝑥𝑥𝑠𝑠 ≥�
𝑠𝑠

𝜋𝜋𝑠𝑠𝑢𝑢𝑠𝑠 𝑥𝑥𝑠𝑠′

• The main difference with the previous sections is that 
now the Bernoulli utility function is state-dependent, 
𝑢𝑢𝑠𝑠 � , whereas in the previous sections it was state-
independent, 𝑢𝑢 � .



State-Dependent Utility: 
Extended EU representation

• Graphical representation:
– First, at the “certainty line” the decision maker 

receives the same monetary amount, regardless the 
state of nature, 𝑥𝑥1 = 𝑥𝑥2.

– Second, all the 𝑥𝑥1, 𝑥𝑥2 pairs on a given ind. curve 
satisfy 𝜋𝜋1 � 𝑢𝑢1 𝑥𝑥1 + 𝜋𝜋2 � 𝑢𝑢2 𝑥𝑥2 = �𝑈𝑈

– Third, the upper contour set of an ind. curve that 
passes through point (𝑥̅𝑥1, 𝑥̅𝑥2) satisfy

𝜋𝜋1 � 𝑢𝑢1 𝑥𝑥1 + 𝜋𝜋2 � 𝑢𝑢2 𝑥𝑥2
≥ 𝜋𝜋1 � 𝑢𝑢1 𝑥̅𝑥1 + 𝜋𝜋2 � 𝑢𝑢2 𝑥̅𝑥2

or, more generally, ∑𝑠𝑠 𝜋𝜋𝑠𝑠𝑢𝑢𝑠𝑠(𝑥𝑥𝑠𝑠) ≥ ∑𝑠𝑠 𝜋𝜋𝑠𝑠𝑢𝑢𝑠𝑠(𝑥̅𝑥𝑠𝑠).



State-Dependent Utility: 
Extended EU representation

• Graphical representation:
– Fourth, movement along a given ind. curve does 

not change the decision maker’s utility level. Hence, 
totally differentiating 

𝜋𝜋1 �
𝜕𝜕𝑢𝑢1 𝑥̅𝑥1
𝜕𝜕𝑥𝑥1

𝑑𝑑𝑥𝑥1 + 𝜋𝜋2 �
𝜕𝜕𝑢𝑢2 𝑥̅𝑥2
𝜕𝜕𝑥𝑥2

𝑑𝑑𝑥𝑥2 = 0

and re-arranging,

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑥𝑥1

= −
𝜋𝜋1 �

𝜕𝜕𝑢𝑢1 𝑥̅𝑥1
𝜕𝜕𝑥𝑥1

𝜋𝜋2 �
𝜕𝜕𝑢𝑢2 𝑥̅𝑥2
𝜕𝜕𝑥𝑥2

= −
𝜋𝜋1 � 𝑢𝑢1′ (𝑥̅𝑥1)
𝜋𝜋2 � 𝑢𝑢2′ (𝑥̅𝑥2)

which represents the slope of the ind. curve, 
evaluated at point (𝑥̅𝑥1, 𝑥̅𝑥2). This is really similar to 
MRS.



State-Dependent Utility: 
Extended EU representation

– The slope of the ind. 
curve at 𝑥̅𝑥1, 𝑥̅𝑥2 is
𝑑𝑑𝑥𝑥2
𝑑𝑑𝑥𝑥1

= −
𝜋𝜋1 � 𝑢𝑢1′ (𝑥̅𝑥1)
𝜋𝜋2 � 𝑢𝑢2′ (𝑥̅𝑥2)

– If the Bernoulli utility is 
state-independent, i.e., 
𝑢𝑢1 � = 𝑢𝑢2 � = ⋯ =
𝑢𝑢𝑆𝑆 � , then the slope is

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑥𝑥1

= −
𝜋𝜋1
𝜋𝜋2

1x

2x 45 line(certainty line)o −
1 2x x=

1x

2x

1 2

1 1 1 2 2 2

1 1 1 2 2 2

( , ) such that
( ) ( )

( ) ( )
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π π
π π

+
≥ +
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• Graphical representation:



State-Dependent Utility: 
Extended EU representation

• Example (Insurance with state-dependent 
utility):
– Start from an initial situation of 𝑤𝑤,𝑤𝑤 − 𝐷𝐷

without insurance, where 𝐷𝐷 is loss from accident.
– After insurance is purchased, the decision maker 

gets a payment of 𝑧𝑧1 in state 1, and 𝑧𝑧2 in state 2, 
where 𝑧𝑧1 ≶ 0 and 𝑧𝑧2 ≶ 0,

𝑤𝑤 + 𝑧𝑧1,𝑤𝑤 − 𝐷𝐷 + 𝑧𝑧2
– Moreover, if the policy is actuarially fair, then its 

expected payoff is zero,
𝜋𝜋1𝑧𝑧1 + 𝜋𝜋2𝑧𝑧2 = 0



1x

2x
1 2x x=

w
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1

2

slope π
π
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(No Accident)
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State-Dependent Utility: 
Extended EU representation

• Example (continued):
– The budget line is 𝑧𝑧2 = −𝜋𝜋1

𝜋𝜋2
𝑧𝑧1



State-Dependent Utility: 
Extended EU representation

• Without state dependency:
– Indifference curves are tangent to the budget line 

at the certainty line, since the slope of the 
indifference curve is −𝜋𝜋1

𝜋𝜋2
. 

– Hence, the decision maker would insure 
completely since his consumption level is 
unaffected by the possibility of suffering an 
accident.



State-Dependent Utility: 
Extended EU representation

• With state dependency: 
– Indifference curves are NOT tangent to the budget 

line at the certainty line.

• Example (continued):
– The decision-maker prefers a point such as 

(𝑥𝑥1′ , 𝑥𝑥2′ ) to the certain outcome 𝑥̅𝑥, 𝑥̅𝑥 .
– That is, at 𝑥̅𝑥, 𝑥̅𝑥 he prefers higher payoffs in state 

1 than in state 2 if 𝑢𝑢1′ 𝑥̅𝑥 > 𝑢𝑢2′ (𝑥̅𝑥). Otherwise, he 
would prefer higher payoffs in state 2 than in state 
1.



1x

2x
1 2x x=

1

2

slope π
π

= −

Slope of Ind. Curve at
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State-Dependent Utility: 
Extended EU representation

– Note that 𝑢𝑢1′ 𝑥̅𝑥 > 𝑢𝑢2′ 𝑥̅𝑥 implies that  𝑢𝑢1
′ 𝑥̅𝑥

𝑢𝑢2′ 𝑥̅𝑥
> 1

and −𝜋𝜋1⋅𝑢𝑢1′ 𝑥̅𝑥
𝜋𝜋2⋅𝑢𝑢2′ 𝑥̅𝑥

< −𝜋𝜋1
𝜋𝜋2

.



State-Dependent Utility: 
Extended EU representation

• Let us now allow for the possibility that the 
monetary payoff under state 𝑠𝑠, 𝑥𝑥𝑠𝑠, is not a certain 
amount of money, but a random amount with 
distribution function 𝐹𝐹𝑠𝑠 ⋅ .

• Hence, all monetary outcomes arising from the 𝑆𝑆
states of world can be described as a lottery 𝐿𝐿 =
𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑆𝑆 .

• Given this “extended” definition of lotteries, we 
can then re-write the IA, as the “extended” IA.



State-Dependent Utility: 
Extended EU representation

• Extended IA: The preference relation satisfies 
the extended IA if, for any three lotteries 𝐿𝐿, 𝐿𝐿′, 
and 𝐿𝐿′′ and 𝛼𝛼 ∈ 0,1 , we have that  

𝐿𝐿 ≿ 𝐿𝐿′ iff
𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝐿𝐿′′ ≿ 𝛼𝛼𝐿𝐿′ + (1 − 𝛼𝛼)𝐿𝐿′′

• Hence, the “extended” IA is a mere extension of 
the standard IA to the case of “extended” 
lotteries 𝐿𝐿 = 𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑆𝑆 .



State-Dependent Utility: 
Extended EU representation

• Extended EU theorem: Suppose preferences 
relation satisfies continuity and the extended 
IA. Then we can assign a utility function 𝑢𝑢𝑠𝑠 �
for money in every state 𝑠𝑠 such that for any two 
lotteries 𝐿𝐿 = 𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑆𝑆 and 𝐿𝐿′ =
𝐹𝐹1′,𝐹𝐹2′, … ,𝐹𝐹𝑆𝑆′ we have

𝐿𝐿 ≿ 𝐿𝐿′ iff

�
𝑠𝑠

�𝑢𝑢𝑠𝑠 𝑥𝑥𝑠𝑠 𝑑𝑑𝐹𝐹𝑠𝑠 𝑥𝑥𝑠𝑠 ≥�
𝑠𝑠

�𝑢𝑢𝑠𝑠 𝑥𝑥𝑠𝑠 𝑑𝑑𝐹𝐹𝑠𝑠′ 𝑥𝑥𝑠𝑠



Appendix 5.2: 
Subjective Probability Theory



Subjective Probability Theory

• So far we were assuming that probabilities 
were objective and observable. 

• This is not the case in certain cases. People 
might instead hold probabilistic beliefs about 
the likelihood of a certain event: subjective 
probability.



Subjective Probability Theory

• Can we deduce subjective probability from 
actual behavior? Yes!

• Imagine a decision maker who prefers a 
gamble

($1 in state 1, $0 in state 2) ≿
($0 in state 1, $1 in state 2)

• If the value of money is the same across 
states, then he must be assigning a higher 
subjective probability to state 1 than to state 
2.



Subjective Probability Theory

• Let us start with some definitions. 
• First, we define state 𝑠𝑠 preferences, ≿𝑠𝑠, on 

state 𝑠𝑠 lotteries 𝐹𝐹𝑠𝑠 � by 𝐹𝐹𝑠𝑠 � ≿ 𝐹𝐹𝑠𝑠′ � if 

�𝑢𝑢𝑠𝑠 𝑥𝑥𝑠𝑠 𝑑𝑑𝐹𝐹𝑠𝑠(𝑥𝑥𝑠𝑠) ≥ �𝑢𝑢𝑠𝑠 𝑥𝑥𝑠𝑠 𝑑𝑑𝐹𝐹𝑠𝑠′(𝑥𝑥𝑠𝑠)

• Hence, the state preferences ≿1,≿2, … ,≿𝑆𝑆
on state lotteries 𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑆𝑆 are state 
uniform if 

≿𝑠𝑠=≿𝑠𝑠′ for any two states 𝑠𝑠 and 𝑠𝑠𝑠



Subjective Probability Theory

• That is, preferences over lotteries are state 
uniform if for any two states 𝑠𝑠 and 𝑠𝑠𝑠, the 
ranking of any two lotteries 𝐹𝐹𝑠𝑠 � and 𝐹𝐹𝑠𝑠′ �
coincides in both states, i.e.,

𝐹𝐹𝑠𝑠 � ≿ 𝐹𝐹𝑠𝑠′ � or 
𝐹𝐹𝑠𝑠′ � ≿ 𝐹𝐹𝑠𝑠 � or 
𝐹𝐹𝑠𝑠 � ~𝐹𝐹𝑠𝑠′ �



Subjective Probability Theory

• With state uniformity, 𝑢𝑢𝑠𝑠 � and 𝑢𝑢𝑠𝑠′ � can differ 
only up to an increasing linear transformation.

• That is, there is a utility function 𝑢𝑢 � such that
𝑢𝑢𝑠𝑠 � = 𝜋𝜋𝑠𝑠𝑢𝑢 � + 𝛽𝛽𝑠𝑠
𝑢𝑢𝑠𝑠′ � = 𝜋𝜋𝑠𝑠′𝑢𝑢 � + 𝛽𝛽𝑠𝑠′

for every state 𝑠𝑠 and 𝑠𝑠′, and for every 𝜋𝜋𝑠𝑠,𝜋𝜋𝑠𝑠′ > 0
and 𝛽𝛽𝑠𝑠,𝛽𝛽𝑠𝑠′ > 0.

• In words, the ranking between the expected 
utility of state 𝑠𝑠 and 𝑠𝑠′ remains unaffected.



Subjective Probability Theory

• Subjective probabilities EU theorem:
– Suppose that a preference relation satisfies continuity 

and the extended IA, and that preferences over 
lotteries are state uniform. 

– Then, there are subjective probabilities 
𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋𝑆𝑆 ≫ 0 and a utility function 𝑢𝑢 � on 

certain amounts of money, such that for any two lists 
of monetary amounts 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑆𝑆 and 
𝑥𝑥1′ , 𝑥𝑥2′ , … , 𝑥𝑥𝑆𝑆′ ,

𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑆𝑆 ≿ 𝑥𝑥1′ , 𝑥𝑥2′ , … , 𝑥𝑥𝑆𝑆′ iff

�
𝑠𝑠

𝜋𝜋𝑠𝑠𝑢𝑢𝑠𝑠 𝑥𝑥𝑠𝑠 ≥�
𝑠𝑠

𝜋𝜋𝑠𝑠𝑢𝑢𝑠𝑠 𝑥𝑥𝑠𝑠′



Subjective Probability Theory

• Intuition: a decision maker prefers the first list 
of monetary outcomes to the second if the 
“subjective” expected utility from the first list 
is larger than or equal to that from the second.

• The predictions of the subjective EU theorem 
are not necessarily satisfied in all experimental 
settings.
– Example: Ellsberg paradox



Subjective Probability Theory

• Ellsberg paradox: 
– An urn contains 300 balls: 100 are red and the 

remaining 200 are either blue or green.
– We first present the following two gambles to a 

group of students, asking each of them to choose 
either gamble A or B.
 Gamble A: $1000 if the ball is red
 Gamble B: $1000 if the ball is blue

– We next present the following two gambles to the 
same group of students, asking each of them to 
choose either gamble C or D. 
 Gamble C: $1000 if the ball is not red
 Gamble D: $1000 if the ball is not blue



Subjective Probability Theory
• Ellsberg paradox (continued):

– Common choices: people choose A to B, and C to D.
– But these choices violate subjective EU theory!
– We know that 

𝑝𝑝 Red = 1 − 𝑝𝑝(not Red)
𝑝𝑝 Blue = 1 − 𝑝𝑝(not Blue)

– If gamble A is preferred to B, then we must have
𝑝𝑝 Red 𝑢𝑢 $1000 > 𝑝𝑝 Blue 𝑢𝑢 $1000 ⟹

𝑝𝑝 Red > 𝑝𝑝 Blue
– And if gamble C is preferred to D, then we must have

𝑝𝑝 not Red 𝑢𝑢 $1000 > 𝑝𝑝 not Blue 𝑢𝑢 $1000 ⟹
𝑝𝑝 not Red > 𝑝𝑝 not Blue

– But the above two expressions are incompatible.



Appendix 5.3: 
Ambiguity and Ambiguity 

Aversion



Ambiguity and Ambiguity Aversion

• Alternative theories that account for the anomaly 
in the Ellsberg paradox:
1) expected utility theory with multiple priors (also 

referred to as maxmin expected utility)
2) rank-dependent expected utility (or Choquet

expected utility)
• Individuals have ambiguous (unclear) beliefs, 

rather than objective or subjective beliefs.
• Let 𝑓𝑓 denote an act 𝑓𝑓: 𝑠𝑠 → 𝑥𝑥 from the set of 

states to the set of outcomes.



Ambiguity and Ambiguity Aversion

• Maxmin expected utility (MEU):
– If subjects have too little information to form their 

priors, one could alternatively allow them to 
consider a set of priors.

– If an individual is uncertainty averse, he will 
choose lottery 𝑓𝑓 over another lottery 𝑔𝑔 if the 
former provides a higher expected utility than the 
latter according to his worst possible prior.



Ambiguity and Ambiguity Aversion

• Uncertainty aversion: Consider an individual 
who is indifferent between two lotteries 𝑓𝑓 and 
𝑔𝑔. Then, he is uncertainty averse if he weakly 
prefers the compound lottery 𝛼𝛼𝛼𝛼 + 1 − 𝛼𝛼 𝑔𝑔
to lottery 𝑓𝑓, where 𝛼𝛼 ∈ (0,1).
– Intuition: a decision maker who is uncertainty 

averse has a preference for mixing (or hedging), 
since the compound lottery becomes at least as 
valuable as either of the two lotteries alone.



Ambiguity and Ambiguity Aversion

• Certainty-independence: For any two lotteries 
𝑓𝑓 and 𝑔𝑔 and a constant act 𝑘𝑘 (i.e., a certain 
outcome or a lottery that remains constant 
across all states), the decision maker weakly 
prefers lottery 𝑓𝑓 to 𝑔𝑔 if and only if he prefers 
𝛼𝛼𝛼𝛼 + 1 − 𝛼𝛼 𝑘𝑘 to 𝛼𝛼𝑔𝑔 + 1 − 𝛼𝛼 𝑘𝑘 , where 𝛼𝛼 ∈
0,1 .
– Certainty-independence axiom relaxes the IA as it 

only requires that preferences over two lotteries 
to be unaffected when each lottery is mixed with a 
certain outcome 𝑘𝑘.



Ambiguity and Ambiguity Aversion

– A decision maker weakly prefers lottery 𝑓𝑓 to 𝑔𝑔 if 
and only if

min
𝑝𝑝∈𝐶𝐶

�
𝑆𝑆
𝑢𝑢 𝑓𝑓 𝑠𝑠 𝑑𝑑𝑑𝑑 𝑠𝑠 ≥ min

𝑝𝑝∈𝐶𝐶
�
𝑆𝑆
𝑢𝑢 𝑔𝑔 𝑠𝑠 𝑑𝑑𝑑𝑑 𝑠𝑠

– That is, the individual evaluates the expected utility 
of lotteries 𝑓𝑓 and 𝑔𝑔 according to each of his 
multiple priors 𝑝𝑝 ∈ 𝐶𝐶, and then selects the lottery 
that yields the highest of the worst possible 
expected utilities.



Ambiguity and Ambiguity Aversion

• Example:
– Consider a decision maker with Bernoulli utility 

function 𝑢𝑢 𝑥𝑥 = 𝑥𝑥, where 𝑥𝑥 ≥ 0 denotes monetary 
amounts.

– Assume that the decision maker faces two lotteries
𝐿𝐿𝐴𝐴 = $1, $100
𝐿𝐿𝐵𝐵 = ($3, $5)

– Also, assume that the decision maker’s priors are
𝑝𝑝𝐴𝐴, 1 − 𝑝𝑝𝐴𝐴 for 𝐿𝐿𝐴𝐴
𝑝𝑝𝐵𝐵, 1 − 𝑝𝑝𝐵𝐵 for 𝐿𝐿𝐵𝐵



Ambiguity and Ambiguity Aversion

• Example (continued):
– According to MEU, the decision maker chooses lottery 
𝐿𝐿𝐵𝐵 if

min
𝑝𝑝𝐵𝐵

[𝑝𝑝𝐵𝐵 3 + (1 − 𝑝𝑝𝐵𝐵) 5]

≥ min
𝑝𝑝𝐴𝐴

[𝑝𝑝𝐴𝐴 1 + (1 − 𝑝𝑝𝐴𝐴) 100]

– If the decision maker does not have any available 
information with which to update his priors, priors can 
take values 𝑝𝑝𝐴𝐴,𝑝𝑝𝐵𝐵 ∈ 0,1 .

– It is possible that in his most pessimistic belief, he 
receives the lowest monetary amount with probability 
one.



Ambiguity and Ambiguity Aversion

• Example (continued):
– Then, with argmin 𝑝𝑝𝐵𝐵 = 1,

min
𝑝𝑝𝐵𝐵

[𝑝𝑝𝐵𝐵 3 + (1 − 𝑝𝑝𝐵𝐵) 5] = 3

– Similarly, with argmin 𝑝𝑝𝐴𝐴 = 1,
min
𝑝𝑝𝐴𝐴

[𝑝𝑝𝐴𝐴 1 + (1 − 𝑝𝑝𝐴𝐴) 100] = 1

– Hence a decision maker with MEU preferences 
selects lotter 𝐿𝐿𝐵𝐵 because 3 ≥ 1.



Ambiguity and Ambiguity Aversion

• Choquet expected utility (CEU):
– Define beliefs with the use of capacities.
– A capacity is defined as a real-valued function 𝑣𝑣 �

from a subset of the state space 𝑆𝑆 to 0,1 , with 
the normalization 𝑣𝑣 ∅ = 0 and 𝑣𝑣 𝑆𝑆 = 1.

– If the capacity 𝑣𝑣 � satisfies monotonicity, 𝑣𝑣 𝐴𝐴 ≥
𝑣𝑣 𝐵𝐵 , where 𝐴𝐴 is a superset of 𝐵𝐵.

– We cannot use a standard integral over states 
since the capacity 𝑣𝑣 � does not correspond to our 
notion of beliefs.



Ambiguity and Ambiguity Aversion

– A decision maker weakly prefers 𝑓𝑓 to 𝑔𝑔 if the 
Choquet integrals satisfy

�
𝑆𝑆
𝑢𝑢 𝑓𝑓 𝑆𝑆 𝑑𝑑𝑑𝑑 𝑆𝑆 ≥ �

𝑆𝑆
𝑢𝑢 𝑔𝑔 𝑆𝑆 𝑑𝑑𝑑𝑑(𝑆𝑆)

– The CEU and MEU models are connected if we 
impose the uncertainty aversion axiom in CEU 
context. For that we need that capacity 𝑣𝑣 �
satisfies supermodularity, i.e.,

𝑣𝑣 𝐴𝐴 ∪ 𝐵𝐵 − 𝑣𝑣(𝐵𝐵) ≥ 𝑣𝑣 𝐴𝐴 ∪ 𝐶𝐶 − 𝑣𝑣(𝐶𝐶)
where 𝐶𝐶 is a subset of 𝐵𝐵, i.e., 𝐶𝐶 ⊂ 𝐵𝐵.



Ambiguity and Ambiguity Aversion

• Example:
– While the use of Choquet integrals is involved, the 

literature often uses “simple” capacities.
– A simple capacity on state space 𝑆𝑆 can be understood as a 

convex combination between two extreme capacities:
1. a standard probability weight on 𝐴𝐴, 𝑝𝑝 𝐴𝐴 ∈ 0,1 .
2. the “complete ignorance” capacity 𝑤𝑤, where 𝑤𝑤 𝑆𝑆 = 1 and 

𝑤𝑤 𝐴𝐴 = 0 for every 𝐴𝐴 ⊆ 𝑆𝑆.



Ambiguity and Ambiguity Aversion

• Example (continued):
– Formally, simple capacities are defined as

𝑣𝑣 𝐴𝐴 = 𝜆𝜆𝜆𝜆 𝐴𝐴 + 1 − 𝜆𝜆 𝑤𝑤 𝐴𝐴
for every 𝐴𝐴 ⊆ 𝑆𝑆 and where 𝜆𝜆 ∈ 0,1 .

– Parameter 𝜆𝜆 denotes the individual’s degree of confidence 
on 𝑝𝑝 𝐴𝐴 , while 1 − 𝜆𝜆 captures his degree of ambiguity 
about 𝑝𝑝 𝐴𝐴 .

– For further reading, see Haller (2000) and Aflaki (2013).



Ambiguity and Ambiguity Aversion
• Further reading:

– Choquet, G. (1953). Theory of capacities. Ann. Inst. Fourier (Grenoble) 5 131-
295.

– Dow, J. and S. Werlang. (1992). Uncertainty aversion, risk aversion, and the 
optimal choice of portfolio. Econometrica, (1), 197.

– Epstein, L. and T. Wang. (1994). Intertemporal Asset Pricing under Knightian
Uncertainty. Econometrica, (2), 283-322.

– Hansen, L., Sargent, T. (2001). “Robust Control and Model Uncertainty”. 
American Economic Review 91, 60-66.

– Machina, M. (2014). Handbook of the economics of risk and uncertainty (First 
edition). Elsevier.

– Mukerji, S. and J. Tallon (2004). Ambiguity aversion and the absence of wage 
indexation. Journal of Monetary Economics, (3), 653-670.

– Nishimura, K. and H. Ozaki. (2004). Search and knightian uncertainty. Journal 
of Economic Theory, (2), 299-333.

– Schmeidler, D. (1989). Subjective Probability and Expected Utility Without 
Additivity. Econometrica, 57, 571-587.

– Uppal, R. and T. Wang. (2003). Model Misspecification and 
Underdiversification. Journal of Finance, (6), 2465-2486.
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