6.3 Solving for Nash Equilibria with Calculus (Optional)

g The resource of. woolly mammoths is overexploited by hunters. Phe exces-

| sive hunting of i;nammoths is an example of what Garrett Hardj i dub”bed the

| tragedy of the commia; ns. & A tragedy of the commons is a situation in which
' two or more people are usmg a common resource and explmt 1tfbeyond the
' Jevel that is best for' ‘the" group as a whole. Overfishing Chllean sea bass, exces-
" sive deforestation of the Amazon jungle, and extractlng oil too fast from a com-

. mon reservoir are examples of the tragedy of the commons. Interdependence
* between players (and what economists call an “exterriality”) is at the heart of

this problem. When a huntér kﬂls a woolly marnmoth he doesn't take into ac-

. count the negative effect his actloar‘}wﬂl have n,,the well-being of other hunters

(i.e., they'll have fewer mammoths to kill). ‘As a result, from the perspective of

| the human population as a whole,’

ach, hunter kills too many mammoths.
Surely the most important current Xample of the tragedy of the commons
is global climate change. Accordmg to the U.S. Environmental Protection
Agency, “Since the beginning of the lndustnal revolution, atmospheric con-
centrations of carbon dioxide have increased by rearly 30%, methane concen-
trations have more than doubled, and nitrous® 0x1de concentrations have risen
by about 15%.”° Durmg thﬁt same period, the average surface temperature of

- the planet has 1ncreased‘by 1to 1 degree Fahrenhelit, and- sea level has risen 4-8

inches. Those are the facts about which there is h‘ts{le dIsagreement Where
controversy lies is"whether the atmospheric changes have ¢aused the rise in
temperature. Iff indeed, it has, then the only way to solve this\ragedy of the
commons isg 'ﬁrough coordinated action that limits behavidy, suchhas was pro-
ith the Kyoto Accord. )

» situaTion: CHARITABLE GIVING AND THE POWER OF MATCHING GRANTS

In this final example, payoff functions are not hill shaped and, in fact, are not
even continuous. This means that the method used in the previous two exam-
ples will not work here. So why do I present this example? First, it is a re-

minder that you should not willy-nilly use the calculus-based approach de-.

scribed at the start of Section 6.3. Such an approach requires that the payoff
function be differentiable (continuous and with no kinks) and hill shaped. You
must make sure that it satisfies those properties before applying that method.
Second, even when the method cannot be used, calculus can still be useful in
deriving a player’s best reply function.

Suppose a philanthropist wants to raise $3,000,000 for his favorite charity.
Though he is quite wealthy, this sum is too much even for him. In order to
spur others to contribute, he establishes a matching grant whereby he’ll do-
Nate $1,000,000 if $2,000,000 is raised from other donors. Anything less than
$2,000 ,000, and he'll contribute nothing. This is hardly a novel scheme, as
Many charities and nonprofit organizations use it. Indeed, National Public
Radio often uses similar schemes during its fund drives. Game theory shows
how matching grants can generate more donations.

Suppose there are 10 prospective donors who are simultaneously deciding

OW much to contribute. Let s; denote the donation of donor i and s_; be the
Sum of a]l donations excluding that of donor i:

S—i=81+ -+ 81+ Si41+ 0+ Sqo.
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- Assume that a donor’s strategy set is the interval from 0 to 500,000, measured

in dollars. The donor i's payoff is specified as

(é)(s—i +5i) = s

and is made up of two parts: (£)(s—; + s;) is the benefit derived from money
going to a worthy cause and depends only on the total contribution; —s; is the
personal cost for making a contribution.

If there were no matching grant, would any contributions be made?
Without a matching grant, donor 1’s payoff function is

1
V1(51; . ,.S'n) = <§>(5‘1 o 510) - S1.

This payoff function is not hill shaped with respect to a donor’s strategy. In
fact, it is much simpler than that. Taking the first derivative of Vi(sy, ..., s,)
with respect to sq, we have '

aVl(Sl, PP ,Sﬂ) _ _i
351 i 5

A donor’s payoff, then, always decreases with her contribution. For each dollar she
contributes, the personal cost to her is $1 and the benefit she attaches to it is only
20 cents. Thus, her payoff declines by 80 cents (or £ of a dollar) for every dollar
she contributes; the more she gives, the worse she feels. Contributing nothing is
then optimal. Since this is true regardless of the other donors’ contribution, a zero
contribution is the dominant strategy. Finally, because donor 1 is no different from
the other nine donors, they have a zero contribution as a dominant strategy as
well. There is then a unique Nash equilibrium in which all 10 donors contribute
nothing. Our fund-raising campaign is off to a rather inauspicious start.

~ Now suppose there is a matching grant. Then donor 1’s payoff function
looks like this:

s)) = {(%)(51 + -k 510) — 51 ifs;+ o+ s < 2,000,000
T &) (s; + -+ + 510 + 1,000,000) — 57 if 2,000,000 =51 + - + 530

If total contributions fall short of 2,000,000, then the payoff is the same as
without a matching grant. However, if they reach that 2,000,000 threshold,
then each donor’s payoff jumps by the amount (3) X 1,000,000, or 200,000. At
this jump, the payoff function is not continuous and thus not differentiable,
so we can't just start taking derivatives. A bit more care is required, but calcu-
lus will still come in handy.

Let’s derive a donor’s best-reply function. (Since the game is symmetric,
donors have the same best-reply function.) Consider donor 1, and let

s—i(=sy + -+ +510) denote the sum of the contributions of the other 9

donors. First note that if s_; = 2,000,000, then the matching grant occurs re-
gardless of donor 1’s contribution, so her payoff is

1
<—5~>(sl + 5.1 + 1,000,000) — s1
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for all values of 5. The derivative of this expression with respect to sy is 2
thus, donor 1’s payoff always decreases with her donation. Hence, the optimal
contribution is the lowest feasible contribution, which is zero.

Now suppose s_; < 2,000,000, so the other donors are not contributing
enough to get the matching grant. As long as donor 1's contribution results in
total contributions falling short of the 2,000,000 threshold—that is, if
sy + s-1 < 2,000,000—then donor 1’s payoff is

(%)(51 +s_1) = 51,

the derivative of which is —%, so her payoff strictly decreases with her contribu-
tion. Consequently, if donor 1 is not going to give enough to get the matching
grant, then she ought to give zero. Next, suppose her contribution is sufficient
to achieve the matching grant—that is, sy + s_; = 2,000,000. Her payoft is then

(—é—)(sl + St + 1,000,000) - S1.

Again, the derivative is —%, so her payoff is higher when she contributes less.
Thus, conditional on giving enough to get the matching grant, donor 1 would
find it best to give the smallest amount that does so, which is 2,000,000 — s_;.

To summarize, if s_; < 2,000,000, then donor 1's best reply is either zero or
the minimum amount required to get total contributions to 2,000,000. A cou-
ple of examples should solidify the logic behind this statement. Suppose
s_1 = 1,900,000, so that donor 1’s payoff function is as shown in FIGURE 6.18.
If s; < 100,000, then total contributions fall short of the 2,000,000 goal, and
in that range donor 1's payoff is

e 4
<%>(51 + 1,900,000) — s; = 380,000 — <~)sl,

5
4 N\
FIGURE 6.18 Donor 1’s Payoff Function if s_; = 1,900,000. Her
Optimal Donation Is 100,000, Which Results in the
1,000,000 Matching Grant Kicking In
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CHAPTER 6: STABLE PLAY: NASH EQUILIBRIA IN CONTINUOUS GAMES

When s; hits 100,000, the payoff jumps to 500,000 as the 1,000,000 matching
grant kicks in: .

(é)(lO0,000 + 1,900,000 + 1,000,000) — 100,000 = 600,000 — 100,000 = 500,000,

For s; > 100,000, donor 1’s payoff is decreasing once more:
1 4
3 (s; + 1,900,000 + 1,000,000) — s; = 580,000 — 5 Sq.

As Figure 6.18 indicates, donor 1’s optimal donation is 100,000, Wthh is the
minimum amount required to get the matching grant.

Now suppose instead that s_; = 1,650,000. In this case, it'll take a donation
of 350,000 from donor 1 to get the matching grant. As depicted in FIGURE 6.19,
donor 1 then prefers to contribute nothing. As before, her payoff declines until
it reaches a level such that total contributions equal 2,000,000. At that point,
it jumps from a payoff of 50,000 to 250,000 and again declines thereafter.
Donor 1’s payoff is maximized with'a zero contribution. A donation of 350,000
to get the matching grant is just too much for any donor.

a )
FIGURE 6.19 Donor 1's Payoff If s_; = 1,650,000. Her
Optimal Donation Is Zero
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When the other donors have not given enough to get the matching grant,
we have narrowed a donor’s optimal contribution to being either zero or the
minimum amount needed to get the grant. The next step is to compare these
two options and determine when one is preferred over the other. Assuming
that s_; < 2,000,000, we calculate that donor 1 prefers to contribute so that
total contributions just reach 2,000,000 rather than contribute zero when

1
(%)3,000,000 — (2,000,000 — s_y) = <§>sﬁ1.
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The left-hand side of this inequality is the payoff from contributing
2,000,000 — s_1, and the right-hand side is that from contributing zero.
Solving the inequality for s_y, we get :

(321)5_1 > 1,400,000 or s_; = 1,750,000.
Thus, if s_; > 1,750,000, then donor 1 optimally donates 2,000,000 — sy and
secures the matching grant. If s_; < 1,750,000, then donor 1 contributes
silch. She is indifferent between those two options when sy = 1,750,000 (and
we will suppose she contributes 250,000).

By symmetry, this argument works for any donor. Thus, the best-reply func-
tion for donor i is

0 ifs_; < 1,750,000
BR; = { 2,000,000 — s_; if 1,750,000 = s_; < 2,000,000, °
0 if 2,000,000 = s5_;

as depicted in FIGURE 6.20.
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FIGURE 6.20 The Best-Reply Function for Donor i
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. Using the best-reply function, let’s focus on finding symmetric Nash equi-
libria, We want to find a donation amount such that if the other 9 donors do-

Figure 6.20 shows that one symmetric equilibrium is a zero donation. If each
of the other 9 donors contribute zero, then s_; = 0 and, according to donor is
est-reply function, his optimal donation is similarly zero.

Is there an equilibrium in which donors make a nonzero donation? Recall
that if a donor contributes, her optimal contribution is the minimum amount
Necessary to achieve the 2,000,000 threshold in total donations. With 10
onors and given our focus on a symmetric strategy profile, this means that

nate that amount, then it is optimal for an individual donor to do likewise. .
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each donor contributes 200,000. In that case, s_; = 1,800,000 (as the other 9
donors are each giving 200,000), and we can see in Figure 6.20 that an indi-
vidual donor finds it optimal to respond with 200,000 as well. Hence, it is a
Nash equilibrium for each donor to contribute 200,000 and thereby ensure
that the matching grant kicks in.

Without the presence of a matching grant, the only equilibrium has no con-
tributions being made. Thus, by offering to donate 1,000,000 if at least 2,000,000
in donations is raised, there is now an equilibrium in which donors contribute
a total of 2,000,000 in order to get the matching grant. What the matching grant
does is juice up the marginal impact of a donation. Given that the other donors
contribute 1,800,000 in total, a contributor who gives 200,000 actually increases
contributions by 1,200,000, so the matching grant induces her t6 contribute,
Since this logic applies to all donors, each sees himself as making that incre-
mental donation which brings forth the matching grant.

Summary

This, chapter explored games with continuous strate,g/y sets, as represented
by an interval of real numbers. With an infinite n urbber of strategy profiles,
the exhaustwe search is not a viable method for,ﬁidmg Nash equilibria. In
Section 6.2, we showed how you can ehmmate,fnany strategy profiles as can-
didates for Nash equilibria by understandmg players’ incentives. In the exam-
ple of price competmon with identical pr@ducts each firm has an incentive
to slightly underecut its rival’s price when;’that price exceeds the firm’s cost for
the product. Because this undercuttmg incentive is present as long as shops
price above cost, no strategy profile wwith price above cost is a Nash equilib-
rium. Using this idea allowed us to eliminate many possibilities and ulti-
mately led us to the conclusmn that shops pricing at cost is the unique Nash
equilibrium. - /

In Section 6.3, we 1ntroduced a method for using calculus to solve for Nash
equilibria. When a player’s payoff function is differentiable (continuous and
with no kinks) and hill shaped his best reply is that strategy at which the first
derivative of his payoff function (w1th respect to his strategy) is zero. If the de-
rivative is positive (negatWe) then a player can increase his payoff by raising
(lowering) his strategy. Only when the derivative is zero is that not possible
and thus the payoff is maximized. This realization gave us an equation that
could be easily solved for a player’s best-reply function. All the players’ best-
reply functions could then be used to solve for a Nash equilibrium.

The calculus-based method just described was used to solve for Nash equi-
librium in two games—first, when companies offer differentiated products
and compete by choosing price, and second, when primitive humans exert an
effort in huntmg An example exploring charitable. donations reminded us that
if we are to deploy the calculus-based method, it must first be determined that
the payoff functlon is differentiable and hill shaped..

. A commion feature of Nash equilibria is that they are not payoff dominant
among the set of all strategy profiles. That is, all playets could be made bet-
ter off rélative to a Nash equilibrium if they all changedathelr strategies in a
partlcular way. This is because, while each player 1nd1v‘1dually maximizes
her gwn payoff, she ignores the consequences of her strategy selection for
the ,ZZ;Offs of other players. Players then do not act in their best collective




