

EconS 501 - Micro Theory I
Assignment #6 - Due date: November 28th, in class.

1. **Monopolist serving two interdependent markets.** Consider a monopolist producing two goods, 1 and 2, at a marginal cost $c > 0$. The demand function for product i is

$$q_i(p_i, p_j) = a - bp_i + gp_j \text{ where } i = \{1, 2\}$$

and parameters satisfy $a > c(b - g)$, $b, c > 0$, and $|b| > |g|$, entailing that own-price effects dominate cross-price effects. For generality, we allow for $g > 0$ and $g < 0$.

- (a) Assume that the monopolist sets the price of good i separate to that of good j .
Find the equilibrium price pair (p_i, p_j) .
- (b) Suppose now that the monopolist sets the prices of goods i and j simultaneously.
Find the equilibrium price pair (p_i, p_j) .
- (c) Under what condition will the distinct monopolist charge a higher (lower) price than a multi-product monopolist?

2. **Multiproduct monopoly with economies of scope.** Consider Ferdinand's food company, a monopolist producing two goods, ice cream (good 1) and cheese (good 2), which are regarded as substitutes for consumers. The inverse demand function of good i is

$$p_i(q_i, q_j) = a - bq_i - gq_j$$

where $a, b, g > 0$ and $|b| > |g|$, entailing that own-price effects dominate cross-price effects.

In addition, Ferdinand's cost function is

$$C(q_1, q_2) = \frac{c}{2} (q_1^2 + q_2^2) - \beta q_1 q_2$$

where $c > 0$, and $\beta > 0$ indicates that the marginal cost of producing one good decreases in the output of another good, i.e., there are cost complementarities in production often referred as “economies of scope.” When $\beta = 0$, the cost of one output is independent of the other.

- (a) Find the profit-maximizing output and associated profits of Ferdinand's food company.
- (b) How does equilibrium output change in parameters β and g ? Interpret your results.
- (c) *Numerical example.* Evaluate your results in parts (a) and (b) assuming parameter values $a = 1$, $\beta = 1/2$, $c = 1/3$, and $g = 1/4$. How do they change with b ? Interpret.

3. **Persuasive advertising in monopoly.** Consider a monopolist facing the demand function

$$Q(p, A) = a - pA^{-\frac{1}{2}}$$

where a is the market size, and the firm spends advertising dollars A in promoting its products. For simplicity, assume that production cost is zero, and we consider $a, A > 0$.

- (a) Find the price elasticity of demand $\varepsilon_{Q,P}$. Does advertising make demand more inelastic?
- (b) Consider that the firm simultaneously chooses its price p and advertising expenditure, A . Setup the firm's profit maximization problem and solve for the firm's equilibrium price p^* , advertising A^* , and the resulting equilibrium profits π^* . Then, evaluate your results assuming $a = 2$.

4. **Regulating a natural monopoly.** A water supply company provides water to Pullman. The demand for water in Pullman is $p(q) = 10 - q$, and this company's costs are $c(q) = 1 + 2q$.

- (a) Depict the following in a figure: the demand curve $p(q)$, the associated marginal revenue $MR(q)$, the marginal cost of production $MC(q)$ and the average cost of production $AC(q)$. Discuss why this situation illustrates a “natural monopoly.”
- (b) *Marginal cost pricing.* Determine the amount of water that this firm will produce if a regulatory agency in Pullman forces the firm to price according to marginal cost (i.e., to produce an amount of output q^* that solves $p(q^*) = MC(q^*)$). Find the corresponding prices and profits for the firm.
- (c) *Price discrimination.* Consider now that the regulatory agency allows the monopoly to charge two different prices: a high price p_1 for the first q_1 units, and a low price $p(q^*)$ for the remaining $(q^* - q_1)$ (i.e., the units from q_1 up to the output level you found in part (c), q^*). In addition, the regulatory agency imposes the condition that the firm cannot make any profits, $\pi = 0$, when charging these two prices.
 - 1. Find the value of q_1 and the associated price $p(q_1)$.
 - 2. Depict these two prices and quantities in a figure and shade the areas of benefits and losses for the firm.

5. **Monopsony, a general approach.** Consider a firm with production technology $f(x)$, where $x \in [0, 1]$ stands for the input (e.g, gas supply), and $f(x)$ represents the output that is sold in a competitive market at a price p . The firm is subject to an input cost function $g(x)$ that is increasing and convex in input x . This happens, for example, when there is only one company supplying natural gas.

- (a) Define $\varepsilon_g \equiv \frac{\partial x}{\partial g(x)} \frac{g(x)}{x}$ to be the price elasticity of gas supply, measuring the percentage change of gas supply given one percent change in gas price. Setup the firm's profit-maximization problem to maximize $\pi(x) = pf(x) - g(x)x$, and show that

$$p'f(x) = g(x) \left[1 + \frac{1}{\varepsilon_g} \right].$$

(b) Let $f(x) = x$ and $g(x) = x^\beta$, where $\beta > 1$. Use the expression found in part (a) to identify the optimal gas supply x^* . For simplicity, you may assume that $p = 1$ in the remainder of this exercise.

(c) *Comparative statics.* How does x^* change with β ? Explain.

(d) *Numerical example.* Evaluate the firm's optimal gas supply x^* when $\beta = 1$, $\beta = 2$, $\beta = 4$, and $\beta \rightarrow +\infty$. Interpret.