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Simple, Compound, and
Reduced Lotteries



Simple Lotteries

Consider a set of possible outcomes (or
consequences) C.

The set C can include

— simple payoffs C € R (positive or negative)
— consumption bundles C € R"

Outcomes are finite (N elementsin C, n =
1,2,...,N)

Probabilities of every outcome are objectively
known

— p, for outcome 1, p, for outcome 2, etc.



Simple Lotteries

* Simple lottery is a list

L= (pl'pZJ . 'pN)

with p,, = 0 foralln and Y.Y_, p,, = 1, where
Dy, IS interpreted as the probability of
outcome n occuring.

* |In some books, lotteries are described
including the outcomes too.



Simple Lotteries

* Asimple lottery with 2
possible outcomes

 “Degenerated” Py g
probability pairs 1

— at (0,1), outcome 2
happens with certainty.

— at (1,0), outcome 1
happens with certainty.
e Strictly positive
probability pairs

— Individual faces some
uncertainty, i.e., p; +

p, =1

P




Simple Lotteries

 Asimple lottery with 3
possible outcomes (i.e.,
3-dim. simplex).

* |Intercepts represent
degenerated probabilities
where one outcome is
certain.

* Points strictly inside the
hyperplane connecting
the three intercepts
denote a lottery where
the individual faces
uncertainty.




Simple Lotteries

e 2-dim. projection of
the 3-dim. simplex

* Vertices represent the
Intercepts

* The distance from a
given point to the side
of the triangle
measures the
probability that the
outcome represented L=(prpsps)
at the opposite vertex
ocCcurs.

where x, +x, +x, =1




Simple Lotteries

* A lottery lies on one
of the boundaries of
the triangle:

— We can only
construct segments
connecting the
lottery to two of the
outcomes.

— The probability
associated with the
third outcome is zero.




Compound Lotteries

* Given simple lotteries
L, = (pf,pé‘, ...,p,’\‘,) fork=1,2,..,K

and probabilities a; = 0 with Y&_, a; = 1, then the
compound lottery (L{,L,, ..., Lg; &y, @5, ..., @) is the
risky alternative that yields the simple lottery L, with
probability a; fork = 1,2, ..., K.

— Think about a compound lottery as a “lottery of lotteries”:
first, | have probability a; of playing lottery 1, and if that
happens, | have probability p; of outcome 1 occurring.

— Then, the joint probability of outcome 1 is
pr=ai-pitag pi+-tag-pr



Compound and Reduced Lotteries

* Given that interpretation, the following result
should come at no surprise:

— For any compound lottery
(L{, Lo, ...,Lg; aq, a5, ..., ax) , We can calculate its
corresponding reduced lottery as the simple lottery
L = (pq,p,, ..., Py) that generates the same ultimate
probability distribution of outcomes.

* The reduced lottery L of any compound lottery
can be obtained by
L = alLl ~+ azLZ + -+ aKLK e A



Compound and Reduced Lotteries

Example 1:
— All three lotteries are equally likely
— P(outcomel)—— 1+— —+l =2
3 4 2
— P(outcome2) ==-0+=->4=.2=2
3 3 8 3 8 4
— P(outcome 3) ==-0+=-->4-.2=2
3 3 8 3 8 4
NE L =(1,0,0) 4

d«\é

Reduced Lottery

=13 Z(l_i_iJ 111
& * 47878 (gazq)

3Q]/3
1 33
L: Ty s v
’ (4 8 8)




Compound and Reduced Lotteries

* Example 1 (continued):

— Probability simplex of 3
the reduced lottery of
a compound lottery

— Reduced lottery L
assigns the same
probability weight to
each simple lottery.




Compound and Reduced Lotteries

 Example 2:
— Both lotteries are equally likely

Reduced Lottery

1 1+1 1 1
Outcome | —» — " —+——=—
1 1 1 1
22 22 2 Outcome 3— — -0+ —-—=—
111 1 2 22 4
Outcome2— —e—F4 —-(Q=—
22 2 4



Compound and Reduced Lotteries

* Example 2 (continued):

— Probability simplex of
the reduced lottery of .
a compound lottery




Compound and Reduced Lotteries

* Consumer is indifferent between the two compound
lotteries which induce the same reduced lottery

— This was illustrated in the previous Examples 1 and 2
where, despite facing different compound lotteries,
the consumer obtained the same reduced lottery.

* We refer to this assumption as the Consequentialist
hypothesis:

— Only consequences, and the probability associated to
every consequence (outcome) matters, but not the
route that we follow in order to obtain a given
consequence.



Preferences over Lotteries

* For a given set of outcomes C, consider the
set of all simple lotteries over C, L.

 We assume that the decision maker has a
complete and transitive preference relation =
over lotteries in L, allowing him to compare
any pair of simple lotteries L and L'.

— Completeness: For any two lotteries L and L',
either L = L' or L' Z L, or both.

— Transitivity: For any three lotteries L, L' and L"), if
LzL andL ZL" thenL = L".



Preferences over Lotteries

* Extreme preference for certainty:
— L = L' if and only if

max > max p.
nenN pn nenN pn

— The decision maker is only concerned about the
probability associated with the most likely
outcome.



Preferences over Lotteries

* Smallest size of the support:
— L = L' if and only if

supp(L) < supp(L)
where supp(L) = {n € N: p,,> 0}.

— The decision maker prefers the lottery whose
probability distribution is concentrated over the
smallest set of possible outcomes.



Preferences over Lotteries

* Lexicographic preferences:

— First, order outcomes from most preferred (outcome
1) to least preferred (outcome n).

— Then L = L', if and only if

p1> pq, OF
If py= p; and p,> p,, or
If p1=p; and p,= p3 and p3> ps3, or

— The decision maker weakly prefers lottery L to L' if

outcome 1 is more likely to occur in lottery L than in
lottery L'.

— If outcome 1 is as likely to occur in both lotteries, he
moves to outcome 2; and so on.



Preferences over Lotteries

* The worst case scenario:

— First, attach a number v(z) to every outcome z €
C, thatis, v(z) € R.

—Then L = L' if and only if
min{v(z): p(z) > 0} > min{v(z2): p'(z) > 0}

— The decision maker prefers lottery L if the lowest
utility he can get from playing lottery L is higher
than the lowest utility he can obtain from playing
lottery L'.



Preferences over Lotteries

e Continuity of preferences over lotteries:

— Continuity 1: For any three lotteries L, L', and L",
the sets

{ae[01]:al+(1—a)L' = L"} c[0,1] and
{a€e[01]:L" ZaL+ (1 —a)L'} c[0,1]
are closed.

— Continuity 2: if L > L', then there are
neighborhoods of L and L', B(L) and B(L"), such
that forall L, € B(L) and L, € B(L'), we have
L, > Ly,.



Preferences over Lotteries

* Small changes in the
probability 3
distribution of
lotteries L and L' do
not change the
preference over the  #¢)
two lotteries.




Preferences over Lotteries

 Example:

L_: cartrip + small prob. of dying

die for sure (p, =1)

\\ 1 \ib // 2
If L > L', then L, > Ly,.

stay at home (lottery L"). p, =1



Preferences over Lotteries

* The continuity assumption, as in consumer
theory, implies the existence of a utility
function U: L = R such that

Lz L ifandonlyif U(L) = U(L")

* However, we first impose an additional
assumption in order to have a more
structured utility function.

— The following assumption is related with
consequentialism: the Independence axiom.



Preferences over Lotteries

* Independence Axiom (IA): a preference

relation satisfies IA if, for any three lotteries L,
L',and L"”, and ¢ € (0,1) we have

L = L"if and only if
al+(1—a)l" Zal'+ (1 —a)L”

e |ntuition: If we mix each of two lotteries, L
and L', with a third one (L"), then the
preference ordering of the two resulting
compound lotteries is independent of the
particular third lottery .



Preferences over Lotteries

« [ = L' if and only if
al+(1—-—a)l" Zal'+ (1 —a)l”

al+(1-a)l"

aL'+(1-a)L"



Preferences over Lotteries

* Example 1 (intuition):
— The decision maker prefers lottery Lto L', L = L’

— Construct a compound lottery by a coin toss:
= play lottery L if the head comes up
= play lottery L"' if the tail comes up

— By IA,if L = L', then

SL+=L" 2L +=L"
2 2 2 2



Preferences over Lotteries

 Example 2 (violations of |A):
— Extreme preference for certainty
— Consider two simple lotteries L and L’ for which
L~L.
— Construct two compound lotteries for which

1L+1L 1L'+1L
[ [ ,-)(,_ [
2 2 2 2

—If L ~ L', then it must be that
max{pl' P2, ) pn} — max{p{, pé' "y prll}



Preferences over Lotteries

 Example 2 (violations of |A):

— Compound lottery %L + %L coincides with simple
lottery L.

— Hence, max{p4, p,, ..., P} is used to evaluate
lottery L.

— But compound lottery %L' + %L is a reduced
lottery with associated probabilities
1, 1 1 1
max{ipl + ipl’ ""ip" + Epn}
which might differ from max{p;, p;, ..., Py, }.



Preferences over Lotteries

 Example 2 (violations of IA, a numerical example):
— Consider two simple lotteries
L=1(040501), L'=(0.5,0,0.5
— Hence,
max{0.4,0.5,0.1} = 0.5 = max{0.5,0, 0.5}
implying that L ~ L.

1 1 .
— However, the compound lottery EL, + EL entails

probabilities
<0.4 +0.5 05+0 0.1+0.5

2 o2 2
implying that max{0.45, 0.25, 0.3} = 0.45.

) = (0.45,0.25,0.3)



Preferences over Lotteries

 Example 2 (violations of IA, a numerical example):
— Therefore,

max{0.4,0.5,0.1} = 0.5 > 0.45 = max{0.45, 0.25, 0.3}

andthus L = <L+ 2L =217 +11.
2 2 2 2

— This violates the IA, which requires

SL4-L~-L'4-L
2 2 2 2



Preferences over Lotteries

* Example 3 (violations of IA, “worst case scenario”):
— Consider L > L.

— Then, the compound lottery %L + %L does not need
to be preferred to %L’ + %L.

— Example:

= Consider the simple lotteries L = (1,3) and L' = (10,0),
with probabilities (py, p,) and (p3, p3), respectively.

= This implies
min{v(z): p(z) > 0} = 1 for lottery L
min{v(z):p'(z) > 0} = 0 for lottery L’
= Hence, L > L.



Preferences over Lotteries

* Example 3 (violations of IA, “worst case scenario”):

— Example (continued):

1 1., . (11 3
= However, the compound lottery EL + EL, is (— —),

2’2
whose worst possible outcome is %, which is preferred
to that of%L + %L, which is 1.

" Hence, despite L > L' over simple lotteries,
L=—L+-L<-L+-L,

which violates the IA.



Expected Utility Theory



Expected Utility Theory

* The utility function U: L — R has the expected
utility (EU) form if there is an assignment of

numbers (i, Uy, ..., Uy) to the N possible
outcomes such that, for every simple lottery L =

(p1, D2, ..., Pn) € L we have
U(L) = p1Uq + -4 PnyUN

— A utility function with the EU form is also referred to

as a von-Neumann-Morgenstern (vNM) expected
utility function.

— Note that this function is linear in the probabilities.



Expected Utility Theory

 Hence, a utility function U: L = R has the expected
utility form if and only if it is /inear in the probabilities,

l.e.,
K K
U (2 Okak) = 2 (047 U(Lk)
k=1 k=1

forany K lotteries L, € L,k = 1,2, ..., K, and
probabilities (a{, @5, ..., @x) = 0, where Zl,gzl a, = 1.

* Intuition: the utility of the expected value of the K
lotteries, U(Z’,ﬁzl akLk), coincides with the expected
utility of the K lotteries, Y x_, a, U(Ly).



Expected Utility Theory

* Note that the utility of the expected value of playing
the K lotteries is

U (Z;la"L"> = zn Uy, - (2 t pi‘i)

k

where ), ay pX is the total joint probability of
outcome n occurring.



Expected Utility Theory

* Note that the expected utility from playing the K
lotteries is

z;lak - U(Ly) = Zk Ay - (2 Un Pv’i)

n

where ¥, u,, p¥ is the expected utility from playing a
given lottery k.



Expected Utility Theory

 The EU property is a cardinal property:

— Not only rank matters, the particular number
resulting form U: L — R also matters.

* Hence, the EU form is preserved only under
increasing linear transformations (a.k.a. affine
transformations).

— Hence, the expected utility function U: £ = Ris
another vNM utility function if and only if

U(L) =BU(L) +y
forevery L € L, where § > 0.



Expected Utility Theory:
Representability

e Suppose that the preference relation < satisfies
rationality, continuity and independence. Then, =
admits a utility representation of the EU form.

* Thatis, we can assign a number u,, to every outcome
n =1,2,...,N in such a manner that for any two
lotteries

L = (pl' P2, "'JpN) and L, — (pi' pé »lev)
we have L = L' ifand only if U(L) = U(L"), or

N N
!/
S =Y vy
n=1 n=1

* Notation: u,, is the utility that the decision maker
assigns to outcome n. It is usually referred as the
Bernoulli utility function.



Expected Utility Theory:
Indifference Curves

* Let us next analyze the effect of the IA on
indifference curves over lotteries.

1) Indifference curves must be straight lines:
Recall that from the IA, L ~ L' implies that

al+(1—a)L ~al + (1 —a)L'
L

foralla € (0,1).




Expected Utility Theory:
Indifference Curves

3

fL~L",thenL~alL+(1-a)L'

- :

Straight indifference curves



Expected Utility Theory:
Indifference Curves

 Why indifference curves must be straight?

—We have that L ~ L', but L < %L+%L’.This is

equivalent to

1L+1L< 1L+1L'
2 2 2 2

— But from the IA we must have

L L+ L L L L+ L L
2 2 2 2
— Hence, indifference curves must be straight lines

in order to satisfy the IA.



Expected Utility Theory:
Indifference Curves

* Curvy indifference curves over lotteries are
incompatible with the IA

— The compound lottery %L + %L’ would not lie on
the same indifference curve as lottery L and L'.

— Hence, the decision maker is not indifferent
between the compound lotteries %L + %L and

“L+-L.
2 2



Expected Utility Theory:
Indifference Curves

3

Curvy indifference curve



Expected Utility Theory:
Indifference Curves

2) Indifference curves must be parallel lines:
If we have that L ~ L', then by the IA

1L+2L” 1L'+2L”
3 3 3 3
= Thatis, the convex combination of L and L’ with

a third lottery L’ should also lie on the same
indifference curve.

= This implies that the indifference curves must be
parallel lines in order to satisfy the IA.



Expected Utility Theory:
Indifference Curves

= Nonparallel indifference curves are incompatible
with the IA.
— If compound lotteries
IL+2L"and=L +
3 3 3
EL” lie on different

(nonparallel)
indifference curves,
then

1L+2L”< 1L’+2L”
3 3 3 3

which violates the IA.




Expected Utility Theory:

Violations of the IA:

— Despite the intuitive appeal of the IA, we
encounter several settings in which decision
makers violate it.

— We next elaborate on these violations.



Expected Utility Theory:
Violations of the IA

* Allais’ paradox:
— Consider a lottery over three possible monetary

outcomes:
$2.5min $500,000 S0

— First choice set:
L, =(0,1,0) and L =

— Second choice set:

B 89 , 10 . 90
L, =0, ’ 100"’ 100) and L 100’ ’100)

10 89 1)
100’100’ 100




Expected Utility Theory:
Violations of the IA

— About 50% students surveyed expressed L, > L} and
L > L,.

— These choices violate the IA.

— To see this, consider that the decision maker’s

preferences over lotteries have a EU form. Hence, L >
L7 implies

10 89 1
Ug > mu% +mu5 +mu0
— By the IA, we can add %uo — %u5 on both sides
89 89
Us + (muo —muS) >
10 89 1 89 89
muzs + mus + muo + <mu0 — mu5>



Expected Utility Theory:
Violations of the IA

— Simplifying
11 - 89 10 90
100 * 100~ 100 2 T 100 ©
EU of L, EUofL2

which implies L, > L.

— Did your own choices violate the IA?



Expected Utility Theory:
Violations of the IA

e Reactions to the Allais’ Paradox:

— Approximation to rationality: people adapt their
choices as they go.

— Little economic significance: the lotteries involve
probabilities that are close to zero and one.

— Regret theory: the reason why L, > L] is because
| didn’t want to regret a sure win of $500,000.

— Give up the IA in favor of a weaker assumption:
the betweenness axiom.



Expected Utility Theory:
Violations of the IA

 Machina’s paradox:
— Consider that
Trip to Barcelona > Movie about Barcelona > Home

— Now, consider the foIIowing two lotteries

99
1™ Y00’100’ ,0) and L, = (0,

1
"100’ 100)

— From the previous preferences over certain
outcomes, how can we know this individual’s
preferences over lotteries?

= Using the IA.



Expected Utility Theory:
Violations of the IA

— From T > M and the IA, we can construct the

compound lotteries

99T+ . M>99M+ . M
100 100 100 100

— From M > H and the IA, we have

— By transitivity,

S MMt ——H
100" 100 " 100" " 100

Ly L,
— Hence, L; > L,.




Expected Utility Theory:
Violations of the IA

— Therefore, for preferences over lotteries to be
consistent with the IA, we need L; > L,.

— Many subjects in experimental settings would rather
prefer L,, thus violating the IA.

— Many people explain choosing L, over L on
grounds of the disappointment they would
experience in the case of losing the trip to
Barcelona, and having to watch a movie instead.

= Similar to regret theory.



Expected Utility Theory:
Violations of the IA

 Dutch books:

— In the above two anomalies, actual behavior is
inconsistent with the IA.

— Can we then rely on the IA?

— What would happen to individuals whose
behavior violates the IA?

— They would be weeded out of the market because
they would be open to the acceptance of so-called
Dutch books, leading them to a sure loss of
money.



Expected Utility Theory:
Violations of the IA

— Consider that L > L'. By the IA, we should have
al+ (1 —a)L>al + (1 —-a)l
L
— If, instead, the IA is violated, then
L<alL+ (1—-a)l
— Consider an individual with these preferences, who
initially owns lottery L.
— If we offer him the compound lottery aL + (1 —
a)L', for a small fee Sx, he would accept such a

trade.




Expected Utility Theory:
Violations of the IA

— After the realization stage, he owns either L or L’

= [f L', then we offer L again for Sy.
= If L, then we offer al + (1 — a)L’ for Sy.

— Either way, he is at the same position as he started
(owning L or aL + (1 — a)L’), but having lost
Sx + Sy in the process.

— We can repeat this process ad infinitum.

— Hence, individuals with preferences that violate
the |A would be exploited by microeconomists
(they would be a “money pump”).



Expected Utility Theory:
Violations of the IA

* Further reading:

— “Developments in non-expected utility theory:
The hunt for a descriptive theory of choice under
risk” (2000) by Chris Starmer, Journal of Economic
Literature, vol. 38(2)

— Choices, Values and Frames (2000) by Nobel prize
winners Daniel Kahneman and Amos Tversky,
Cambridge University Press.

— Theory of Decision under Uncertainty (2009) by
Itzhak Gilboa, Cambridge University Press.



Theories Modifying
Expected Utility Theory

1) Weighted utility theory:
— The payoff function from playing lottery L is

V(L) = ) w;- u(x;)
where

_ gxpp(xy) _
Wi =3 gy M gL R
— The utility of outcome x; € C is weighted
according to:
a) its probability p(x;)
b) outcome x; itself through function g: C - R




Theories Modifying
Expected Utility Theory

— Example: Consider a lottery with two payoffs x; and x,
with probabilities p and 1 — p. Then, the weighted utility
IS
V(L) = wyu(xy) + wau(xy)

_ glx)p u(x,)
glx)dp +glx)(1—p) 1
g(x)(1 —p)
+ u(x,)

g(x)p + g(x2)(1 = p)
If g(x;) = g(x;) forany x; # x;, then

V(L) = pu(xy) + (1 — plulx,)
which is a standard expected utility function.



Theories Modifying
Expected Utility Theory

 The weighted utility theory relies on the same
axioms as expected utility theory, except for
the IA, which is relaxed to the “weak
independence axiom.”

— Weak independence axiom: if we have that

L,~L,, we can find a pair of probabilities & and o’
such that

al{+(1—a)l;~a'L, + (1 —a')L;

— The IA becomes a special caseif & = «'.



Theories Modifying
Expected Utility Theory

2) Rank dependent utility theory:

— First, rank the outcomes x4, x5, ..., x,, from worst (x;) to
best (x,)

— Second, apply a probability weighting function
w; = (p; + -+ pp) — T(Pig + -0+ pp)
wy, = 7(py)

where 1t(+) is a non-decreasing transformation function,
with m(0) = 0 and (1) = 1.

— Finally, a rank-dependent utility is

VL) = ) wi-ux)

xX€eC



Theories Modifying
Expected Utility Theory

— For a lottery with two outcomes, x; and x, where
X, > X1, the rank-dependent utility is

V(L) = w(p)ulxy) + (1 — W(P))u(xz)
where p is the probability of outcome x;.

— This model allows for different weight to be attached
to each outcome, as opposed to expected utility
theory models in which the same utility weight is
attached to all outcomes.



Theories Modifying
Expected Utility Theory

— Transformation function ()

(o) (o)
T T —
m(p) > p n(p)=p

np)=p
M <p |
0 D 0

Pessimistic (p)

Optimistic m(p)

E»
1[?



Theories Modifying
Expected Utility Theory

 Empirical evidence
suggests an S-shaped m(p),
transformation ] [
function. 5

* Intuition: individuals
are pessimistic in rare
outcomes (i.e., p < p),
but become optimistic
for outcomes they

have frequently 0 7P = b
encountered.



Theories Modifying
Expected Utility Theory

* The rank-dependent utility theory relies on the
same axioms as expected utility theory, except

for the IA, which is replaced by co-monotonic
independence.



Money Lotteries



Money Lotteries

e \WWe now restrict our attention to lotteries over
monetary amounts, i.e., C = R.

* Money is continuous variable, x € R, with
cumulative distribution function (CDF)

F(x) = Prob{y < x}forally € R



Money Lotteries

* A uniform, continuous CDF, F(x) = x
— Same probability weight to every possible payoff

\ F(x)=x

Uniform

Distribution
1/2

1/2 1



Money Lotteries

* A non-uniform, continuous CDF, F (x)

1/2

1/2 1



Money Lotteries

A non-uniform,
discrete CDF
F(.) A

[ 0ifx <1 1

1
7 ifx €[1,4) o

F(x) — 3 1/2

—ifx €[4,6) | o

N

L 1ifx>6 N



Money Lotteries

* If f(x) is a density function associated with
the continuous CDF F(x), then

F(x) =f f(t)dt

) A

~



Money Lotteries

* If f(x) is a density function associated with
the discrete CDF F(x), then

HOEDWIO

t<x
f(.) A

1/2

1/4




Money Lotteries

* We can represent simple lotteries by F(x).

 For compound lotteries:

— If the list of CDF’s F; (x), F,(x), ..., Fx(x)
represent K simple lotteries, each occurring with
probability a4, a,, ..., ag, then the compound
lottery can be represented as

K
F(x) = Ekzlaka(x)

— For simplicity, assume that CDF’s are distributed
over non-negative amounts of money.



Money Lotteries

— We can express EU as
EU(F) = [u(x)f(x)dx or [u(x)dF(x)

where u(x) is an assignment of utility value to every
non-negative amount of money.

— If there is a density function f(x) associated with
the CDF F(x), then we can use either of the
expressions. If there is no, we can only use the latter.

— Note: we do not need to write down the limits of
integration, since the integral is over the full range of
possible realizations of x.



Money Lotteries

—EU(F) is the mathematical expectation of the
values of u(x), over all possible values of x.

—EU(F) is linear in the probabilities
" |n the discrete probability distribution,

EU(F) = p1(uq) + pa(uy) + -+

— The EU representation is sensitive not only to the
mean of the distribution, but also to the variance,
and higher order moments of the distribution of
monetary payoffs.

" et us next analyze this property.



Money Lotteries

« Example: Let us show that if u(x) = fx? + yx, then
EU is determined by the mean and the variance alone.

— Indeed,

EU(x) = fu(x)dF(x) = j[ﬁxz + yx]dF (x)

=,8jx2dF(x)+ijdF(x)

- N -

E(x2) E(x)
— On the other hand, we know that
Var(x) = E(x?) — (E(x))2 =
E(x?) = Var(x) + (E(x))2



Money Lotteries

* Example (continued):
— Substituting E(x?) in EU(x),
EU(x) = BVar(x) + ,6’(E(x))2 + yE (x)
) BE(x?) }
— Hence, the EU is determined by the mean and the
variance alone.




Money Lotteries

* Recall that we refer to u(x) as the Bernoulli
utility function, while EU(x) is the vNM

function.
* We imposed few assumptions on u(x):
— Increasing in money and continuous
* We must impose an additional assumption:

—u(x) is bounded

— Otherwise, we can end up in relatively absurd
situations (St. Petersburg-Menger paradox).



Money Lotteries

e St. Petersburg-Menger paradox:

— Consider an unbounded Bernoulli utility function,
u(x). Then, we can always find an amount of money
Xy, such that u(x,,) > 2™, for every integer m.

— Consider a lottery in which we toss a coin repeatedly
until the tail comes up. We give a monetary payoff of
Xy, if the tail is obtained at the m*™ toss.

— The probability that the tail comes up in the mt" toss is
1 11 1 1

m times



Money Lotteries

— Then, the EU of this lottery is

© 1
FUG) = ) gmulen)

— But, because of u(x,,) > 2™, we have that
© 1 0 1
EU(x) = z u(x,,) = z —2™M
=),  Fmubm=z) o

m=1

which implies that this individual would be willing to pay
infinite amounts of money to be able to play this lottery.

— Hence, we assume that the Bernoulli utility function is
bounded.



Measuring Risk Preferences



Measuring Risk Preferences

An individual exhibits risk aversion if

fu(x)dF(x) <u fxdF(x)

for any lottery F(-)
Intuition:

— The utility of receiving the expected monetary value of playing
the lottery (right-hand side) is higher than...

— The expected utility from playing the lottery (left-hand side).
If this relationship happens with

a) =, we denote this individual as risk neutral

b) <, we denote him as risk averter

c) =, we denote him as risk lover.



Measuring Risk Preferences

* Graphical illustration:

— Consider a lottery with two equally likely outcomes, $1
and $3, with associated utilities of u(1) and u(3),
respectively.

— Expected value of the lottery is EV = % -1+ % - 3 = 2, with
associated utility of u(2).

— Expected utility of the lottery is %u(l) + %u(B).



Measuring Risk Preferences

* Risk averse individual
— Utility from the expected value of the lottery, u(2),
is higher than the EU from playing the lottery,
%u(l) + %u(B).

u(x) !

u(3) u(x)

u(2)

%uﬂ)+%u6)

u(l)ﬂwwmmmrw‘//ﬁ,




Measuring Risk Preferences

* Risk neutral individual

— Utility from the expected value of the lottery, u(2),
coincides with the EU from playing the lottery,

%u(l) + %u(B).

u(x) A u(x)

u(3)

1 1
Eu(l) +Eu(3) =u(2)

u(1) /




Measuring Risk Preferences

* Risk loving individual
— Utility from the expected value of the lottery, u(2),
is lower than the EU from playing the lottery,
%u(l) + %u(B).

u(x) 1 u()

u(3)

%u(l) + %u(:’a)
u(2)
u(l)




Measuring Risk Preferences

* Certainty equivalent, c(F,u):
— An alternative measure of risk aversion

— It is the amount of money that makes the
individual indifferent between playing the lottery
F(-), and accepting a certain amount c(F, u).

That is,
u(c(F,u)) = [u(x)dF(x) or ¥ u(x)f(x)

— c(F,u) is below (above) the expected value of the
lottery for risk averse (lover) individuals, and
exactly coincides for risk neutral individuals.



Measuring Risk Preferences

e Certainty equivalent for a risk averse individual

— c¢(F,u) is the amount of Yy
money (x) for which utility ) u(x)
is equal to the EU of the u)
lottery %uﬂ)%u(-”)

u(c(F,u)) = Eu(l) + Eu(3) R

— Risk premium (RP): the

amount that a risk-averse ]

person would pay to avoid S G 3

taking a risk: ! Risk premium
RP =EV —c(F,u) >0

c(F,u), Certainty Equivalent



Measuring Risk Preferences

e Certainty equivalent for a risk lover

— Individual would have
to be given an amount
of money above the
expected value of the
lottery in order to
convince him to “stop
playing” the lottery:

RP=EV —c(F,u) <0

u(x) A

u(3)

1

/ u(x)

5u(1)+%u(3)

Risk c( F ,u)
Premium



Measuring Risk Preferences

* Certainty equivalent for a risk neutral individual

— The certainty equivalent

c(F,u) coincides with ),
the expected value of u(3)
the lottery.

%u(l) + %u(3) =u(2)

— Hence,
RP=EV —c(F,u) =0 u) |




Measuring Risk Preferences

* Probability premium, mt(x, &, u):
— An alternative measure of risk aversion

— It is the excess in winning probability over fair
odds that makes the individual indifferent
between the certainty outcome x and a gamble
between the two outcomes x + € and x — ¢:

u(x)
= B + (x, ¢, u)] ulx +¢) + E —n(x, ¢, u)] u(x —¢)

— Intuition: Better than fair odds must be given for
the individual to accept the risk.



Measuring Risk Preferences

* The “extra probability” m that is needed to make the
EU of the lottery coincides with the utility of the
expected lottery:

u(2) = E + n] u(3) + E - n] (1)

U() A
v |~ =% U(.)
- \
i \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
1
3

1 1 U2 == — oo e
—+x (u(3)+| ——x |u(l -
(IRPIERPR v

1 1
511(3) + Eu(l) U

) |- @
|
|
|
|
|
}

1



Measuring Risk Preferences

* The following properties are equivalent:

1) The decision maker is risk averse.

2) The Bernoulli utility function u(x) is concave,
u'(x) < 0.

3) The certainty equivalent is lower than the expected
value of the lottery, i.e., c(F,u) < [ u(x)dF (x).

4) The risk premium is positive, RP = EV — c(F,u) >
0.

5) The probability premium is positive for all x and &,
i.e., m(x,&g,u) = 0.



Measuring Risk Preferences

* Arrow-Pratt coefficient of absolute risk aversion:
uII (x)
7,'A('X') - u,(x)

— Clearly, the greater the curvature of the utility function,
u'’(x), the larger the coefficient 1, (x).

— But, why do not we simply have r,(x) = u’' (x)?

* Because it will not be invariant to positive linear
transformations of the utility function, such as v(x) = Bu(x).
Thatis, v"'(x) = Bu’'(x) is affected by the transformation, but
the above coefficient of risk aversion is unaffected.

() = U u'(x)
4 pu'(x) ~ u'(x)




Measuring Risk Preferences

* Example (CARA utility function).

— Take u(x) = —e~%* where a > 0. Then
) u'’ (x) —a‘e
ra(x) = — = — =aqa
4 u' (x) ae~ax

which is constant in wealth x.

— The literature refers to this Bernoulli utility
function as the Constant Absolute Risk Aversion
(CARA).



Measuring Risk Preferences

 If r,(x) decreases as we increase wealth x, then
we say that such Bernoulli utility function
satisfies decreasing absolute risk aversion (DARA)
014 (x)
0x
* Intuition: wealthier people are willing to bear
more risk than poorer people.

— This is NOT due to different utility functions, but
because the same utility function is evaluated at
higher/lower wealth levels.

<0




Measuring Risk Preferences

e A sufficient (but not necessary) condition for
DARA is u'"'(x) > 0, that is,

=

ra(x) <0 -

u"(x) >0

* For example, when u(x) = —e™%*, its third-
order derivative is u'"’ (x) = a3e™% > 0.



Measuring Risk Preferences

* Arrow-Pratt coefficient of relative risk aversion:

ull(x)

u’(x)

— 1r(x) does not vary with the wealth level at which it is
evaluated.

rp(x) = —x - or 1p(x) =x-14(x)

— We can show that

drg(x) 014 (x)
ox Ti(? T 0x

— Therefore,
drg(x) 0 = 07y(x)

0
ox V& Tax °




Measuring Risk Preferences

e Example:
— Take u(x) = xP. Then
b(b —1)xP~2
rp(x) = —x - b1 =1-—0b
for all x.

— The literature refers to this Bernoulli utility
function as the Constant Relative Risk Aversion
(CRRA).



Measuring Risk Preferences

* Example (continued):

— Consider a CRRA ity
o . 10F L
utility fu ngtlon e
u(x) — x for b — 0.85 of risk aversion . :
1 11 j X
Yy o 01 x'
2’3" 4 | ;
— 1e(x) increases, ol
respectively, from0 o]
1 2 3 . |
to E’g’ Z’ maklng the I 7 T T R 1.‘0=M0neyx

utility function more
concave.



Measuring Risk Preferences

* A utility function u,(+) exhibits more strong risk aversion
than another utility function ug(+) if, there is a constant
A >0,

Uy (%1) > 7> uy (x3)
ug(x;) = up(xy)

* In addition, if x; = x5, the above condition can be re-
written as

uy (x1) S ug(x1)
uy(x1) — up(xg)
* Then, u,(+) also exhibits more risk aversion than ug(-).




Measuring Risk Preferences

* For two utility functions u; and u,, where u,
IS @ concave transformation of uq, the
following properties are equivalent:

1) There exists an increasing concave function ¢(-)

such that u,(x) = <p(u1 (x)) for any x. That is,
U, (+) is more concave than uq ().

2) 1a(x,uy,) = ry(x,uq) forany x.
3) c(F,u,) < c(F,uqy) forany lottery F(-).
4) m(x,&u,) = n(x, e ,u,) forany x and e.



Measuring Risk Preferences

5) Whenever u,(+) finds a lottery F () at least as
good as a riskless outcome X, then u,(-) also
finds such a lottery F(+) at least as good as .
That is

EU, = fuz(x)dF(x) > u,(x) =

EU, = ful(x)dF(x) > uq ()



Measuring Risk Preferences

Different degrees of risk
aversion

u,(+) and u,(+) are

evaluated at the same ., w-ww

wealth level x.

The same lottery yields a zu:
larger expected utility for
the individual with /ess

risk averse preferences,

EU, > EU,.

c(F,u,) < c(F,uy),
reflecting that individual

2 is more risk averse.

M(X) A

uy(x)

< — ur(x)




Measuring Risk Preferences

Prudence

Introduced by Kimball (1990).

It rl1<1easures an individual’s tendency to prepare for future
risks.

An individual is considered to be “prudent” if the third
derivative of his utility function is positive, i.e., u"’(x) > 0.

The formula for absolute prudence is:

u///(x)
ull(x)

Kji(x) = —

The more prudent the individual becomes, the more
precautionary saving will this individual prepare for.



Measuring Risk Preferences

Prudence
 The formula for relative prudence is given by

ulll(x)

Kn(x) = —x ()

* |t also measures the elasticity of concavity of the
marginal utility function, as follows:

dlogu' (x)
dlog x

Kr(x) =x-Ky(x) = —



Measuring Risk Preferences

 The Arrow-Pratt coefficient of absolute risk aversion, r,(x), and
the coefficient of relative prudence, Kx(x), are closely related.

* Differentiating 4 (x) yields

rrs

’ u' oy — (u// . uu)
ra(x) = — w2

2
ll”’ 1l”
AN

Dividing both sides by r,(x) = —u'' /u' yields

T[{(X)_ ' U’ N u'" 2 U’
T'A(X) _ u' u'’ u' u'’

s 1

u u

— ll” __- ll’
= —Ks(x) + 14(x)




Measuring Risk Preferences

* Hence, solving for K,(x), we obtain

ra(x)
Ta(x)

Ky(x) =14(x) —

* Further multiplying both sides by x,

1, (x)

14 (x)

e Since Kp(x) = x - K4(x) and rp(x) = x - 74 (x),

Ke) = ) = x- 20

x - Ky(x)=x-1r(x) —x-




Measuring Risk Preferences

* Example (CARA utility function).

— Take u(x) = —e~** wherea > 0.
— Then, the relative prudence is
0

KR(x)=x-a—xa=x-a=rR(x)

which coincides with relative risk aversion.



Measuring Risk Preferences

e Example:

— Take now u(x) = x?.

— Then ry(x) = % and rx(x) =1 — b, yielding a

relative prudence of
—(1 = b)/x?

(1-Db)/x

Krp(x)=(1-b) —x-

=1—-b+1
=2-b>

— implying that, in this case, Kr(x) > rp(x).



Measuring Risk Preferences

Cautiousness

e Cautiousness measures the individual’s tendency to hedge
against the downside risk of an investment.
 The formula for cautiousness is given by

and a ratio C(x) > 1 implies that Kr(x) > rp(x).

* Examples:
— The CARA utility function yields C(x) = 1.
— The CRRA utility function yields C(x) > 1.



Measuring Risk Preferences

Temperance

 Temperance measures the individual’s tendency to
reduce the total exposure to risks.
 The formula for temperance is

ullll(x)

T(x) =— w'" (x)

* An individual is deemed as “temperate” when the
fourth derivative of his utility function is negative,
e, u'""(x) <O.



Prospect Theory and Reference-
Dependent Utility



Prospect Theory

* Prospect theory: a decision maker’s total value from
a list of possible outcomes x = (x4, x5, ..., x;,) with
associated probabilities p = (p1, D3, ..., Py) IS

VD) = W) v

where
— w(p;) is a “probability weighting function”

— v(x;) is the “value function” the individual
obtains from outcome Xx;



Prospect Theory

* Three main differences relative to standard
expected utility theory:

* First, w(p;) #+ p;:
—if w(p;) > p;, individuals overestimate the
likelihood of outcome x;

—if w(p;) < p;, individuals underestimate the
likelihood of outcome x;

— if w(p;) = p;, the model coincides with standard
expected utility theory.



Prospect Theory

* Second, every payoff x; is evaluated relative to a
“reference point” x,, with the value function
v(x;), which is
— Increasing and concave, v''(x;) < 0, for all x; > x,,

* That is, the individual is risk averse for gains.

— Decreasing and convex, v''(x;) > 0, for all x; < x,

* That is, the individual is risk lover for losses.

— Extremes:
* if xo = 0, the individual is risk averse for all payoffs;
* if xp = +00, he s risk lover for all payoffs.



Prospect Theory

 Third, value function v(x;) has a kink at the
reference point x;.

— The curve becomes steeper for losses (to the left of
Xq) than for gains (to the right of x).
* Loss aversion:

* A given loss of Sa produces a larger disutility than a gain
of the same amount.



Prospect Theory

* Value function in prospect theory

v(x)

3

2

1

70



Prospect Theory

e Example:
— Consider as in Tversky and Kahneman (1992)

pB

- and v(x) = x“
[pP+(1-p)F|F
where0 < a<land0<f < 1.
* Note that this implies probability weighting,
but does not consider a value function with
loss aversion relative to a reference point.

w(p) =



Prospect Theory

* Example (continued):
— Depicting the probability weighting function

w(p) 4

08 |
06 |

04 |

f=1

N

£=0.2

L | L L L | L L L |
0.6 0.8 1.0

Y

£=0.5



Prospect Theory

e Example:

— A common value function is

 if x; = x¢, and

v(x;) = x;
= —A(—x;)% if x; < xg
where 0 < a < 1,and A = 1 represents loss
aversion.

e If A =1 the individual does not exhibit loss
aversion.



Prospect Theory

e Example:
* Average estimates A = 2.25and f = 0.88

 Common simplifications, assumea = =1
(which implies no probability weighting, and
linear value functions), to estimate A.



Prospect Theory

* Further reading:

— Nicholas Barberis (2013) “Thirty Years of Prospect
Theory in Economics: A Review and Assessment,”
Journal of Economic Perspectives, 27(1), pp. 173-96.

— R. Duncan Luce and Peter C. Fishburn (1991) “Rank
and sign-dependent linear utility models for binary
gambles.” Journal of Economic Theory, 53, pp. 75-100.

— Daniel Kahneman and Amos Tversky (1992) “Advances
in prospect theory: Cumulative representation of
uncertainty” Journal of Risk and Uncertainty, 5(4), pp.
297-323.

— Peter Wakker and Amos Tversky (1993) “An
axiomatization of cumulative prospect theory.”
Journal of Risk and Uncertainty, 7, pp. 147-176.



Reference-Dependent Utility

* |Individual preferences are affected by reference

points. Thus, gains and losses can be evaluated
differently.

* Consider a consumption vector x € R™ which is
evaluated against a n-dimensional reference
vector r € R™. Utility function is

u(x|r) = m(x) + n(x|r)
where n(xg ) = p(my(xx)) — my(r)

measures the gain/loss of consuming x;, units of
good k relative to its reference amount 77,.



Reference-Dependent Utility

 For lotteries with cumulative distribution
function F(x),

UF|r) = [ u(x|r)dF (x)
* For lotteries over the set of reference points

u(F|G) = | | u(x|r)dG (r)dF (x)



Reference-Dependent Utility

* Further reading:

— “Reference-Dependent Consumption Plans”
(2009) by Koszegi and Rabin, American Economic
Review, vol. 99(3).

— “Rational Choice with Status Quo Bias” (2005) by
Masatlioglu and Ok, Journal of Economic Theory,
vol. 121(1).

— “On the complexity of rationalizing behavior”
(2007) Apesteguia and Ballester, Economics
Working Papers 1048.



Comparison of Payoff
Distributions



Comparison of Payoff Distributions

* So far we compared utility functions, but not
the distribution of payoffs.

e Two main ideas:

1) F(-) yields unambiguously higher returns than
G (+). We will explore this idea in the definition
of first order stochastic dominance (FOSD);

2) F () is unambiguously less risky than G(-). We
will explore this idea in the definition of second
order stochastic dominance (SOSD).



Comparison of Payoff Distributions

* FOSD: F(-) FOSD G (+) if, for every non-decreasing
function u: R —» R, we have

fu(x)dF(x) > fu(x)dG(x)

* The distribution of monetary payoffs F(-) FOSD the
distribution of monetary payoffs G (-) if and only if
F(x)<G(x)orl—F(x)=1-G(x)
for every x.

* Intuition: For every amount of money x, the probability
of getting at least x is higher under F(-) than under

G(-).



Comparison of Payoff Distributions

* At any given outcome x, the probability of
obtaining prizes above x is higher with lottery F (-)
than with lottery G(-),i.e., 1 — F(x) > 1 — G(x).

A

- F(%)

\




Comparison of Payoff Distributions

 Example:
— Let us take lotteries F(:) and G(-) over discrete
outcomes.
| | | | >
$1  $2 $3 $4  $5 Dollars
A 1
6y & o o L1 o
B e ~

4 4 2

How can we know if F(+) FOSD G(-)?



Comparison of Payoff Distributions

* Example (continued):

— F(*) lies below lottery G(-). Hence, F(:) concentrates
more probability weight on higher monetary outcomes.

— Thus, F(+) FOSD G(+).
FO
1 .

G(.)

~—F()

3/4 "5 prob.

<
f— c—— c—— c—

172

1/4

1/4

|
1/4 | prob. |
|

$1 $2 $3 $4 $5 X



Comparison of Payoff Distributions

* Example (Binomial distribution):

— Consider the binomial distribution

N
F(x;N,p) = (p) p*(1 —p)N=>*

— where x € [0, N]. Assuming N = 100 and parameter p increasing from p = ito p = %
Then, F(x;100,1/2) FOSD F(x;100,1/4).

1.0
0.8
0.6
0.4

i
0.2 R

20 40 60 80 100



Comparison of Payoff Distributions

 We now focus on the riskiness or dispersion of a
lottery, as opposed to higher/lower returns of
lottery (FOSD).

* To focus on riskiness, we assume that the CDFs
we compare have the same mean (i.e., same
expected return).

* SOSD: F(:) SOSD G (+) if, for every non-decreasing
function u: R —» R, we have

fu(x)dF(x) > fu(x)dG(x)



Comparison of Payoff Distributions

 Example (Mean-Preserving Spread):
— Let us take lotteries F(+) and G () over discrete outcomes.

— Lottery G () spreads the probability weight of lottery F(+)
over a larger set of monetary outcomes.

— The mean is nonetheless unaltered (2.5).

— For these two reasons, we say that a CDF is a mean-
preserving spread of the other.

| | | | | }
| | | | |
1 %2 33 4§ Dollars
F() o ~ % 0 0
— v \ 2
¢y L L 1 1
4 4 4 4



Comparison of Payoff Distributions

* G(+)is amean-preserving spread of F(+), but
it is riskier than F(-) in the SOSD sense.

* Note that neither FOSD the other
— F(-) is not above/below G (-) for all x

F(.) A
1

F(.)

3/4

1/2

1/4

1
2

B
G(.)

«—

|

N | —

$1

$2

$3 $4 $5

)
Dollars



Comparison of Payoff Distributions

 Example (Elementary increase in risk):

— G (+) is an Elementary Increase in Risk (EIR) of
another CDF F(-) if G(+) takes all the probability
weight of an interval [x’, x""] and transfers it to
the end points of this interval, x’' and x"’, such
that the mean of the original lottery is preserved.

— EIR is a mean-preserving spread (MPS), but the

converse is not necessarily true:

=

EIR o MPS

— Hence, if G(+) is an EIR of F(+), then F(-) SOSD
G(-).



Comparison of Payoff Distributions

* Example (continued):
— both CDFs F(:) and .6,
G () maintain the
same mean. oo
— G () concentrates F(")\/
more probability at —
the end points of the }@

interval [x', x"'] than Areas of same

size

F().



Comparison of Payoff Distributions

* Hazard rate dominance: The hazard rate of
lottery F(x) is
f(x)

1—F(x)

— Intuition: It measures the instantaneous

probability of an event happening at time x given
that it did not happen before x.

HRp(x) =

— Example: a computer stops working at exactly x

—If HRz(x) < HR;(x), lottery F(x) dominates
G (x) in terms of the hazard rate.



Comparison of Payoff Distributions

— Since —HRg(x) can be expressed as

d
—HRp(x) = Eln(1 — F(x))
— Solving for F(x),

F(x) =1—exp (— foRF(t)dt>
0
— Then,
F(x) =1—exp (—j HRF(t)dt)
0

X
<1-—exp (—f HRG(t)dt> = G(x)
0
— Thus, HRr(x) < HR;(x) implies that F(x) FOSD G (x).



Comparison of Payoff Distributions

* Reverse hazard rate: The reverse hazard rate of
lottery F(x) is

f(x)

F(x)

— Intuition: It measures the probability that,

conditional on the realized payoff in the lottery

being equal or lower than x, the payoff you receive
is exactly x.

—If RHRz(x) = RHR;(x), lottery F (x) dominates
G (x) in terms of the reverse hazard sense.

RHR;(x) =



Comparison of Payoff Distributions

— Integrating both sides, we obtain

(0] (0/0) d
j RHR(t)dtzJ Eln(F(t)) dt

= InF () — InF(x) = —InF(x).

— where the last steps use F(o) = 1 and In(1) = 0. Solving for
F(x),we have

F(x) =exp (—f RHR(t)dt)
— Therefore, if RHRp(x) = I)iC’HRG (x), then
F(x) =exp (—j RHRF(t)dt> < exp (—f RHRG(t)dt) = G(x)

— which simplifies to F(x) < G(x).

— That is, RHR dominance implies FOSD dominance; but the converse
is not necessarily true.



Comparison of Payoff Distributions

* Likelihood ratio: The likelihood ratio of a
lottery F(x) is

160)

f(x)

for any two payoffs x and y, where y > x.

LRF —

— F(x) dominates G (x) in terms of likelihood ratio if

f(x) f )
g(x) = g(y)



Comparison of Payoff Distributions

* LR dominance implies HR dominance:

— Let us rewrite LR dominance as

gy) - f)
gx) — f(x)

— Then, for all x,

*g) “f)
——dy < ——d
fx 9= T
— Simplifying
1-G(x) < 1-F(x) or f(x) < g(x)
gx) — fx) 1-F(x) = 1-G(x)

which implies HRr(x) < HR;(x).



Comparison of Payoff Distributions

* Summary:

— LR dominance implies HR dominance
— HR and RHR dominance imply FOSD.



Appendix 5.1:
State-Dependent Utility



State-Dependent Utility

* So far the decision maker only cared about the

payoff arising from every outcome of the
lottery.

* Now we assume that the decision maker cares
not only about his monetary outcomes, but
also about the state of nature that causes
every outcome.

— That is, Ugtate 1(X) # Ugiate 2 (x) for given x.



State-Dependent Utility

* Let us assume that each of the possible monetary
payoffs in a lottery is generated by an underlying
cause (i.e., an underlying state of nature).

 Examples:

— The monetary payoff of an insurance policy is
generated by a car accident
= State of nature = {car accident, no car accident}

— The monetary payoff of a corporate stock is
generated by the state of the economy

= State of nature = {economic growth, economic
depression}



State-Dependent Utility

* Generally, let s € S denote a state of nature,
where S is a finite set.

* Every state s has a well-defined, objective
probability m, = 0.

* Arandom variable is function g: S — R, that
maps states into monetary payoffs.



State-Dependent Utility

* Examples (revisited):

— Car accident: the random variable assigns a
monetary value to the state of nature car
accident, and to the state of nature no accident.

Probability Monetary payoff

Car accident TMaccident  Damage + Deductible — Premium = $1,000

No car accident 7T accident Premium = -S50



State-Dependent Utility

* Examples (revisited):

— Corporate stock: the random variable assigns a
monetary value to the state of nature economic
growth, and to the state of nature economic

depression.
Probability Monetary payoff
Economic growth Torowth Dividends, higher price of shares = $250

Economic depression  Tgepression  NO dividends, loss if we sell shares = -$125



State-Dependent Utility

* Every random variable g(-) can be used to represent
lottery F(+) over monetary payoffs as

F(x) = 2 T

{s: g(s)=x}
where {s: g(s) < x} represents all those states of
nature s that generate a monetary payoff g(s) € R
below a cutoff payoff x.

* The random variable g(:) generates a monetary payoff
for every state of nature s € S, and since S is finite, we
can represent this list of monetary payoffs as

(xl, X9, ...,XS) (S Rf_

where x; is the monetary payoff corresponding to state
of nature s.



State-Dependent Utility

e Example:

— A random variable g(-)
describes the

Prob.

monetary outcome 1
associated to the four 3/4
states of nature § = 172
{1,2,3,4}. »

— QOutcomes are ordered
from low to high, i.e.,
xlsxzsxg SX4.



State-Dependent Utility

* Example (continued):
— Hence,

T
Py
}{
w
\—’
I
=
(U
_|_
=
N
_|_
=
w

I
N | =
T
Ny
_|_
-
I

F(x,)) =nmy+m,+n3+m,=1

* Disadvantage of F(x):

— For a given x, we cannot keep track of which
state(s) of nature that generated x.



State-Dependent Utility:
Extended EU representation

 We now have a preference relation = ranks
lists of monetary payoffs (x1, X5, ..., xs) € R2.

* Note the similarity of this setting with that in
consumer theory:

— Preferences over bundles then, preferences over
lists of monetary payoffs here.

— Since (xq, x5, ..., Xg) € R> specifies one payoff for
each state of nature, this list is also referred to as
contingent commodities.



State-Dependent Utility:
Extended EU representation

* Preference relation = has an Extended EU
representation if for every s € S, there is a function
us: R, — R (mapping the monetary outcome of state
S, X, into a utility value in R), such that for any two
lists of monetary outcomes (x4, X5, ..., xs) € R and
(x1, x5, ...,x¢) € RS,

(x4, X5, ey Xg) Z (%7, %5, ..., x3) iff

> () 2 ) s ()

S S
 The main difference with the previous sections is that
now the Bernoulli utility function is state-dependent,
u.(+), whereas in the previous sections it was state-
independent, u(-).



State-Dependent Utility:
Extended EU representation

* Graphical representation:

— First, at the “certainty line” the decision maker
receives the same monetary amount, regardless the
state of nature, x; = x,.

— Second, all the (x4, x,) pairs on a given ind. curve
satisfy mq - uq(xq) + 1y - uy(x,) = U
— Third, the upper contour set of an ind. curve that
passes through point (X, X, ) satisfy
Ty - Uqg(X1) + 75 - Up (X3)
> 1y - U (X1) + 15 - up (X3)
or, more generally, Y m u (xg) = D . moug ().



State-Dependent Utility:
Extended EU representation

* Graphical representation:

— Fourth, movement along a given ind. curve does
not change the decision maker’s utility level. Hence,
totally differentiating

.aul(fl) du,(X;)

T dx, + mo - dx, =0
L o, 1 2" " ox, 2
and re-arranging,
_ Ouq (1) o
% _ L oxy Ty Uy (%1)
dx; _ 0u,(X2) y * Uy (X2)
2 0x,

which represents the slope of the ind. curve,
evaluated at point (X, X,). This is really similar to
MRS.



State-Dependent Utility:
Extended EU representation

* Graphical representation:

— The slope of the ind.

curve at (f 1, .f 2) iS % a 45° —line(certainty line)
dx; - uq (%) o

dx, Ty - ué (x2)

(x,,x,) such that
7T, (X)) + 70,1, (X, )
> 7ru, (X)) + m,u, (X,)

7, (X)) + 7051, (X,) =1

— If the Bernoulli utility is =|
state-independent, i.e., |

U () = uyx(c) = = - g
us(+), then the slope is
dx; T

dx1 TTH



State-Dependent Utility:
Extended EU representation

* Example (Insurance with state-dependent
utility):
— Start from an initial situation of (w,w — D)
without insurance, where D is loss from accident.

— After insurance is purchased, the decision maker
gets a payment of z; in state 1, and z, in state 2,
where z; S 0and z, s 0,

(w+z,w—D+z,)
— Moreover, if the policy is actuarially fair, then its
expected payoff is zero,
M1Z1 + T2, =0



State-Dependent Utility:
Extended EU representation

* Example (continued):

— The budget lineis z, = ——2z4

(Accident) x
2

- {w+z,w=D+2z,): 7z +m,z, =0}

>
w X
(No Accident)



State-Dependent Utility:
Extended EU representation

* Without state dependency:

— Indifference curves are tangent to the budget line
at the certainty line, since the slope of the
indifference curve is — Z—:

— Hence, the decision maker would insure
completely since his consumption level is
unaffected by the possibility of suffering an

accident.



State-Dependent Utility:
Extended EU representation

* With state dependency:

— Indifference curves are NOT tangent to the budget
line at the certainty line.

* Example (continued):

— The decision-maker prefers a point such as
(x1,x5) to the certain outcome (X, ).

— That is, at (X, ) he prefers higher payoffs in state
1 than in state 2 if uy(x) > u;(x). Otherwise, he

would prefer higher payoffs in state 2 than in state
1.



State-Dependent Utility:
Extended EU representation

! . —
_ Ny uq (X)
— Note that u; (x) > u; (k) implies that u}(f) > 1
2
14 —
T4 U7 (X) T
and - —4+—F—=< ——2
T2 Uz (X) T
. 45° —line(certainty line),
4 Slope of Ind. Curve at =X
xlaxz) g




State-Dependent Utility:
Extended EU representation

* Let us now allow for the possibility that the
monetary payoff under state s, x, is not a certain
amount of money, but a random amount with
distribution function F,(+).

* Hence, all monetary outcomes arising from the S
states of world can be described as a lottery L =
(Fy, F,, ..., Fs).

* Given this “extended” definition of lotteries, we
can then re-write the IA, as the “extended” IA.



State-Dependent Utility:
Extended EU representation

* Extended IA: The preference relation satisfies
the extended IA if, for any three lotteries L, L',
and L' and a € (0,1), we have that

Lz L iff
al+(1—a)l" Zal’'+ (1 —a)l"

* Hence, the “extended” IA is a mere extension of
the standard IA to the case of “extended”
lotteries L = (Fy, F,, ..., Fs).



State-Dependent Utility:
Extended EU representation

» Extended EU theorem: Suppose preferences
relation satisfies continuity and the extended
IA. Then we can assign a utility function u(-)
for money in every state s such that for any two
lotteries L = (Fy, F,, ..., Fs) and L' =
(F{, F;, ..., F$) we have

Lz L' iff

> ( | us<xs>dFs<xs>) > ( | us<xs>dF;<xs))

S S



Appendix 5.2:
Subjective Probability Theory



Subjective Probability Theory

* So far we were assuming that probabilities
were objective and observable.

* This is not the case in certain cases. People
might instead hold probabilistic beliefs about
the likelihood of a certain event: subjective
probability.



Subjective Probability Theory

* Can we deduce subjective probability from
actual behavior? Yes!

* Imagine a decision maker who prefers a
gamble

(S1 in state 1, SO in state 2) =
(SO in state 1, S1 in state 2)

* |f the value of money is the same across
states, then he must be assigning a higher
subjective probability to state 1 than to state
2.



Subjective Probability Theory

Let us start with some definitions.

First, we define state s preferences, =, on
state s lotteries F,(+) by F,(+) = F/(+) if

f s () dFs (x) > f g (r) dFL (x)

Hence, the state preferences (=4, =5, ..., Z5)
on state lotteries (Fy, F5, ..., Fs) are state
uniform if

z =% for any two states s and s’



Subjective Probability Theory

* That s, preferences over lotteries are state
uniform if for any two states s and s’, the

ranking of any two lotteries F;(-) and F; (+)
coincides in both states, i.e.,

F() z K()or
F () z K()or
F()~Fs ()



Subjective Probability Theory

* With state uniformity, us(-) and ugs(-) can differ
only up to an increasing linear transformation.

e Thatis, there is a utility function u(-) such that
us(+) = mgu(:) + s
ug () = mgru(:) + By
for every state s and s’, and for every g, s > 0
and S, B > 0.

* |In words, the ranking between the expected
utility of state s and s’ remains unaffected.




Subjective Probability Theory

* Subjective probabilities EU theorem:

— Suppose that a preference relation satisfies continuity
and the extended IA, and that preferences over
lotteries are state uniform.

— Then, there are subjective probabilities
(14,75, ..., Ts) > 0 and a utility function u(-) on
certain amounts of money, such that for any two lists
of monetary amounts (x4, X5, ..., Xs) and
(x1, X3, o) X3),
(x1, %5, o, Xg) Z (X1, %3, ..., Xg) iff

> s ) 2 ) s (x2)

S S



Subjective Probability Theory

* Intuition: a decision maker prefers the first list
of monetary outcomes to the second if the
“subjective” expected utility from the first list
is larger than or equal to that from the second.

* The predictions of the subjective EU theorem
are not necessarily satisfied in all experimental
settings.

— Example: Ellsberg paradox



Subjective Probability Theory

* Ellsberg paradox:

— An urn contains 300 balls: 100 are red and the
remaining 200 are either blue or green.

— We first present the following two gambles to a
group of students, asking each of them to choose
either gamble A or B.

= Gamble A: $1000 if the ball is red
= Gamble B: $1000 if the ball is blue

— We next present the following two gambles to the
same group of students, asking each of them to
choose either gamble C or D.

= Gamble C: $1000 if the ball is not red
= Gamble D: $1000 if the ball is not blue



Subjective Probability Theory

* Ellsberg paradox (continued):
— Common choices: people choose A to B, and C to D.
— But these choices violate subjective EU theory!
— We know that
p(Red) = 1 — p(not Red)
p(Blue) = 1 — p(not Blue)
— If gamble A is preferred to B, then we must have
p(Red)u($1000) > p(Blue)u($1000) =
p(Red) > p(Blue)
— And if gamble Cis preferred to D, then we must have
p(not Red)u($1000) > p(not Blue)u($1000) =
p(not Red) > p(not Blue)
— But the above two expressions are incompatible.



Appendix 5.3:
Ambiguity and Ambiguity
Aversion



Ambiguity and Ambiguity Aversion

e Alternative theories that account for the anomaly
in the Ellsberg paradox:

1) expected utility theory with multiple priors (also
referred to as maxmin expected utility)

2) rank-dependent expected utility (or Choquet
expected utility)

* Individuals have ambiguous (unclear) beliefs,
rather than objective or subjective beliefs.

* Let f denote an act f:s = x from the set of
states to the set of outcomes.



Ambiguity and Ambiguity Aversion

 Maxmin expected utility (MEU):

— If subjects have too little information to form their
priors, one could alternatively allow them to
consider a set of priors.

— If an individual is uncertainty averse, he will
choose lottery f over another lottery g if the
former provides a higher expected utility than the
latter according to his worst possible prior.



Ambiguity and Ambiguity Aversion

* Uncertainty aversion: Consider an individual
who is indifferent between two lotteries f and
g. Then, he is uncertainty averse if he weakly
prefers the compound lottery af + (1 — a)g
to lottery f, where a € (0,1).

— Intuition: a decision maker who is uncertainty
averse has a preference for mixing (or hedging),
since the compound lottery becomes at least as
valuable as either of the two lotteries alone.



Ambiguity and Ambiguity Aversion

* Certainty-independence: For any two lotteries
f and g and a constant act k (i.e., a certain
outcome or a lottery that remains constant
across all states), the decision maker weakly
prefers lottery f to g if and only if he prefers
af + (1 —a)ktoag + (1 —a)k ,wherea €
(0,1).

— Certainty-independence axiom relaxes the IA as it
only requires that preferences over two lotteries

to be unaffected when each lottery is mixed with a
certain outcome k.



Ambiguity and Ambiguity Aversion

— A decision maker weakly prefers lottery f to g if
and only if

rgunf u(f(s))dp(s) > mmju(g(s))dp(s)

— That is, the individual evaluates the expected utility
of lotteries f and g according to each of his
multiple priors p € C, and then selects the lottery
that yields the highest of the worst possible
expected utilities.



Ambiguity and Ambiguity Aversion

e Example:

— Consider a decision maker with Bernoulli utility
function u(x) = \/x, where x = 0 denotes monetary
amounts.

— Assume that the decision maker faces two lotteries
L, = ($1,$100)
Lp = ($3,%5)

— Also, assume that the decision maker’s priors are
(Pa, 1 —py) for Ly
(pg, 1 — pg) for Lg



Ambiguity and Ambiguity Aversion

* Example (continued):
— According to MEU, the decision maker chooses lottery
Ly if
r%in[PB\/§ + (1 — pp)V5]
B

= rgin[pA\/T + (1 — pa)V100]

— |If the decision maker does not have any available
information with which to update his priors, priors can
take values (p4, pg) € [0,1].

— It is possible that in his most pessimistic belief, he
receives the lowest monetary amount with probability
one.



Ambiguity and Ambiguity Aversion

* Example (continued):
— Then, with argmin pg = 1,

min[ppy3 + (1~ p)V5] = V3

— Similarly, with argminp, = 1,

rgin[pA\/T + (1 —pa)V100] = 1

— Hence a decision maker with MEU preferences
selects lotter L because v3 > 1.



Ambiguity and Ambiguity Aversion

* Choquet expected utility (CEU):
— Define beliefs with the use of capacities.

— A capacity is defined as a real-valued function v(-)
from a subset of the state space S to [0,1], with
the normalization v(@) = 0 and v(S) = 1.

— If the capacity v(+) satisfies monotonicity, v(4) =
v(B), where A is a superset of B.

— We cannot use a standard integral over states

since the capacity v(-) does not correspond to our
notion of beliefs.



Ambiguity and Ambiguity Aversion

— A decision maker weakly prefers f to g if the
Choquet integrals satisfy

Ju(f(S))dv(S) > fu(g(S))dv(S)
S S

— The CEU and MEU models are connected if we
impose the uncertainty aversion axiom in CEU
context. For that we need that capacity v(-)
satisfies supermodularity, i.e.,

v(AUB) —v(B) 2v(AUu () —v(C)
where C is a subset of B, i.e., C C B.



Ambiguity and Ambiguity Aversion

e Example:

— While the use of Choquet integrals is involved, the
literature often uses “simple” capacities.

— A simple capacity on state space S can be understood as a
convex combination between two extreme capacities:
1. astandard probability weight on 4, p(4) € [0,1].

2. the “complete ighorance” capacity w, where w(S) = 1 and
w(4) = 0 forevery 4 C S.



Ambiguity and Ambiguity Aversion

* Example (continued):

— Formally, simple capacities are defined as
v(4) = p(4) + (1 - DYw(4)
for every A € S and where A € [0,1].

— Parameter A denotes the individual’s degree of confidence
on p(A4), while (1 — A) captures his degree of ambiguity
about p(A).

— For further reading, see Haller (2000) and Aflaki (2013).



Ambiguity and Ambiguity Aversion

* Further reading:

Choquet, G. (1953). Theory of capacities. Ann. Inst. Fourier (Grenoble) 5 131-
295.

Dow, J. and S. Werlang. (1992). Uncertainty aversion, risk aversion, and the
optimal choice of portfolio. Econometrica, (1), 197.

Epstein, L. and T. Wang. (1994). Intertemporal Asset Pricing under Knightian
Uncertainty. Econometrica, (2), 283-322.

Hansen, L., Sargent, T. (2001). “Robust Control and Model Uncertainty”.
American Economic Review 91, 60-66.

Machina, M. (2014). Handbook of the economics of risk and uncertainty (First
edition). Elsevier.

Mukeriji, S. and J. Tallon (2004). Ambiguity aversion and the absence of wage
indexation. Journal of Monetary Economics, (3), 653-670.

Nishimura, K. and H. Ozaki. (2004). Search and knightian uncertainty. Journal
of Economic Theory, (2), 299-333.

Schmeidler, D. (1989). Subjective Probability and Expected Utility Without
Additivity. Econometrica, 57, 571-587.

Uppal, R. and T. Wang. (2003). Model Misspecification and
Underdiversification. Journal of Finance, (6), 2465-2486.



	Advanced Microeconomic Theory
	Outline
	Simple, Compound, and Reduced Lotteries
	Simple Lotteries
	Simple Lotteries
	Simple Lotteries
	Simple Lotteries
	Simple Lotteries
	Simple Lotteries
	Compound Lotteries
	Compound and Reduced Lotteries
	Compound and Reduced Lotteries
	Compound and Reduced Lotteries
	Compound and Reduced Lotteries
	Compound and Reduced Lotteries
	Compound and Reduced Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Preferences over Lotteries
	Expected Utility Theory
	Expected Utility Theory
	Expected Utility Theory
	Expected Utility Theory
	Expected Utility Theory
	Expected Utility Theory
	Expected Utility Theory: Representability
	Expected Utility Theory: �Indifference Curves
	Expected Utility Theory: �Indifference Curves
	Expected Utility Theory: �Indifference Curves
	Expected Utility Theory: �Indifference Curves
	Expected Utility Theory: �Indifference Curves
	Expected Utility Theory: �Indifference Curves
	Expected Utility Theory: �Indifference Curves
	Expected Utility Theory: �
	Expected Utility Theory: �Violations of the IA
	Expected Utility Theory: �Violations of the IA
	Expected Utility Theory: �Violations of the IA
	Expected Utility Theory: �Violations of the IA
	Expected Utility Theory: �Violations of the IA
	Expected Utility Theory: �Violations of the IA
	Expected Utility Theory: �Violations of the IA
	Expected Utility Theory: �Violations of the IA
	Expected Utility Theory: �Violations of the IA
	Expected Utility Theory: �Violations of the IA
	Expected Utility Theory: �Violations of the IA
	Theories Modifying �Expected Utility Theory 
	Theories Modifying �Expected Utility Theory 
	Theories Modifying �Expected Utility Theory 
	Theories Modifying �Expected Utility Theory 
	Theories Modifying �Expected Utility Theory 
	Theories Modifying �Expected Utility Theory 
	Theories Modifying �Expected Utility Theory 
	Theories Modifying �Expected Utility Theory 
	Money Lotteries
	Money Lotteries
	Money Lotteries
	Money Lotteries
	Money Lotteries
	Money Lotteries
	Money Lotteries
	Money Lotteries
	Money Lotteries
	Money Lotteries
	Money Lotteries
	Money Lotteries
	Money Lotteries
	Money Lotteries
	Money Lotteries
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Measuring Risk Preferences
	Prospect Theory and Reference-Dependent Utility
	Prospect Theory
	Prospect Theory
	Prospect Theory
	Prospect Theory
	Prospect Theory
	Prospect Theory
	Prospect Theory
	Prospect Theory
	Prospect Theory
	Prospect Theory
	Reference-Dependent Utility
	Reference-Dependent Utility
	Reference-Dependent Utility
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Comparison of Payoff Distributions
	Appendix 5.1:�State-Dependent Utility
	State-Dependent Utility
	State-Dependent Utility
	State-Dependent Utility
	State-Dependent Utility
	State-Dependent Utility
	State-Dependent Utility
	State-Dependent Utility
	State-Dependent Utility
	State-Dependent Utility: �Extended EU representation
	State-Dependent Utility: �Extended EU representation
	State-Dependent Utility: �Extended EU representation
	State-Dependent Utility: �Extended EU representation
	State-Dependent Utility: �Extended EU representation
	State-Dependent Utility: �Extended EU representation
	State-Dependent Utility: �Extended EU representation
	State-Dependent Utility: �Extended EU representation
	State-Dependent Utility: �Extended EU representation
	State-Dependent Utility: �Extended EU representation
	State-Dependent Utility: �Extended EU representation
	State-Dependent Utility: �Extended EU representation
	State-Dependent Utility: �Extended EU representation
	Appendix 5.2: �Subjective Probability Theory
	Subjective Probability Theory
	Subjective Probability Theory
	Subjective Probability Theory
	Subjective Probability Theory
	Subjective Probability Theory
	Subjective Probability Theory
	Subjective Probability Theory
	Subjective Probability Theory
	Subjective Probability Theory
	Appendix 5.3: �Ambiguity and Ambiguity Aversion
	Ambiguity and Ambiguity Aversion
	Ambiguity and Ambiguity Aversion
	Ambiguity and Ambiguity Aversion
	Ambiguity and Ambiguity Aversion
	Ambiguity and Ambiguity Aversion
	Ambiguity and Ambiguity Aversion
	Ambiguity and Ambiguity Aversion
	Ambiguity and Ambiguity Aversion
	Ambiguity and Ambiguity Aversion
	Ambiguity and Ambiguity Aversion
	Ambiguity and Ambiguity Aversion
	Ambiguity and Ambiguity Aversion
	Ambiguity and Ambiguity Aversion

