
EconS 501 - Microeconomic Theory I
Midterm exam #2 - Answer key

1. Gross Substitutes. Consider an economy with two individuals, Amelia and Bernardo,
with utility functions

uA(xA, yA) = min{xA, 2yA} for Amelia, and
uB(xB, yB) = min{2xB, yB} for Bernardo,

and initial endowments are given by eA = (1, 0) for Amelia and eB = (0, 1) for
Bernardo.

(a) Find the Walrasian demands of each individual.

• Amelia. The UMP of Amelia is

max
xA,yA≥0

min{xA, 2yA}

subject to pxx
A + pyy

A ≤ px

since she only owns one unit of good x, eA = (1, 0) the market value of her
resources (as captured in the right-hand side of the budget constraint) is px.
As she would consume (xA, yA) pairs at the kink of her L-shaped indifference
curves, optimal consumption bundles satisfy xA = 2yA. Plugging xA = 2yA

into her budget line, pxxA + pyy
A = px, yields

px
(
2yA
)
+ pyy

A = px

and solving for yA, we obtain Amelia’s Walrasian demand of good y

yA =
px

2px + py

while her demand for good x is

xA = 2yA =
2px

2px + py

• Bernardo. Similarly, Bernardo’s utility maximizing bundles (xB, yB) satisfy
2xB = yB (bundles at the kink of his indifference curve) and pxxB+pyyB = py
(budget line since he only owns one unit of good y). Simultaneously solving
for xB and yB yields

xB =
py

px + 2py
and yB =

2py
px + 2py

(b) Find the excess demand functions, zx(px, py) and zy(px, py).
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• The excess demand for good x is

zx(px, py) =
2px

2px + py
+

py
px + 2py

− 1− 0 = pxpy − (py)2
(2px + py)(px + 2py)

while that of good y is

zy(px, py) =
px

2px + py
+

2py
px + 2py

− 0− 1 = pxpy − (px)2
(2px + py)(px + 2py)

(c) Check that Walras’law holds.

• In order to check that p · z(p) = 0, we need

pxzx(px, py) + pyzx(px, py) = px

(
pxpy − (py)2

(2px + py)(px + 2py)

)
+ py

(
pxpy − (px)2

(2px + py)(px + 2py)

)
=

(px)
2py − px(py)2 + px(py)

2 − (px)2py
(2px + py)(px + 2py)

= 0

thus confirming Walras’law.

(d) Check if goods are gross substitutes, i.e., for any two goods k 6= j where k, j =
{x, y} their excess demand functions satisfy ∂zk(px,py)

∂pj
> 0.

• Using zx(px, py), we find

∂zx(px, py)

∂py
=
2(px)

3 − 4(px)2py − 7px(py)2
(2(px)2 + 2(py)2 + 5pxpy)2

which is positive if the numerator is positive, that is,

py <
2px

2 + 3
√
2
' 0.32px

Similarly, using zy(px, py), we find that

∂zy(px, py)

∂px
=
2(py)

3 − 4px(py)2 − 7(px)2py
(2(px)2 + 2(py)2 + 5pxpy)2

which is positive if the numerator is positive, that is,

py >
px
2

(
3
√
2 + 2

)
' 3.12px

Figure 1 depicts in the (px, py)-quadrant the two cutoffs we identified:

— price pairs in area C entail that good x is a gross substitute of good y;
whereas

— price pairs in area A imply that good y is a gross substitute of good x.
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In other words, the conditions for goods to be gross substitutes are asymmet-
ric, as there is no region where both good x is a gross substitute of y and vice
versa.
Last, note that price pairs in area B entail that good x is a gross complement
of good y and, simultaneously, good y is a gross complement of good x.

Figure 1. Areas for which goods x and y can be gross substitutes.

2. Concave transformation of a utility function. Consider an individual with the
utility function,

u (x) = xα

where 0 ≤ α ≤ 1, and x > 0 represents the outcome that the individual receives.

(a) Consider the concave transformation g (y) = ln y, where y > 0. Find the Arrow-
Pratt coeffi cient of absolute risk aversion for the composite function g (u (x)).
Show that this function exhibits stronger risk aversion than the utility function
u (x).

• The composite function is

h (x) ≡ g (u (x))

= ln (xα)

= α lnx

Differentiating the composite function, h (x) ≡ g (u (x)), with respect to x,
we obtain

h′ (x) ≡ dh (x)

dx
=
α

x

h′′ (x) ≡ d2h (x)

dx2
= − α

x2
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so the Arrow-Pratt coeffi cient of absolute risk aversion of the composite func-
tion is

rA (x, h) = −
h′′ (x)

h′ (x)
= −
− α
x2

α
x

=
1

x
.

• We can now differentiate the original utility function, u (x), with respect to
x, finding

u′ (x) ≡ du (x)

dx
= αxα−1

u′′ (x) ≡ d2u (x)

dx2
= −α (1− α)xα−2

Therefore, the Arrow-Pratt coeffi cient of absolute risk aversion of u(x) is

rA (x, u) = −
u′′ (x)

u′ (x)
= −−α (1− α)x

α−2

αxα−1
=
1− α
x

Comparing the Arrow-Pratt coeffi cients of absolute risk aversion, we obtain
that

rA (x, h) =
1

x
≥ 1− α

x
= rA (x, u)

for all α ∈ [0, 1]. Therefore, the composite utility function, g (u (x)), exhibits
stronger risk aversion than the simple utility function u (x). Graphically, the
concave transformation makes h(x) more concave than u(x), thus making the
individual more averse to playing lotteries.

(b) Suppose the individual plays a lottery with equal probability of winning x and
3x. Find the certainty equivalent of this lottery for the individual with (i) the
utility function u (x), and (ii) the composite utility function g (u (x)).

• The certainty equivalent is the amount that makes this individual indifferent
to the expected utility of the lottery. Therefore, for the initial utility function
u (x), the certainty equivalent solves

u (CE (α, x, u)) = E (u (x)) =
1

2
xα +

1

2
(3x)α

(CE (α, x, u))α =
1 + 3α

2
xα

and, solving for CE, we find

CE (α, x, u) =

(
1 + 3α

2

) 1
α

x.

• For the composite utility function g (u (x)), the certainty equivalent solves a
similar problem:

u (CE (α, x, h)) = E (h (x)) =
1

2
α lnx+

1

2
α ln 3x

α ln (CE (α, x, h)) =
α

2
(2 lnx+ ln 3)
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and, solving for CE, we find

CE (α, x, h) = exp

(
2 lnx+ ln 3

2

)
(c) Let α = 1

2
. Does the individual require a lower certainty equivalent with utility

function u (x) or with the composite utility function g (u (x))? Interpret.

• Substituting α = 1
2
into the certainty equivalents we found in part (b), we

obtain that

CE

(
1

2
, x, u

)
=

(
1 + 31/2

2

) 1
1/2

x =

(
1 +
√
3

2

)2
x

CE

(
1

2
, x, h

)
= exp

(
2 lnx+ ln 3

2

)
Let us check if CE

(
1
2
, x, h

)
< CE

(
1
2
, x, u

)
, which entails

exp

(
2 lnx+ ln 3

2

)
<

(
1 +
√
3

2

)2
x

lnx+
ln 3

2
< lnx+ 2 ln

1 +
√
3

2

ln 3 < 4 ln
1 +
√
3

2

which simplifies to 1.1 < 1.25 that holds. Intuitively, the individual is more
risk adverse under the composite utility function g (u (x)) than under the
initial utility function u (x), so that this individual is willing to accept a
lower certainty equivalent under the composite utility function than the initial
utility function.

3. Monopolist interested in fairness. Consider a monopolist who faces a market
with two segments, with demand functions q1(p1) = a1 − p1 and q2(p2) = a2 − p2,
where a2 > a1, and production costs are normalized to zero, c = 0. Suppose that she
maximizes profit subject to the constraint that the outcome is fair in the sense that
consumer surpluses coincide, that is,

CS1(q1) = CS2(q2).

(a) Formulate the optimization problem of this monopolist and solve the problem.

• The monopolist solves
max
q1,q2≥0

p1q1 + p2q2

subject to CS1(q1) = CS2(q2).
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Since demand functions are linear,

CSi(qi) =

∫
(ai − qi) dqi − (ai − qi)︸ ︷︷ ︸

pi

qi

=

[
aiqi −

1

2
q2i

]
− (ai − qi) qi

=
1

2
q2i ,

Therefore, the constraint implies that 1
2
q21 =

1
2
q22, which holds only if q1 =

q2 = q, meaning that the monopolist sells the same quantity in each segment.
Using q1 = q2 = q in the objective function, the monopolist problem above
simplifies to

max
q≥0

p1q + p2q = (a1 − q)q + (a2 − q) q

Differentiating with respect to q, yields

a1 − 2q + a2 − 2q = 0

and, solving for q, we obtain

q∗ =
a1 + a2
4

.

• Inserting q∗ into the inverse demand functions of each segment, we find the
equilibrium prices

p1(q
∗) = a1 −

a1 + a2
4

=
3a1 − a2

4
, and

p2(q
∗) = a2 −

a1 + a2
4

=
3a2 − a1

4
.

(b) Find equilibrium output and prices if, instead, the monopolist seeks to maximize
profits without the fairness constraint.

• If the monopolist seeks to maximize profits without the fairness constraint,
she solves

max
q1,q2≥0

p1q1 + p2q2 = (a1 − q1)q1 + (a2 − q2) q2

Differentiating with respect to q1, yields a1 − 2q1 = 0, which entails qm1 = a1
2
.

Similarly, differentiating with respect to a2, we obtain a2 − 2q2 = 0, which
entails qm2 =

a2
2
. Inserting these output levels in the inverse demand functions

of each segment, we find that equilibrium prices are

p1(q
m
1 ) = a1 −

a1
2
=
a1
2
, and

p2(q
m
2 ) = a2 −

a2
2
=
a2
2
.

(c) Compare your results in parts (a) and (b). Rank equilibrium prices, output, and
interpret.
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• Comparing equilibrium prices, we find that the price high-demand customers
pay satisfies

p1(q
∗) =

3a1 − a2
4

>
a1
2
= p1(q

m
1 )

which simplifies to a1 > a2, which holds by assumption. In contrast, the price
that low-demand customers pay satisfies

p2(q
∗) =

3a2 − a1
4

<
a2
2
= p1(q

m
1 )

meaning that high-demand customers pay more when the monopolist is con-
trained by fairness considerations than otherwise. Low-demand customers,
however, pay less when the monopolist is contrained by fairness considera-
tions than otherwise.
• Comparing equilibrium output, we find that the sales to high-demand cus-
tomers satisfies

q∗ =
a1 + a2
4

<
a1
2
= qm1

since a2 < a1. In contrast, the sales to low-demand customers satisfies

q∗ =
a1 + a2
4

>
a2
2
= qm2

meaning that the high-demand customers purchase fewer units when the mo-
nopolist is constrained by fairness than otherwise, while low-demand cus-
tomers buy more units.
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