EconS 503 - Advanced Microeconomics I1
Handout on Game Theory (Basics)

1. MWG 7.E.1

Consider the two-player game whose extensive form representation (excluding payoffs) is
depicted in the figure 1 below.
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Figure 1

a) What are player 1’s possible strategies? Player 2’s?

Answer:

In order to specify a strategy for player 1, we need to determine all of his possible actions
from the three information sets in which he moves. Thus a typical strategy for player 1 can
be written as a triple. The set of strategies for player 1 are:

Sl — (L7$17$2) 3 (LaxbyQ) ) (Lay17m2) ) (L7y17y2) ) (M,J?l,.’ﬂg) ) (M7 -Tl,y2) )
(Ma y17$2) ) (M7 yla@/?) ) (R,l'l,l'g) ) (Rax17y2) ) <R7 y17x2) ) (R7 3/173/2)

If player 1 uses strategy (L, z1,y2), he plays L at the root of the game, 1 in his information
set following action M (we refer to this information set at "Information Set 2") and y, in his
information set following action R (we refer to this information set as "Information Set 3").
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Similarly, player 2’s strategies specify her actions at her single information set (we refer to
this information set as "Information Set 1") Thus,

b) Show that for any behavior strategy that player 1 might play, there is realization equiv-
alent mixed strategy; that is, a mixed strategy that generates the same probability
distribution over the terminal nodes for any mixed strategy choice by player 2.

Answer:

A behavior strategy for player 1 consists of a randomization of his possible moves at each
information set in which he has to move. Suppose that at the root, player 1 plays L, M, and
R with probabilities of p;, ps, and p3 respectively (p; + ps + p3s = 1) ; at information set 2,
player 1 plays x1,y; with probabilities of ¢; and ¢, respectively (¢1 + g2 = 1) ; at information
set 3, player 1 plays xs, y» with probabilities of s; and sy respectively.

Assume that player 2 plays [ and r with probabilities o ({) and o (r) respectively (o (1) + o (r) = 1).

Thus, if player 1 is using the above behavioral strategy and player 2 is using this mixed strat-
egy, the probability that we reach each terminal node will be:

Pr(To)=p1 Pr(Ti)=po (D@ Pr(T)=peo(l) g

Pr(T3) =poo(r)qr  Pr(Th) =pao(r)ee  Pr(15) = pso(l)s:

Pr(Ts) = pso (1) s Pr(T7) =pso(r)sy  Pr(Tg) = ps3o (r) ss.
Now the following mixed strategy for player 1 is realization equivalent to the above behavior
strategy:

(L, 1, 2) with probability p;, (M, x1,xs) with probability peqi. (M, y1,x2) with probability pags,

(R, x1,72) with probability pssi, (R, z1,y2) with probability psss

[Note: p1 + poqi + p2qa2 + p3s1 + pss2 = p1 + D2 (@1 + q2) + ps (51 + S2) = 1]

Why these values? Note that for strategy (M, z1,x2) there are only two possible outcomes:
T, if player 2 plays [ or Tj if player 2 plays r. Hence, the total probability associated with
strategy (M, z1,x5) is

Pr(Th) + Pr(T3) = poo(D)qi + pao(r)qr = paqa(o(l) + o(r)) = paa



If player 1 is using the above mixed strategy and player 2 is using the mixed strategy o, the
probability that we reach each terminal node will be

Pr(Ty) = Pr(L,z1,29) =p1  Pr(Ty) = Pr(M,xy,25) - Pr(l) = pagro(l)

Pr(Ty) = Pr(M,y1,z2) Pr(l) = pageo(l)  Pr(T3) = Pr(M,xq,x2) - Pr(r) = paqro(r)
Pr(Ty) = Pr(M,y,23) - Pr(r) = pegao(r)  Pr(T5) = Pr(R,z1,x3) - Pr(l) = pssi0(l)
Pr(Ts) = Pr(R,z1,y2) - Pr(l) = p3sao(l)  Pr(1%) = Pr(R, x1,z5) - Pr(r) = p3sio(r)

Pr(Ty) = Pr(R,z1,ys) - Pr(r) = p3sqo(r)

which is the same as shown before in the behavior strategy (Note that many of the strategies
could be replaced with another. For example, Pr(M, z1, 25) = Pr(M, 1, y2) since information
set 3 is never reached. Hence, it is irrelevant which strategy we choose for that set and either
can be used). Therefore, the above mixed strategy is realization equivalent to the behavior
strategy.

c) Show that the converse is also true: For any mixed strategy that player 1 might play,
there is a realization equivalent to the behavior strategy.

Answer:

(L, z1,x9) with probability p1; (L, x1,y2) with probability pa; (L,y1,z2) with probability ps,
(L,y1,y2) with probability ps; (M, x1,22) with probability ps; (M, z1,y2) with probability pg,
(M, y1,22) with probability pr; (M, y1,y2) with probability ps; (R, z1,25) with probability po,
(R, y1,x9) with probability pio; (R, z1,y2) with probability pi1; (R, y1,y2) with probability pio
[p; >0 for all i and > p; = 1]

If player 2 uses the mixed strategy o, the probability that we reach each terminal node will
be:

Pr(Ty) = p1 +p2 +ps +pa; Pr(Th) = (ps +ps)o (1); Pr(T2) = (pr+ps)o(l);
Pr(T3) = (ps +pe) o (r); Pr(Ty) = (pr+ps)o(r); Pr(Ts) = (po+ pio) o (1);
Pr(Ts) = (p11 + pr2) o (I); Pr(17) = (po + pro) o (r); Pr(Tz) = (pun +pi2) o (r).

The following behavioral strategy for player 1 is realization equivalent: At the root of the
game, player 1 plays L, M, R with probabilities of (p1 + p2 + p3 + p4), (ps + ps + p7 + ps)
and (pg + p1o + p11 + p12) respectively; at information set 2, player 1 plays x1,y; with prob-

1343 P5+P6 p7+D8 : . : :
abilities of Er— and Fr——— respectively; at information set 3, player 1 plays

: 1343 P9+pio p11tp12
To, Yo With probabilities of TS T—— nd R —

Pr(Ty) = Pr(M)-Pr(r) - Pr(y)) = (ps + ps + p7 +ps) - o(r) -

= (p7+ps)o(r) (same value as above)

respectively. For example

P7+ D8
Ps + pe + P7+ Ds

d) Suppose that we change the game by merging the information sets at player 1’s second
round of moves (so that all four nodes are now in a single information set). Argue that
the game is no longer one of perfect recall. Which of the two results in (b) and (c) still
holds?



Answer:

Note that if player 1 reaches his (only) information set after player 2 moves, he will not
remember whether he chose M or R. Thus, the game is not of perfect recall.

The result of part (b) still holds: there exists a mixed strategy for player 1 which is realization
equivalent to any behavior strategy. Suppose player 1 uses the following behavior strategy:
At information set 1, player 1 plays L, M, R with probabilities of p;, p» and p3 respectively:
at information set 2, player 1 plays x,y with probabilities of ¢; and ¢, respectively. If player
2 is using the mixed strategy o, then the probability that we reach each terminal node will
be:

Pr (Ty) = p1; Pr(T1) = pao (1) qu; Pr (Ta) = pao (1) q2; Pr (13) = pao (1) qu; Pr (Ty) = pao (1) g2;
Pr (T5) = pso (1) q1; Pr(Ts) = p3o (1) g2; Pr(T%) = pso (1) q1; Pr (13) = pso (1) go.

The following mixed strategy for player 1 is realization equivalent: (L,x) with probability
p1, (M, x) with probabilitypeq, (M,y) with probability page, (R, x) with probability psqi,
(R,y) with probability psqs.

However, there does not always exist a behavior strategy that is realization equivalent to a
mixed strategy. Consider the following example. Player 1 uses the mixed strategy playing
(M, x) and (R, y) both with parobability % Player 2 uses the pure strategy (1) . Suppose there
exist a behavior strategy for player 1 which is realization equivalent to the mixed strategy: at
the root of the game, player 1 plays L, M, R with probabilities of p;, po and p3 respectively:
at his information set after player 2 moves, player 1 plays z,y with probabilities of ¢; and
g2 respectively. The mixed strategy generates the following distribution over the terminal
nodes:

Pr (Tl) = Pr (T(;) =
Pr (To) = Pr (T2> =

gl
=

(Tg) =Pr (T4) =Pr (T5> =Pr (T7) =Pr (Tg) =0
The behavior strategy generates:

Pr (Tg) = Pr <T4) = Pr (T7) = Pr (Tg) =0

Pr(To) = p1, Pr(Th) = poqr, Pr(13) =p2qe,Pr(Ts) = psqi, Pr(Ts) = psqe
in order for these distributions to be equivalent, we need: Pr(71) = p2q1 = % = po and
¢ # 0, Pr(T3) = pago = 0 = ¢o = 0 since po # 0, Pr(Ts) = psgo = 5 which cannot hold
since ¢ = 0, a contradiction. There exists no behavior strategy that is realization equivalent
to the above mixed strategy.
In a game that is not of perfect recall the following holds:

e For any behavior strategy there exists a mixed strategy that is realization equivalent,

e This proof does not show the general case of mixed strategies implying that there exists
a realization equivalent behavior strategy. [Note: for a general proof of these results
refer to Fudenberg and Tirole (1991), Game Theory. MIT press, p. 87]



2. MWG 8.C4

Consider a game I'y with players 1, 2 and 3 in which S} = {L, M, R},S; = {U, D}, and
S = {l,r}. Player 1’s payoffs from each of his three strategies conditional on the strategy
choices of players 2 and 3 are dipicted as (u, upr, ug) in each of the four boxes shown below,
where (m,e,m) >> 0. Assume that n < 4e.

Player 3’s Strategy

[ r
Player 2’s Strategy U | m+4e,m—n,m—4e | 7 —4de, 7+ 4,7+ 4¢
D |m+de,m+dm—4de | m—de,m—n,7m+4e

A strategy for player 2 is to play U with probability o and D with probability 1 — «, and
for player 3 is to play with [ with probability 5 and r with probability 1 — 5. Denote by P4
the expected payoff of player 1 when action A € {L, M, R} is taken given o and . Direct
calculation and simple algebra yield:

PL=r+4e(28—1)
PM:W—F(W—Baﬁ—l)U
Pp=rm+4e(1—-28)

a) Argue that (pure) strategy M is never a best response for player 1 to any independent
randomizations by players 2 and 3.

Answer:

To show that M is never a best response to any pair of strategies of players 2 and 3, («, ),
we have three cases:

[Case 1: 5> %}

Note that in this case ag =1 [% — 36} < 0. Thus the highest payoff for player 1 if he plays M
is obtained when o = 0, because a € [0, 1]. His payoff will be Py (. =0) =7+ [25 - 1] <
T+ 4e [%B - 1] < 7w+ 4e[26 — 1] = P;. Further note that P, is independent of «, so that

these inequailities hold for all a. Therefore, M cannot be a best response in this case.

[Case 2: < %]
Now, % > 0, the highest payoff for player 1 if he plays M is obtained when o = 1, and his
payoffis Py (a =1) =a+n[2+28-38—1] =n+n [t - 28] <m+n[i - 2p+1-5] <
7+ 4e[1 — 23] = Pg. Further note that Py is independent of «, so that these inequalities
hold for all a.. Therefore, M cannot be a best response in this case



[Case 3: 3 = 1]
In this case Pyy = m — g < m = Pr = P;. This concludes that M can never be a best
response.

b) Show that (pure) strategy M is not strictly dominated.
Answer:

Suppose in negation that there exists a mixed strategy, in which player 1 plays R with
probability v and L with probability 1 — v, that strictly dominates M.

[Case 1: v < %}

If 3 =0and a = 1 then Pyy = 7+ 7 > m. The mixed strategy will give a payoff of
m —4e (1 —2vy) < m < Py. Therefore, M cannot be a strictly dominated by the mixed
strategy in this case.

[Case 2: v > %}

If 3 =1and a = 0 then Pyy = 7+ 4 > 7. The mixed strategy will give a payoff of
T+ 4e (1 —2v) < m < Py. Therefore, M cannot be a strictly dominated by the mixed
strategy in this case. This implies a contradiction, so that M cannot be strictly dominated.

Alternative Proof:
Assume that there exists a mixed strategy of L and R that strictly dominates strategy M.
For strategy M to be strictly dominated, we must find a single value for + for which the
mixed strategy of L and R strictly dominates strategy M. We can reduce our normal-form
game to show the new payoffs

Player 3’s Strategy

[ r
Player 2’s Strategy U | 7 —n, 7 —4e+8ey | m+ 4, m + 4e — 8y
D|n+3m—4e+8y | m—nm+4e — 8y

where the first term represents Player 1’s payoff from playing strategy M and the second
term represents the linear combination of strategies L and R which represents Player 1’s
payoff from selecting the mixed strategy of L and R. Hence, we need the four conditions

mT—4+8y > ww—n
™ —4e+ 8y > 7r+ﬁ
T+ 4de — 8y > 7r+g

m+4e -8y > w—n

to all hold for at least 1 value of v. Looking at conditions 2 and 3, we have

7 L 7

—4e +8 > S S P e
modedeey > Ty 775" 162
n 1 n

de — 8ey > - = y< 5T
T+ 4 ey 7T—i—2 y 5 162



and it is clear that there is no value for v in which both of these conditions hold at the same
time. Hence, we have reached a contradiction and a mixed strategy of L and R does not
exist that strictly dominates strategy M.

¢) Show that (pure) strategy M can be a best response if player 2’s and player 3’s random-
izations are allowed to be correlated.

Answer:

Suppose players correlate in the following way: Players 2 and 3 play (U, r) with probability
1 and (D, 1) with probability 1.

Dl (Pr=3) Ur (Pr=1)
T44de T4+ 1 m—4de T—4e w41 TH4e
L M R L M R

Any mixed strategy for player 1 involving only L and R will give him a payoff of 7.

EUL(vL+ (1 —7)R)

= 'y(%(w + 4e) + %(W —4e)) 4+ (1 — 7)(%(7r —4e) + %(W +4e)) =7

However, playing M will yield him a payoff of 7 + .

1 1
EUN(M) = S(m+ )+ 5(r+ ) =7+ 2

Thus M is a best-response to the above correlated strategy of player 2 and 3.

3. Applying IDSDS in three-player games

Consider the following anti-coordination game in figure 2. played by three potential entrants
seeking to enter into a new industry, such as the development of software applications for
smartphones. Every firm (labeled as A, B, and C) has the option of entering or staying
out (i.e., remain in the industry they have been traditionally operating, e.g., software for
personal computers). The normal form game in figure 2 depicts the market share that each
firm obtains, as a function of the entering decision of its rivals. Firms simultaneously and
independently choose whether or not to enter. As usual in simultaneous-move games with
three players, the triplet of payoffs describes the payoff for the row player (firm A) first, for
the column player (firm B) second, and for the matrix player (firm C) third. Find the set of
strategy profiles that survive the iterative deletion of strictly dominated strategies (IDSDS).
Is the equilibrium you found using this solution concept unique?



Firm C chooses Enter Firm C chooses Stay Out

Firm B Firm B
Enter Stay Out Enter Stay Out
Enter | 14,24,32 | 8,30,27 Enter | 16,26,30 | 31,16,24
Firm A
Stay Out | 30,16,24 | 13,12,50 Stay Out | 31,23,14 | 14,26,32

Figure 2. Normal-form representation of a three-player game

Answer:

We can start by looking at the payoffs for firm C (the matrix player). [Recall that the ap-
plication of IDSDS is insensitive to the deletion order. Thus, we can start deleting strictly
dominated strategies for the row, column or matrix player, and still reach the same equilib-
rium result.] In particular, let us compare the third payoff of every cell across both matrices.
Figure 3 provides a visual illustration of how to do this pairwise comparison across matrices.

Firm C chooses Enter Firm C chooses Stay Out
Firm B Firm B
Enter Stay Out Enter Stay Out
Enter | 14,24,32 | 8,30,27 Enter | 16,26,30 | 31,16,24
Firm A Firm A

Stay Out | 30,16,24

14,26,32

24> 14 32>30 27 > 24 50>32

Figure 3. Pairwise payoff comparison for firm C

We find that for firm C (matrix player), entering strictly dominates staying out, i.e., uc (s, s, F) >
uc (Sa, sp, O) for any strategy of firm A, s, and firm B, sg, 32 > 30,27 > 24,24 > 14 and

50 > 32 in the pairwise payoff comparison depicted in figure 3. This allows us to delete the
right-hand side matrix (corresponding to firm C choosing to stay out) since it would not be
selected by firm C. We can, hence, focus on the left-hand matrix alone (where firm C chooses

to enter), which we reproduce in figure 4.



Firm B
Enter Stay Out

Enter | 14,24,32 | 8,30,27

FirmA
Stay Out | 30,16,24 | 13,12,50

Figure 4. Reduced Normal-form game.

We can now check that entering is strictly dominated for the row player (firm A), i.e.,
ua(F,sp, F) <ua(O,sp, F) for any strategy of firm B, sp, once we take into account that
firm C selects its strictly dominant strategy of entering. Specifically, firm A prefers to stay
out both when firm B enters (in the left-hand column, since 30 > 14), and when firm B stays
out (in the right-hand column, since 13 > 8). In other words, regardless of firm B’s decision,
firm A prefers to stay out. This allows us to delete the top row from the above matrix, since
the strategy “Enter” would never be used by firm A, which leaves us with a single row and
two columns, as illustrated in figure 5.

Firm B
Enter Stay Out

Firm A Stayout | 30,16,24 | 13,12,50

Figure 5. Reduced Normal-form game.

Once we have done that, the game becomes an individual-decision making problem, since
only one player (firm B) must select whether to enter or stay out. Since entering yields a
payoff of 16 to firm B, while staying out only entails 12, firm B chooses to enter, given that it
regards staying out as a strictly dominated strategy, i.e., ug(O, E, E) > ug(O, O, E') where
we fix the strategies of the other two firms at their strictly dominant strategies: staying out
for firm A and entering for firm C. We can thus delete the column corresponding to staying
out in the above matrix, as depicted in figure 6.

FirmB

Enter

Firm A Stayout | 30,16,24

Figure 6.

As a result, the only surviving cell (strategy profile) that survives the application of the
iterative deletion of strictly dominated strategies (IDSDS) is that corresponding to (Stay
Out, Enter, Enter), which predicts that firm A stays out, while both firms B and C choose
to enter.



