EconS 501 - Microeconomic Theory I
Midterm exam #2 - Answer key

1. Gross Substitutes. Consider an economy with two individuals, Amelia and Bernardo,
with utility functions

u?(z?,y*) = min{z?,2y*} for Amelia, and
uP (2P yP) = min{227, 4"} for Bernardo,
and initial endowments are given by e? = (1,0) for Amelia and e® = (0,1) for

Bernardo.

(a) Find the Walrasian demands of each individual.

o Amelia. The UMP of Amelia is
Ao A
2
z?,ﬁ};o min{z", 2y~ }

subject to pyxt + pyyA < Dz

since she only owns one unit of good x, e = (1,0) the market value of her
resources (as captured in the right-hand side of the budget constraint) is p,.
As she would consume (24, ) pairs at the kink of her L-shaped indifference
curves, optimal consumption bundles satisfy z4 = 2y4. Plugging 4 = 2y
into her budget line, p,2* + p,y? = p,, yields

e (2y") + oy = pa
and solving for y*, we obtain Amelia’s Walrasian demand of good ¥

A — px
2pe + py

while her demand for good x is

A A — 2pz
2ps + py

e Bernardo. Similarly, Bernardo’s utility maximizing bundles (27, y?) satisfy
22 = yP (bundles at the kink of his indifference curve) and p,z” +p,y® = p,
(budget line since he only owns one unit of good y). Simultaneously solving
for % and y? yields

B Py B 2py

= and y” = ——"—
Dz + 2py Dx + 2py

(b) Find the excess demand functions, z,(p., py) and 2z, (ps, py)-



e The excess demand for good z is

2D Dy PPy — (py)?
Ze\Pxzs Py) = + —-1-0=
(pe: ) 2p. +py Do+ 2py (2pz + py) (P2 + 2py)

while that of good v is

Pz 2py pxpy - (p$)2
PP + —0-1=
( y) 2p, + Py Pz + 2py (2pm + py)<pm + 2py)

(c) Check that Walras’ law holds.

e In order to check that p - z(p) = 0, we need

papy — (py)? PPy — (p2)?
b <(2px + py) (P + 2py)) TPy <(2px + py) (P + pr))
(p:v)zpy - pw<py>2 +p:c(py)2 - (p:c)2py

(2pz + py) (P2 + 2py)

przx(pra py) + pyzx(pmv py) =

=0

thus confirming Walras’ law.

(d) Check if goods are gross substitutes, i.e., for any two goods k # j where k,j =
{z,y} their excess demand functions satisfy % > 0.
J

o Using 2,(ps, py), we find

azx(px,py) _ 2(px)3 - 4<px)2py - 7pa:(py)2
Ipy (2(p2)? + 2(py)? + 5papy)?

which is positive if the numerator is positive, that is,

2p,
~ 0.32p,
Py < T35 P

Similarly, using z,(p., py), we find that

8zy(p:c7py) _ 2(py) — 4p,(p ) - 7(pcc) Dy
Ops (2(p2)? + 2(py)? + 5papy)?

which is positive if the numerator is positive, that is,

py>5<3\/_+2> ~ 3.12p,

Figure 1 depicts in the (p,, p,)-quadrant the two cutoffs we identified:

— price pairs in area C' entail that good x is a gross substitute of good y;
whereas

— price pairs in area A imply that good y is a gross substitute of good .



In other words, the conditions for goods to be gross substitutes are asymmet-
ric, as there is no region where both good z is a gross substitute of y and vice

versa.

Last, note that price pairs in area B entail that good x is a gross complement
of good y and, simultaneously, good y is a gross complement of good =x.

Py 4 Cutoff for good y
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Aread
Area B
__ — 7 Cutoff for good x
o -
- AreaC
- - -
0 > P

Figure 1. Areas for which goods x and y can be gross substitutes.

2. Concave transformation of a utility function. Consider an individual with the

utility function,
u(x) =z

where 0 < a < 1, and x > 0 represents the outcome that the individual receives.

(a) Consider the concave transformation ¢ (y) = Iny, where y > 0. Find the Arrow-
Pratt coefficient of absolute risk aversion for the composite function g (u(x)).
Show that this function exhibits stronger risk aversion than the utility function

e The composite function is

h(z) =g (u(z))

= In (z%)

=alnzx

Differentiating the composite function, h ()

we obtain
dh (z)
h'(z) = =
(@) = —
d*h ()
" = =
(z) dx?

B8R

g (u(x)), with respect to z,



so the Arrow-Pratt coefficient of absolute risk aversion of the composite func-
tion is

R (z) -%
h) =— =——=2 =
raA (:L‘7 ) h! (CL') % T
e We can now differentiate the original utility function, u (x), with respect to
x, finding
d
u (z) = l;:(:) = azr® !
d2
u” (CL’) = ;Lx(zx) = — (1 — a) 22

Therefore, the Arrow-Pratt coefficient of absolute risk aversion of u(z) is

w'(z) —a(l-a)z*? 1-o

u (z) ol oz

Comparing the Arrow-Pratt coefficients of absolute risk aversion, we obtain

that
11—«

1
TA(xvh):;Z :TA<I7U)

for all @ € [0, 1]. Therefore, the composite utility function, ¢ (u (x)), exhibits
stronger risk aversion than the simple utility function u (z). Graphically, the
concave transformation makes h(z) more concave than u(x), thus making the
individual more averse to playing lotteries.

(b) Suppose the individual plays a lottery with equal probability of winning = and
3xz. Find the certainty equivalent of this lottery for the individual with (i) the
utility function u (x), and (ii) the composite utility function g (u (x)).

e The certainty equivalent is the amount that makes this individual indifferent
to the expected utility of the lottery. Therefore, for the initial utility function
u (x), the certainty equivalent solves

1 1
uw(CE (a,z,u)) = E (u(x)) = 51’0‘ +3 (3x)*
1 «
(CE (o, z,u))” = —;3 x®
and, solving for C'E, we find
1430\ @
CE(a,a:,u):( —; ) x

e For the composite utility function g (u (z)), the certainty equivalent solves a
similar problem:

w(CE (0, 2,h)) = E (h (z)) = %alnx + %aln?)x
v

aln (CE (a,z,h)) = 5

(2Inz +1n3)



and, solving for C'E, we find

21 1
CFE (a,z,h) = exp (M)

2

(c) Let @ = 1. Does the individual require a lower certainty equivalent with utility
function u (z) or with the composite utility function g (u (x))? Interpret.

e Substituting a = % into the certainty equivalents we found in part (b), we

obtain that
1 2
CFE 1zzzu = 1+32 1/256— L+v3 T
2" ) 2 N 2

OF <%,x,h) ~ oxp (2111:L‘2—|— ln3>

Let us check if CE (%, x, h) <CFE (%,x, u), which entails

2
2Inx +1n3 1++3
exp — < 5 T

In3 1 3
1nx+n7<lnx+21n V3

1++/3
9

In3 < 4ln

which simplifies to 1.1 < 1.25 that holds. Intuitively, the individual is more
risk adverse under the composite utility function ¢ (u(z)) than under the
initial utility function u (z), so that this individual is willing to accept a
lower certainty equivalent under the composite utility function than the initial
utility function.

3. Monopolist interested in fairness. Consider a monopolist who faces a market
with two segments, with demand functions ¢;(p1) = a1 — p1 and ¢2(p2) = as — po,
where as > a1, and production costs are normalized to zero, ¢ = 0. Suppose that she
maximizes profit subject to the constraint that the outcome is fair in the sense that
consumer surpluses coincide, that is,

C’Sl (ql) = CSQ(QQ).

(a) Formulate the optimization problem of this monopolist and solve the problem.

e The monopolist solves
max - p1qy + P2qz

91,92 =

subject to CS1(q1) = CS2(q2).



Since demand functions are linear,

CSi() = /(@i — @) dg; — (a; — qi)q;

pi

1
= [ai% - 5%2} - (@z‘ - Qi) qi
1,
§qi7

Therefore, the constraint implies that 1¢? = 1¢3, which holds only if ¢ =
g2 = q, meaning that the monopolist sells the same quantity in each segment.
Using q; = ¢o = ¢ in the objective function, the monopolist problem above
simplifies to

max piq +p2q = (a1 — q)g + (a2 —q)q
Differentiating with respect to ¢, yields
a1 —2q+ay—2q=0
and, solving for ¢, we obtain

*_G1+a2

4

e Inserting ¢* into the inverse demand functions of each segment, we find the
equilibrium prices

a1+ ay  3ay — as

n(q") = a1 — T 1 and
(*) — _(I1—|—CL2_3CLQ—CL1
p2(q = Q2 1 = 1

(b) Find equilibrium output and prices if, instead, the monopolist seeks to maximize
profits without the fairness constraint.

e If the monopolist seeks to maximize profits without the fairness constraint,
she solves

max  piqi +paqe = (a1 — q1)q1 + (a2 — ¢2) @2

q1,q2>0

Differentiating with respect to qi, yields a; — 2¢; = 0, which entails ¢i"* = %-.
Similarly, differentiating with respect to ay, we obtain ay — 2¢s = 0, which
entails g3 = %. Inserting these output levels in the inverse demand functions

of each segment, we find that equilibrium prices are

ai a1

Pl(qqln) = a — ? = ?’ and
m a2 Q2
P2((J2) = a2—323~

(c) Compare your results in parts (a) and (b). Rank equilibrium prices, output, and
interpret.



e Comparing equilibrium prices, we find that the price high-demand customers

pay satisfies
. 3(1,1 — ag ay

p(q*) = 1 > B =pi(g")

which simplifies to a; > as, which holds by assumption. In contrast, the price
that low-demand customers pay satisfies

% 3&2 — ay a9 m
p(q") = ——— < = =p(q")

4 2
meaning that high-demand customers pay more when the monopolist is con-
trained by fairness considerations than otherwise. Low-demand customers,
however, pay less when the monopolist is contrained by fairness considera-
tions than otherwise.

e Comparing equilibrium output, we find that the sales to high-demand cus-
tomers satisfies
% aq -+ (05} aq m
= <o =4

4 2
since as < ap. In contrast, the sales to low-demand customers satisfies

ai + as Q9
q = > = =q

4 2

meaning that the high-demand customers purchase fewer units when the mo-
nopolist is constrained by fairness than otherwise, while low-demand cus-
tomers buy more units.



