
EconS 501 - Microeconomic Theory I1
Assignment #7 - Answer Key

1. Production and Externalities. According to some residents, a �rm�s production of
paper at Lewiston, Idaho, generates a smelly gas as an unpleasant side product. Let
c(y;m;w) denote the (minimum) input cost of producing y tons of paper and m cubic
meters of gas, where input prices are given by the vector w >> 0. Let p > 0 denote
the market price of paper. Assume that the cost function satis�es @c

@y
> 0 and @c

@m
< 0,

and that c(y;m;w) is strictly convex in y and m. Let stars � denote solutions and
assume throughout that the �rm produces positive amounts of paper y� > 0.

(a) Show that the cost function c(y;m;w) is concave in input prices, w.

� Fix two input price vectors w and w0 and consider their linear combination
w00 = �w + (1� �)w0, for any � 2 (0; 1). Let x (respectively, x0 and x00) be
the minimum cost bundle for input prices w (respectively, w0 and w00). By
cost minimization we have

c(y;m;w00) = �wx00 + (1� �)w0x00

� �wx+ (1��)w0x0

= �c(y;m;w) + (1� �)c(y;m;w0)

So c(y;m;w) is concave in input prices w.

(b) Setting a quota. Suppose that the government imposes a ceiling on gas emissions
such that m � m, i.e., a quota. Assuming that this constraint binds, write down
the �rm�s pro�t maximization problem with respect to y, and �nd necessary and
su¢ cient conditions for the �rm�s cost-minimizing production, y�,

� The pro�t maximization problem for the �rm is that of selecting an output
level y that solves

max
y

py � c(y;m;w)

subject to m 6 m
� If the constraint binds, m = m, then the �rst order condition with respect to
output, y, is

p =
@c(y�;m;w)

@y

that is, price equals marginal cost at the optimum. Note that the constraint
will be binding, i.e., m = m. Otherwise, the �rm would be able to further
increase output and its associated pro�ts.

(c) Comparative statics. Under which condition on the cost function c(y;m;w) can
we guarantee that an increase in the ceiling on gas emissions, m, produces a raise
in the �rm�s cost-minimizing production, y�, i.e., @y

�

@m
> 0?
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� Di¤erentiating the above expression again with respect to m, we obtain

0 =
@2c(y�;m;w)

@y2
@y�

@m
+
@2c(y�;m;w)

@m@y

and rearranging we obtain the usual expression of the implicit function the-
orem,

@y�

@m
= �

@2c(y�;m;w)
@m@y

@2c(y�;m;w)
@y2

� Since the cost function c(�) is strictly convex in output y, the denominator
is positive. Hence, a necessary and su¢ cient condition for @y�

@m
> 0 is that

@2c(y�;m;w)
@m@y

< 0, i.e., an increase in the pollution ceiling, m, reduces the mar-
ginal cost of production. As long as this (relatively reasonable) condition
holds, an increase in the pollution ceiling m would induce the �rm to increase
production, i.e., @y

�

@m
> 0.

(d) Emission fee. Suppose now that the government abandons its emissions ceiling
and replaces it with a tax t > 0 on gas emissions. Thus, the new cost of producing
(y;m) is given by c(y;m;w) + tm. Show that maximized pro�ts are convex in t,
and that the �rm�s choice of pollution decreases in the pollution tax, i.e., @m

�

@t
� 0.

� The pro�t maximization problem for the �rm can now be written as selecting
its output level and pollution to solve

max
y;m

py � c(y;m;w)� tm

� Suppose (y;m), (y0;m0) and (y00;m00) maximize pro�ts for tax levels t, t0 and
t00, respectively, where t00 = �t + (1 � �)t0 for any � 2 (0; 1). By pro�t
maximization it follows that

�(p;w; t) = py � c(y;m;w)� tm � py00 � c(y00;m00;w)� tm00, and

�(p;w; t0) = py0 � c(y0;m0;w)� t0m0 � py00 � c(y00;m00;w)� t0m00

Hence, the linear combination of pro�t functions �(p;w; t) and �(p;w; t0)
yields

��(p;w; t) + (1� �)�(p;w; t0)
� py00 � c(y00;m00;w)� [�t+ (1� �)t0]m00

= py00 � c(y00;m00;w)� t00m00 = �(p;w; t00)

Then the pro�t function �(p;w; t) is convex in the tax level t. Intuitively,
since pro�ts are strictly decreasing in the emission fee t, the maximal pro�t
that the �rm can obtain from a linear combination of fees t and t0, i.e.,
t00 = �t + (1� �)t0, is lower than the linear combination of pro�ts when the
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�rm faces either a fee t or t0; as �gure 1 depicts.

Figure 1. Convexity of pro�t function �(p; w; t).

� Let x and x0 be the input vectors for the pro�t-maximizing plans y and y0
associated with taxes t and t0, respectively. By pro�t maximization,

�(p;w; t) = py �wx�tm � py0 �wx0 � tm0

and rearranging,

�p(y0 � y) +w(x0 � x) + t(m0 �m) � 0 (1)

Similarly for tax level t0,

�(p;w; t0) = py0 �wx0�t0m0 � py �wx� t0m

and rearranging,

p(y0 � y)�w(x0 � x)� t0(m0 �m) � 0 (2)

Hence, by adding inequalities (1) and (2), we obtain

(t0 � t)(m0 �m) � 0

which means that the �rm�s choice of pollution level, m, decreases as the tax
t increases, or in di¤erential terms

@m�

@t
� 0:

2. Regulating externalities under incomplete information. Consider a setting
where a regulator does not observes the marginal pro�ts that a polluting �rm obtains
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from emitting additional pollution, but observes the damage that such additional pol-
lution causes on consumers. In particular, suppose that the �rm�s marginal bene�t
from an additional unit of pollution, h, is

@�(h; �)

@h
= � � bh+ �,

and that the marginal utility from an additional unit of pollution for the consumer is

@�(h; �)

@h
= 
 � ch+ �,

where � is a random variable with expectation E[�] = 0, and strictly positive real-
izations, i.e., � > 0. Parameters b, c and 
 are also strictly positive by de�nition,
i.e., b; c; 
 > 0. In this exercise, we will �rst determine which is the best quota and
emission fee that the regulator can design given that he operates under incomplete
information. Afterwards, we will evaluate the welfare that arises under each of these
policy instruments, to determine which is better from a social point of view.

(a) Setting a quota. In this incomplete information setting, determine which is the
best quota bh� that a social planner can select in order to maximize the expected
value of aggregate surplus.

� The �rm must produce an output level exactly equal to the quota. The social
planner determines the optimal quantity ĥ� by choosing the value of h that
maximizes the expected value of aggregate surplus (since the social planner
does not know the precise realization of parameter �),

max
ĥ
�(h; �) + E�[�(h; �)]

And taking �rst order condition with respect to h, we obtain

@�(ĥ�; �)

@h
+ E�

"
@�(ĥ�; �)

@h

#
� 0

We can now substitute the functional forms for the marginal bene�t for con-
sumers, @�(h;�)

@h
, and the marginal pro�ts for the �rm, @�(h;�)

@h
, obtaining


 � cĥ� + � + � � bĥ� + E[�] � 0:

Using E[�] = 0, we can solve form ĥ� to have

ĥ� � 
 + � + �

c+ b
, with equality for ĥ� � 0

(b) Setting an emission fee. Find the best tax t� that this social planner can set under
the context of incomplete information described above.
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� Given a tax t�, the �rm maximizes pro�ts. That is, it chooses the level of h
that maximizes its pro�ts (net of tax payments), as follows

max
h
�(h; �)� th

The �rm, hence, takes �rst order condition with respect to h, yielding

@�(h; �)

@h
� t = 0

And since we know that @�(h;�)
@h

= � � bh + � by de�nition, the above �rst
order condition becomes ��bh+��t = 0. Solving for h, we obtain the �rm�s
pro�t-maximizing externality h(t; �), as a function of the tax rate t and its
�type��, as follows

h(t; �) =
� + � � t

b

Importantly, note that h(t; �) describes the �rm�s �reaction function�(or �best
response function�) after observing that the regulator imposes a particular
tax rate t: Provided this best response function, we can now �nd the optimal
tax that the social planner imposes, anticipating the �rm�s best response
function, as follows

max
t�
�(h(t; �); �) + E[�(h(t; �); �)]

(where note that, rather than writing a general level of h, we wrote the level
of h that the �rm optimally chooses in the second stage, after observing the
tax rate t imposed by the regulator in the �rst stage). Taking �rst order
conditions with respect to h, yields

�@�(h(t; �); �)
@h

� @h(t; �)
@t

= E

�
@�(h(t; �); �)

@h
� @h(t; �)

@t

�
(note that we use the chain rule). Intuitively, the regulator equals the mar-
ginal disutility of additional pollution to consumers (which he can perfectly
asses), as represented in the left-hand side of the equality; and the expected
marginal pro�ts from additional pollution for the �rm (which he cannot per-
fectly observe), represented in the right-hand side of the above expression.

� Since h(t; �) = �+��t
b

then the derivative @h(t;�)
@t

= �1
b
is a constant, that can

be taken out of the expectation operator. That is,

�@�(h(t; �); �)
@h

� @h(t; �)
@t

=
@h(t; �)

@t
E

�
@�(h(t; �); �)

@h

�
Therefore, we can cancel out the @h(t;�)

@t
term on both sides of the equality,

which yields

�@�(h(t; �); �)
@h

= E

�
@�(h(t; �); �)

@h

�
:
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Substituting the functional form of our marginal bene�t and marginal pro�t
functions, the above �rst-order condition becomes:

�
 + c � h(t; �)� � = � � b � h(t; �) + E[�]

Recalling that E[�] = 0, and that h(t; �) = �+��t
b
, the above expression can

be simpli�ed to

�
 + c
�
� + � � t

b

�
� � = � � b

�
� + � � t

b

�
and solving for t, we �nd a fee

t� = � +
�c� b(
 + �)

b+ c
:

(c) Policy comparison. Compare the emission fee and the quota in terms of their as-
sociated deadweight loss. Under which conditions an uninformed regulator prefers
to choose the emission fee?

� We need to compare the expected di¤erence in losses in order to determine
when a tax or a quota instrument is better. Figure 2 illustrates the welfare
loss associated to tax t�, which induces an externality level of h(t�; �).

Figure 2. Setting an emission fee under incomplete information.

The �gure considers that the regulator sets a tax based on the certain mar-
ginal disutility from the externality and the expected marginal pro�t. How-
ever, the realization of parameter � implies that the real and expected mar-
ginal pro�ts do not coincide, thus giving rise to a welfare loss associated to
an imprecise tax, i.e., due to the regulator�s imprecise information.
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� While in the case of imposing a quota, bh�, �gure 3 illustrates the associated
welfare loss.

Figure 3. Setting a quota under incomplete information.

� Welfare loss from the fee. In order to compute the welfare loss from the tax,
WLt, we �rst need to �nd the socially optimal level of externality, h0, given
a realization �. In particular, h� solves

�
 + cho + � = � � bho + �

this yielding a socially optimal quota (if the regulator was perfectly informed)
of ho = �+
+���

b+c
. Moreover, the emission fee t� = � + �c�b(
+�)

b+c
induces an

externality level of

h(t�; �) =
� + � + t�

b
=
� + � +

�
� + �c�b(
+�)

b+c

�
b

=
� + 
 + �

b+ c
:

Finally, we need to evaluate the marginal disutility function�@�
@h
= �
+ch+�

at h(t�; �) = �+
+�
b+c

, which yields

�
 + ch(t�; �)� � = �
 + c� + 
 + �
b+ c

� �.
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Hence, the WLt is given by the area of the shaded triangle in �gure 3,

WLt =
1

2
[h(t�; �)� ho] � [(�
 + ch(t�; �)� �)� t�]

=
1

2

�
� + 
 + �

b+ c
� � + 
 + � � �

b+ c

�
���

�
 + c� + 
 + �
b+ c

� �
�
�
�
� +

�c� b(
 + �)
b+ c

��
which can be simpli�ed to

WLt =
(� � 2�) [2c (� + 
 + �) + �(b+ c)]

2(b+ c)2

� Welfare loss from the quota. If, in constraint, the regulator uses a quota ofbh� = 
+�+�
b+c

, then we �rst need to evaluate the real marginal pro�ts of the
quota, that is

� � bbh� + � = � � b(
 + � + �)
b+ c

+ �:

Second, we need to evaluate the expected marginal pro�t, � � bh + E[�] =
�� bh, at the quota bh�, i.e., �� b
+�+�

b+c
. Therefore, the welfare loss from the

quota is the area of the shaded triangle in �gure 4. That is,

WLq =
1

2
(ho � bh�) ��� � b(
 + � + �)

b+ c
+ �

�
�
�
� � b(
 + � + �)

b+ c

��
which simpli�es to

WLq =
1

2
(ho � bh�) � � = �2

2(b+ c)

� Comparing welfare losses. Comparing WLt and WLq, we obtain that the
di¤erence WLt �WLq is

WLt �WLq =
(� + 
)c� b�� � 2c�(� + 
 + �)

(b+ c)2

and solving for � yields that WLt > WLq if and only if b < b, where

b � c(� + 
)

�
� 2c(� + 
 + �)

�
:

Hence, for all b < b, the emission fee generates a larger welfare loss than the
quota, thus implying that the quota is preferred. For illustrative purposes,
�gure 4 plots cuto¤ b evaluated at � = 
 = 1

2
, � = 1

4
and � = 1, thus becoming
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b = 3c
2
(Other parameter values yield similar results.)

Figure 4. Policy comparison.

In particular, (b; c)�pairs below cuto¤ b (shaded area) illustrate settings in
which the quota generates a lower welfare loss, thus becoming preferred by the
uninformed regulator. In this setting, the marginal damage function (mar-
ginal pro�t function) is very sensitive (relatively insensitive, respectively) to
additional amounts of the externality, i.e., further units of pollution are very
damaging for consumers. The converse argument applies to (b; c)�pairs above
cuto¤ b (unshaded area), where now marginal pro�ts are relatively sensitive
(i.e., rapidly increase) if the �rm is allowed to increase pollution. Summariz-
ing, for a given elasticity of the marginal pro�t function at the socially op-
timal level of the externality, the quota (emission fee) performs better when
the marginal damage function is relatively inelastic (elastic, respectively).2

2For more details about the welfare properties of emission fees and quotas under contexts in which the
regulator is imperfectly informed, see Weitzman (1974). For an application of Weitzman�s results to a setting
with marginal pro�t functions and marginal damage functions are linear (as in this exercise), see Mas-Colell,
Whinston and Greene (1995).
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