
Cheap Talk Games - An Introduction1

13.3 Cheap talk with discrete messages but continuous responses

Let us extend the cheap talk model with discrete types, messages, and responses. First, we
allow for continuous responses from the receiver (politician), still assuming discrete types
and messages. Figure 13.4 depicts the game tree, where the arcs next to the terminal nodes
indicate that the last mover chooses his response (policy choice, p, for the politician) from a
continuum of available policies, that is, p > 0.

Figure 13.4. Cheap talk with two messages but continuous responses.

As in the previous section, the lobbyist privately observes the state of nature, θH or θL,
both equally likely. The lobbyist, then, chooses a message to send to the politician which,
for simplicity, is still binary (either θH or θL). Upon observing this message, the politician
responds with a policy p > 0.

Quadratic loss functions. The government (politician) payoff are distributed according
to the following quadratic loss functions, as in Crawford and Sobel (1982),

UG(p, θ) = −(p− θ)2

which becomes zero when the government responds with a policy that coincides with the
true state of the world, that is, p = θ, but is negative otherwise (both when p < θ and when
p > θ). Graphically, UG(p, θ) has an inverted-U shape, lying in the negative quadrant for all
p 6= θ, but has a height of zero at exactly p = θ; as depicted in figure 13.5. Similarly, the
lobbyist’s utility is given by a quadratic loss function

UL(p, θ) = −(p− (θ + δ))2

which becomes zero when the policy coincides with the lobbyist’s ideal, p = θ + δ, but
is negative otherwise. Intuitively, parameter δ > 0 represents the lobbyist’s bias. When
δ = 0 the utility functions of both sender and receiver coincide, and we can say that their
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preferences are aligned; but otherwise the lobbyist’s ideal policy, p = θ + δ, exceeds the
politician’s, p = θ.

Figure 13.5. Quadratic loss function for each player.

13.3.1 Separating PBE

1. Specifying a strategy profile. We first specify a “candidate”of strategy profile that we
seek to test as a PBE, (θH , θL), where the θH-type lobbyist chooses θH , on the top left
side of figure 13.6; whereas the θL-type lobbyist selects θL, on the bottom right side of
the figure.

Figure 13.4. Cheap talk with two messages but continuous responses - Separating profile (θH , θL).

2. Bayes’rule. Upon observing θH , the politician believes that this message must orig-
inate from a high-type lobbyist, entailing that µ(θH |θH) = 1, at the top left side of
the figure, which implies that µ(θL|θH) = 0. Similarly, upon observing θL, the politi-
cian beliefs are µ(θL|θL) = 1, at the bottom right side of the figure, entailing that
µ(θH |θL) = 0.

3. Optimal response. Given our result from Step 2, the politician responds as follows:
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(a) Upon observing θH , she responds with policy p = θH , as this policy minimizes
her quadratic loss, yielding a payoff of zero.2

(b) Similarly, upon observing θL, she responds with policy p = θL, since this policy
minimizes her quadratic loss, also yielding a payoff of zero.

4. Optimal messages. From our results in Step 3, we now identify the lobbyist’s optimal
messages.

(a) High type. If he sends a message of θH , as prescribed in this strategy profile, he
anticipates that the politician will respond with policy p = θH , yielding a payoffof
−(θH−(θH + δ))2 = δ2. If, instead, this lobbyist deviates towards message θL, the
politician believes this message, responding with policy p = θL, with an associated
payoff of −(θL−(θH + δ))2 = −(θL−θH−δ)2 for the lobbyist. Therefore, he does
not have incentives to deviate since δ2 > −(θL − θH − δ)2 simplifies to θH > θL,
which holds by assumption. Intuitively, because of his bias, the lobbyist prefers a
policy above the state of nature. Sending message θH , he at least induces a policy
p = θH , but sending message θL he would induce a lower policy, p = θL, which is
further away from his ideal, p = θH+δ; implying that he does not have incentives
to send θL.

(b) Low type. If he sends a message of θL, as prescribed in this strategy profile, the
politician responds with p = θL, yielding a payoff −(θL − (θL + δ))2 = −δ2 for
the lobbyist. If, instead, he deviates to message θH (e.g., an overestimation of the
true state of the lobbyist industry), the politician responds with p = θH , and the
lobbyist earns −(θH − (θL + δ))2. Therefore, the low-type lobbyist does not have
incentives to misrepresent the state of nature if

−δ2 ≥ −(θH − (θL + δ))2

simplifying, and solving for δ, yields

δ ≤ θH − θL
2

.

Therefore, the low-type lobbyist truthfully report the state of nature if his bias,
δ, is suffi ciently small or, alternatively, when his preferences and the politician’s
are suffi ciently aligned.

5. Summary. From Step 4, we found that no sender types have incentives to deviate from
(θH , θL), implying that this separating strategy profile can be supported as a PBE
if δ ≤ θH−θL

2
. In this PBE, the politician, upon observing message θi, holds beliefs

µ(θi|θi) = 1 and µ(θj|θi) = 0, and responds with policy p = θi.

2Formally, one can first consider the politician’s utility function, UG(p, θH) = −(p − θH)2, evaluated at
θH given the policitian’s updated beliefs from Step 2, and then differentiate it with respect to policy p, which
yields −2(p− θH) = 0, which holds if and only if p = θH .
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13.3.2 Pooling PBEs

1. Specifying a strategy profile. We now test if the pooling strategy profile (θH , θH), where
both lobbyists send message θH , can be sustained as a PBE. Figure 13.7 depicts this
strategy profile.

Figure 13.4. Cheap talk with two messages but continuous responses - Pooling profile (θH , θH).

2. Bayes’ rule. Upon observing message θH , in equilibrium, the politician cannot infer
any information from this message, and her posterior beliefs coincide with her priors,
that is, µ(θH |θH) = 1/2. Upon observing message θL, however, which occurs off-
the-equilibrium path, beliefs cannot be updated using Bayes’rule, and we leave them
unrestricted, µ(θL|θL) = µ ∈ [0, 1].

3. Optimal response. Given our result from Step 2, the politician responds as follows:

(a) Upon observing θH , the politician chooses the policy p that solves

max
p≥0

−1
2
(p− θH)2︸ ︷︷ ︸
if θ=θH

− 1
2
(p− θL)2︸ ︷︷ ︸
if θ=θL

since, from Step 2, the politician’s beliefs are µ(θH |θH) = 1/2 and µ(θL|θH) = 1/2.
Differentiating with respect to p, we obtain −(p− θH)− (p− θL) = 0, and solving
for p, we find that her optimal response becomes

p =
θH + θL
2

,

i.e., the expected state of nature. Intuitively, when the politician believes that
both states of nature are equally likely, she implements a policy that coincides
with the expected state of nature.

(b) Upon observing θL, which occurs off-the-equilibrium path, the politician solves

max
p≥0

−(1− µ)(p− θH)2︸ ︷︷ ︸
if θ=θH

− µ(p− θL)2︸ ︷︷ ︸
if θ=θL
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where µ(θL|θL) = µ and µ(θH |θL) = 1− µ. Differentiating with respect to p, we
obtain

−2(1− µ)(p− θH)− 2µ(p− θL) = 0,
and, after solving for p, we find that the politician’s optimal response is

p =
(1− µ)θH + µθL

2

which can also be interpreted as the politician’s expected state of nature, given
her off-the-equilibrium beliefs µ and 1− µ.

4. Optimal messages. From our results in Step 3, we now identify the lobbyist’s optimal
messages.

(a) High type. From point 4a in the separating PBE (see section 13.3.1), the θH-type
lobbyists sends message of θH , and this result holds for all parameter values (i.e.,
for all δ).

(b) Low type. From point 4a in the separating PBE (section 13.3.1), we know that the
θL-type lobbyists sends message θH , thus misreporting the true state of nature, if

δ2 < −(θH − (θL + δ))2

which simplifying, and solving for δ, yields

δ >
θH − θL
2

.

Therefore, the low-type lobbyist misreports the state of nature, θL, if his bias, δ,
is suffi ciently large or, in other words, if his preferences and the politician’s are
suffi ciently misaligned.

5. Summary. From Step 4, we found that no sender types have incentives to deviate from
the pooling strategy profile (θH , θH), sustaining it as a PBE, if δ > θH−θL

2
. In this PBE,

the politician, upon observing message θH , in equilibrium, holds beliefs µ(θH |θH) =
1/2, responding with p = θH+θL

2
; and upon observing θL, off the equilibrium, his beliefs

are unrestricted, µ(θL|θL) = µ, responding with policy p = (1−µ)θH+µθL
2

.

As a practice, exercise XXXX asks you to examine under which conditions can the opposite
pooling strategy profile, (θL, θL), be supported as a PBE.

13.4 Cheap talk with continuous messages and responses

Let us now extend the above cheap talk model to allow for continuous messages and re-
sponses. While the setting in section 13.3 considered continuous responses by the politician,
it restricted the lobbyist’s messages to only two (binary), as he choose either message θH
or θL. In addition, we allow for the state of nature, θ, to be continuous, in particular, we
assume that θ ∼ U [0, 1]. Otherwise, it would look unnatural to still consider only two states
of nature (θH or θL) but a continuum of potential messages, m ≥ 0.
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Our discussion, based on Crawford and Sobel (1982), helps us confirm one of the results
we found in the previous section, namely, that separating strategy profiles can emerge in
equilibrium if the lobbyist and politician’s preferences are relatively aligned (low δ). This
more general setting, however, allows us a new result: that the quality of information, under-
stook as the number of different messages that the lobbyist sends, also depends on players’
preference alignment. Intuitively, as their preferences become more aligned, the lobbyist
has incentives to emit a wider array of distinct messages, like different words in a language,
ultimately improving the information that the politician receives.

13.4.1 Separating PBE

1. Specifying a strategy profile. We first specify a “candidate”of strategy profile that we
seek to test as a PBE, as that depicted in figure 13.8, where the lobbyist sends message
m1 when θ lies in the first interval, that is, θ ∈ [θ0, θ1); sends message m2 when θ lies
in the second interval, that is, θ ∈ [θ1, θ2); and similarly for the next intervals until
reaching the last interval N .

Figure 13.8. Partially informative strategy profile.

2. Bayes’ rule. Upon observing message mk, the politician believes that the state of
nature must satisfy θ ∈ [θk−1, θk], such that

µ(Interval k|mk) = 1 and µ(Interval j|mk) = 0 for all j 6= k

That is, after receiving message mk, the politician believes that θ must lie on that
interval, and that θ cannot lie on other intervals.

3. Optimal response. Given our result from Step 2, the politician responds as follows:

• Upon observing message mk, she believes to be interval k, thus responding with
policy p = θk−1+θk

2
, which minimizes the quadratic loss in that interval. More

formally, the politician solves

max
p≥0

− E
[
(p− θ)2

]
such that θ ∈ [θk−1, θk]

Since the politician believes that θ ∈ [θk−1, θk], the expected value of θ is θk−1+θk
2

,
which simplifies the above problem to

max
p≥0

−
(
p− θk−1 + θk

2

)2
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Differentiating with respect to policy p, yields

−2
(
p− θk−1 + θk

2

)
(−1) = 2

(
p− θk−1 + θk

2

)
= 0

which entails an optimal policy

p =
θk−1 + θk

2
.

In other words, after receiving message mk, the politician (receiver) responds
with a policy that coincides with the expected state of the nature in this interval,
p = θk−1+θk

2
.

4. Optimal messages. From our results in Step 3, we now find the lobbyist’s optimal
messages.

• When θk is the true state of the world, the lobbyist sends a message in the k-th
interval, as prescribed by this strategy profile, inducing the politician to respond
with policy p = θk−1+θk

2
. We now check that the sender does not have incentives to

deviate, separately showing that he does not want to overreport or underreport.
For our analysis, it suffi ces to show that the k-th type sender sends neither mk−1
or mk+1 (in the intervals immediately below and above interval k).3

—No incentives to overreport. First, we check that the k-th sender has no
incentive to overreport by sending message mk+1, which occurs if

−
(
θk−1 + θk

2
− (θk + δ)

)2
︸ ︷︷ ︸
Utility from sending message mk

≥ −
(
θk+1 + θk

2
− (θk + δ)

)2
︸ ︷︷ ︸
Utility from sending message mk+1

Rearranging the above expression,

θk−1 + θk − 2(θk + δ) ≥ −θk+1 − θk + 2(θk + δ)

Further simplifying,
θk+1 ≥ 2θk − θk−1 + 4δ

As an illustration, let us check the initial condition, for which the sender of
type θ1 has no incentives to overreport by sending message θ2.

−
(
θ0 + θ1
2

− (θ1 + δ)

)2
≥ −

(
θ2 + θ1
2

− (θ1 + δ)

)2
After rearranging, we find

θ0 + θ1 − 2(θ1 + δ) ≥ −θ2 − θ1 + 2(θ1 + δ)

Further simplifying,
θ2 ≥ 2θ1 − θ0 + 4δ.

3Formally, if sending message mk−1 and mk+1 is dominated by message mk, then sending messages mk−j
or mk+j , where j ≥ 2 thus indicating intervals further away from interval k, would also be dominated.
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—No incentives to underreport. Second, we check that the (k + 1)-th sender
has no incentive to under-report by sending mk, which entails

−
(
θk+1 + θk

2
− (θk+1 + δ)

)2
≥ −

(
θk + θk+1

2
− (θk+1 + δ)

)2
Rearranging the above expression, we obtain

θk+1 + δ − θk+1 + θk
2

≥ θk + θk−1
2

− (θk+1 + δ)

Simplifying,

θk+1 ≥
1

3
(2θk + θk−1 − 4δ)

Since θk+1 > θk by construction, the k-th sender has no incentives to under-
report.4 Intuitively, the lobbyist finds it unprofitable to report a lower type
to the politician, for all values of the bias parameter δ. Therefore, in general,
the condition for the k-th sender to send the appropriate message is

θk+1 ≥ 2θk − θk−1 + 4δ.

Remark: At this point of our analysis, we have found under which conditions the lobbyist
does not have incentives to under- or overreport, meaning that his messages about the
interval where θ lies are truthful, and the separating strategy profile described in Step 1
can be supported as a PBE. There are, nonetheless, some details about this strategy profile
that we have not characterized yet, in particular: (i) the number of partitions that can be
sustained in equilibrium, N ; (ii) how is this number of partitions affected by the preference
divergence parameter, δ; and (iii) the length of each of these partitions (intervals), as they
are not necessarily equally long. We analyze each of them in the next subsections.

13.4.2 Equilibrium number of partitions

To answer these questions, recall that, since θ ∼ U [0, 1], the first interval starts at θ0 = 0,
and the last interval finishes at θN = 1 (see figure 13.8). For easier reference, we denote
the length of the first interval as d ≡ θ1 − θ0, where d ≥ 0. We can now rearrange the
incentive compatibility condition describing the lobbyist’s no incentives to overreport, θk+1 ≥
2θk − θk−1 + 4δ, as follows

θk+1 − θk ≥ (θk − θk−1) + 4δ
Intuitively, this inequality says that each interval must be at least 4δ longer than its prede-
cessor. If this condition binds, we obtain that the second interval length is

θ2 − θ1 = (θ1 − θ0)︸ ︷︷ ︸
d

+ 4δ = d+ 4δ

4Check that condition θk+1 > θk >
2
3θk +

1
3θk−1 =

1
3 (2θk + θk−1) >

1
3 (2θk + θk−1 − 4δ) holds for all

values of the bias parameter δ, which means that the incentive compatibility constraint for no underreporting
becomes slack.
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while the length of the third interval is

θ3 − θ2 = (θ2 − θ1)︸ ︷︷ ︸
d+4δ

+ 4δ = d+ (2× 4δ)

and similarly for subsequent intervals. By recursion, the length of the k-th interval is, then,

θk − θk−1 = (θk−1 − θk−2) + 4δ
= (θk−2 − θk−3) + (2× 4δ)
= (θk−3 − θk−4) + (3× 4δ)
= . . .

= (θ1 − θ0) + [(k − 1)× 4δ]
= d+ 4 (k − 1) δ

As an illustration, the length of the final interval, where k = N , is

θN − θN−1 = d+ 4 (N − 1) δ

We can now express the length of the unit interval, θN − θ0 = 1, as the sum of N partitions,
as follows

θN − θ0 = (θN − θN−1)︸ ︷︷ ︸
d+4(N−1)δ

+ (θN−1 − θN−2)︸ ︷︷ ︸
d+4(N−2)δ

+ . . .+ (θ2 − θ1)︸ ︷︷ ︸
d+4δ

+ (θ1 − θ0)︸ ︷︷ ︸
d

= d+ 4δ [(N − 1) + (N − 2) + ...+ 1]

where the term in square brackets can be simplfied as follows

[(N − 1) + (N − 2) + ...+ 1]︸ ︷︷ ︸
N−1 terms

= N(N − 1)− [1 + 2 + ...+ (N − 1)]

= N(N − 1)− N(N − 1)
2

=
N(N − 1)

2

and recall that 1 + 2 + ... + (N − 1) = (N−1)N
2

. Therefore, the above expression of θN − θ0
further simplifies to

θN − θ0 = d+ 4δ
N(N − 1)

2
= Nd+ 2δN(N − 1)

And since the left-hand side is θN − θ0 = 1 (θ lies in the unit interval), we can write the
above equation as 1 = Nd+ 2δN (N − 1), and solve for the bias parameter, δ, to obtain

δ (d) =
1−Nd

2N (N − 1) .

Cutoff δ (d) decreases in the length of the first interval, d. Intuitively, as the first interval
becomes wider (higher d), a given number of partitions N becomes more diffi cult to be
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sustained as a PBE.5 This result suggest that when the length of the first interval is nil,
d = 0, we obtain that the maximal value of cutoff δ (d) becomes

δ (0) =
1

2N(N − 1) .

Therefore, more partitions (higher N) can only be supported as a PBE if the bias parameter
δ becomes smaller. That is, more informative PBEs can be sustained when the preferences
of lobbyist and politician are more similar (lower δ). Solving for N , we can also find the
maximum number of partitions, N(δ), as a function of δ, as follows

N(N − 1) ≤ 1

2δ

which can be rearranged as

N2 −N − 1

2δ
≤ 0

Factorizing the above inequality,N − 1 +
√
1 + 2

δ

2

N − 1−
√
1 + 2

δ

2

 ≤ 0
Since N ≥ 1 (that is, there must be at least one partition), we can rule out the negative root
such that

N ≤
1 +

√
1 + 2

δ

2

Furthermore, since N is a positive integer, we have that

N ≤ N(δ) ≡

1 +
√
1 + 2

δ

2


where the b·c sign rounds to the next integer from below, e.g., b3.7c = 3. Cutoff N(δ)
represents the maximum number of partitions that can be supported for a given value of
δ. As the bias parameter, δ, increases, fraction 2

δ
becomes smaller, ultimately decreasing

cutoff N(δ). Intuitively, as the lobbyist and the politician become more divergent in their
preferences, the lobbyist has more incentives to overreport his type, so his messages becomes
less informative.
Figure 13.9 depicts cutoff N(δ) and illustrates that the PBE yields a smaller number of
partitions as the bias parameter δ increases, thus supporting less information transmission
from the (privately informed) lobbyist to the (uninformed) politician. Alternatively, solving
for δ in cutoffN(δ), we find that

δ ≤ 1

2N(N − 1) ,

5Note that this finding cannot be interpreted as a standard comparative statics result since we have not
found yet the length d that arises in equilibrium. We do that below.

10



which also indicates that, as we seek a larger number of partitions (higher N) in equilibrium,
the preference divergence parameter must be lower.

Figure 13.9. CutoffN(δ) as a function of the bias parameter δ.

Example 13.1. Equilibrium number of partitions. If we seek to support N = 2
partitions in equilibrium, we need δ ≤ 1

2×2(2−1) =
1
4
. To sustain N = 3 partitions, however,

we require δ ≤ 1
23(3−1) =

1
12
, which imposes a more restrictive condition on players’preference

alignment. �

13.4.3 Interval lengths in equilibrium

Let us now find the equilibrium length of the first interval, d∗, which will provide us with
the length of all subsequent intervals. Consider again the lobbyist incentive compatibility
condition for not overreporting,

θk+1 − 2θk + θk−1 = 4δ

This expression can be understood as a second-order linear difference equation.6 Since the
unit interval starts at θ0 = 0, we can write the above equation for k = 2 as follows

θ2 = 2θ1 − θ0 + 4δ = 2θ1 + 4δ

and, simlarly, for k = 3 this equation becomes

θ3 = 2θ2 − θ1 + 4δ = 2(2θ1 + 4δ)︸ ︷︷ ︸
θ2

− θ1 + 4δ = 3θ1 + 12δ

which helps us express it more generally, for any value of k, as follows

θk = kθ1 + 2k (k − 1) δ.
6Recall that linear second-order difference equation generally take the form xt+2+axt+1+bxt = ct, where

a and b are constants and ct is a number for all values of t. In our setting, xt+2 = θk+1, a = −2, xt+1 = θk,
b = 1, xt = θk−1, and ct = 4δ for all t. For an introduction to linear difference equations, see for instance,
Simon and Blume (1994, chapter 23).
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Therefore, evaluating this expression at k = N , we obtain θN = Nd + 2N(N − 1)δ, which
helps us write θN − θ0 = Nd+ 2N(N − 1)δ since θ0 = 0. In addition, because θN − θ0 = 1,
we can express 1 = Nd+ 2N(N − 1)δ and, solving for d, we find that the length of the first
interval is

d∗ =
1

N
− 2 (N − 1) δ

which also satisfies d∗ = θ1 − θ0 = θ1 given that θ0 = 0. Interestingly, this length decreases
in the number of partitions in that equilibrium, N , since ∂d∗

∂N
= −2d− 1

N2 ≤ 0, which means
that the first interval shrinks to “make room”for subsequent partitions to its right side.

Example 13.2. First interval decreasing in N . If δ = 1
20
andN = 2, which is compatible

with condition N ≤ N(δ) found in the previous section, we obtain that the length of the
first interval is

d∗ =
1

2
− 2 (2− 1) 1

20
=
2

5
.

However, when N increases to N = 3, this length shrinks to d∗ = 1
2
− 3 (3− 1) 1

20
= 2

15
. �

We can now use the above results to find the length of the kth interval, θk − θk−1. First,
substituting θ1 = 1

N
− 2 (N − 1) δ into expression θk = kθ1 + 2k (k − 1) δ, we obtain

θk = k

(
1

N
− 2 (N − 1) δ

)
︸ ︷︷ ︸

θ1

+ 2k (k − 1) δ

=
k

N
− 2k (N − k) δ

which implies that the length of the kth interval is

θk − θk−1 =
(
k

N
− 2k (N − k) δ

)
︸ ︷︷ ︸

θk

−
(
k − 1
N
− 2 (k − 1) (N − k + 1) δ

)
︸ ︷︷ ︸

θk−1

=
1

N
− 2 (N + 1− 2k) δ.

As a remark, we can confirm that the length of the first interval coincides with the expression
found above, d∗. Indeed, evaluating θk−θk−1 at the first interval (i.e., k = 1), this expression
simplifies to

θ1 − θ0 =
1

N
− 2 (N + 1− 2) δ

=
1

N
− 2 (N − 1) δ = d∗

which coincides with the result of d∗ found above.

Example 13.3. Length of each interval in equilibrium. Following with example 13.2,
in a context with δ = 1

20
and N = 2, the length of the first interval is d∗ = 2

5
. The length of

the second interval is
θ2 − θ1 =

1

2
− 2 [2 + 1− (2× 2)] 1

20
=
3

5
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which, together, account for the total length of the unit interval, i.e., 2
5
+ 3
5
= 1. Similarly, in

a setting with N = 3 partitions, it is easy to show that the first interval’s length is d∗ = 2
15
,

as shown in example 13.2, that of the second interval is

θ2 − θ1 =
1

2
− 3 [3 + 1− (2× 2)] 1

20
=
1

3
,

and that of the third interval is

θ3 − θ2 =
1

2
− 3 [3 + 1− (2× 3)] 1

20
=
8

15
,

with their sum satisfying 2
15
+ 1

3
+ 8

15
= 1, spanning all unit interval. �
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