EconS 503 - Advanced Microeconomics 11
Handout on Repeated Games

1. MWG 9.B.9

Consider the game in which the following simultaneous-move game as depicted in figure 1 is
played twice:

Player 2
by by bs
a; | 10,10 | 2,12 | 0,13
Player 1 as | 12,2 | 5,5 | 0,0
ag | 13,0 | 0,0 | 1,1

Figure 1: Stage Game Normal Form.

The players observe the actions chosen in the first stage of the game prior to the second
stage. What are the pure strategy subgame perfect Nash equilibria of this game?

Answer:

To begin, we must first determine the pure strategy Nash Equilibria of the stage game.
Performing a simple best response procedure for each player will show that (as,bs) and
(a3, b3) are the two Nash Equilibria of the stage game. We know that any strategy where a
Nash Equilibrium of the stage game is played in every period is subgame perfect, and hence,
we already have 4 strategies that are subgame perfect. They are

Player 1 - Play a; in stage 1 and a; in stage 2
Player 2 - Play b; in stage 1 and b; in stage 2

where i, € {2,3}. We are not done, however, as the presence of more than one Nash
Equilibrium enables us to design carrot and stick strategies conditional on the discount
factor for each player. For example, consider the following strategy:

Player 1 - Play a; in stage 1. Play a, in stage 2 if player 2 played b; in stage 1, az otherwise

In this case, if player 2 cooperates and chooses by, he will receive a payoff of 10 in the first
stage and 5 in the second stage for a total payoff of

10 + 925

Where d5 is player 2’s discount factor. If player 2 were to deviate, his best deviation would
be to play b3 for a payoff of 13 in the first stage, and then be punished with a payoff of 1 in
the second stage. Hence, his total payoff would be

13 + 921



Therefore, to support cooperation, player 2’s total payoff must be weakly better when coop-
erating than it is while deviating, i.e.,

1044920 > 13+ 651

3
= 5221

Hence, if §5 > %, player 2 would prefer to cooperate with player 1’s strategy, and this strategy
can be supported as a subgame perfect Nash Equilibrium (Note that a symmetric strategy
profile of player 2 selecting the same actions as player 1 can also be supported as long as
01 > %. All other analyses in this problem will be assumed to be symmetric among players
1 and 2).

There are two more strategies for player 1 to consider, as well. Player 1 may not be limited
to solely the pareto optimal outcome of (aq,b;) in stage 1 of the game. Let’s consider the
following strategy:

Player 1 - Play as in stage 1. Play as in stage 2 if player 2 played b; in stage 1, a3 otherwise

In this case, if player 2 cooperates and chooses by, he will receive a payoff of 2 in the first
stage and 5 in the second stage for a total payoff of

24 025

whereas his optimal deviation would be to play b in the first stage (The Nash Equilibrium
becomes the outcome) for a payoff of 5 and then be punished with a payoff of 1 in the second
stage. His total payoff becomes

54 o1

Therefore, to support cooperating, we must have
24025 >  5+4651
3
= 0y > 1
Lastly, we must consider the following strategy profile:
Player 1 - Play a3 in stage 1. Play as in stage 2 if player 2 played b; in stage 1, az otherwise

In this final case, if player 2 cooperates and chooses by, he will receive a payoff of 0 in the
first stage and 5 in the second stage for a total payoff of

04 625

whereas his optimal deviation would be to play b3 in the first stage for a payoff of 1 and then
be punished with a payoff of 1 in the second stage. His total payoff becomes

14951



Therefore, to support cooperating, we must have

025 > 1+051

— 0y > 1

=y
Hence, conditional on the discount value for player 2, there could be anywhere from three to
six subgame perfect Nash equilibria for player 1. (Likewise, due to symmetry, there could be
three to six subgame perfect Nash Equilibria for player 2 conditional on player 1’s discount
vlaue). Interestingly, the most greedy strategy is the strategy that can be supported with
the lowest discount value. This is due to the fact that the suffering player’s very low payoff
from deviating in stage one makes the carrot of getting 5 times that in stage two all the

much sweeter.

2. MWG 9.B.14

At time ¢ = 0, an incumbent firm (firm I) is already in the widget market, and a potential
entrant (firm FE) is considering entry. In order to enter, firm E must incur a cost of K > 0.
Firm E’s only opportunity to enter is at time 0. There are three production periods. In
any period in which both firms are active in the market, the game in figure 2 is played.
Firm E moves first, deciding whether to stay in or exit the market. If it stays in, firm
I decides whether to fight or not. If firm I fights, firm E receives a payoff of —1 while
firm E receives a payoff of y. Whereas, if firm I accommodates, firm E receives a payoff
of 1 while firm I receives a payoff of z. Once firm E plays "out," it is out of the market
forever; firm E earns zero in any period during which it is out of the market, and firm I
earns z. The discount factor for both firms is 9.

Firm E

Figure 2: Extensive Form Stage Game



Assume that:

r > z>y
y+oxr > (1+9)z
1+6 > K

a. What is the (unique) subgame perfect Nash Equilibrium of this game?

Answer:

The extensive form of the game is depicted in figure 3 below. Simple backward induction
(using the assumptions) leads to the unique SPNE which is shown by arrows in the figure:
firm E enters at t = 0, and always plays In thereafter. Firm [ accommodates for all
t=1,23.



Firm F

Do Not Enter Enter

t=0
Firm E 1
‘ -

x+ 6x+ 6%x Out In
Firm /
t=1
x+ 6x+ 85%x Accom Fight
Firm E Firm E 1
(0] I 0 I
Firm / Firm [/
t=2
18K A BK
z+ 6x+ 6%x A F y+ 6x+ 6%x A F
Firm F Firm E Firm E Firm F 1
0 I 0 I 0 I 0 I
Firm / Firm / Firm / Firm /
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14+ 60862 08K 185862 BK A+ 6062 BK o B6 b6 2 BK
z+ 6z+ 6% z+ 8y + 8%y y+ 6z+ 8%y y+ 8y+ 8%y

Figure 3: Extensive Form of the Repeated Game.

b. Suppose now that firm E faces a financial constraint. In particular, if firm [ fights once
against firm E (in any period), firm E will be forced out of the market from that
point on. Now what is the (unique) subgame perfect Nash equilibrium of this game?
(If the answer depends on the values of parameters beyond the three assumptions,
indicate how.)



Answer:

The extensive form of the modified game is depicted in figure 4. Using backward induction,
firm I will always accommodate in period ¢ = 3, and therefore if t = 3 is reached, firm
E will play In. This causes firm I to choose Fight in ¢ = 2 since y + dx > (1 4+ 0)z by
our second assumption. This causes firm E to exit the market forcibly at the beginning of
period 3,which causes firm E to choose Out in ¢t = 2.

Working backward we get that at t = 1, firm I chooses to accommodate and firm E choose
In. However, the choice of firm E at t = 0 depends on the value of K. If K > 1 then firm
FE will choose not to enter, and if K < 1 then firm E will enter. For K = 1 both are part of
the (unique) continuation subgame perfect Nash Equilibrium, so there are up to two SPNE
in this case.



Firm E

Do Not Enter
t=0
0 =
x+ 8x+ &6%x
t=1
X+ 6x+ 6%x
Firm F Firm F 1
t=2
108K A K
z+ 86x+ 6%x v+ 6x+ 85%x
Firm F Firm E 1
1+ 60K 186 8K
z+ 6z+ 6%x z+ 8y + 8%x t=3
A
1+ 685+ 620K
z+ 6z+ 6%z

1+ 6R52BK
z+ 6z+ 6%y

Figure 4: Extensive Form of the Repeated Game

3. MWG 12.D.1

Consider an infinitely repeated Bertrand duopoly with discount factor 6 < 1. Both players
use the following strategies:



pit (Hi—1) = {

Intuitively, this strategy has both players playing the monopoly price and splitting the
monopoly profits evenly until one of them deviates (by charging a price of p™ — ¢ and
claiming the whole market for himself). After a deviation is detected, both players will
revert to the Nash Equilibrium of the stage game (A Grim-Trigger strategy) and charge
p; = c forever after, earning zero profits. Determine the conditions under which strategies
of the form above sustain the monopoly price in each of the following cases:

p™ if all elements of H, 1 equal (p™,p™) ort =1
¢ otherwise

a. Market demand in period ¢ is x; (p) = 7'z (p) where v > 0.

Answer:

This demand function is characterized by growth (either positive or negative) of 7 each
period. Monopoly profit in period ¢ is

mngtl’ (p)(p—c) = vtmgxrr (p) (p—c) =~'7"

Of which each player gets half, or
7Tm
Tje =75

2
Summing up each player’s lifetime profits, we have

T T T > e 1 =™
Z S— 2 ... = F) R— a0
S+ (1) =) (10)' e

t=o

If a player chooses to deviate, they will charge p; = p™ — ¢ (Intuitively, the lowest possible
deviation for the monopoly price). For simplicity, we assume that ¢ is so small that it will
not affect the actual amount of profits obtained. Hence, the deviating player will receive the
entire market (7"), and the cooperating player will receive nothing. Once the deviation is
detected, both players will charge marginal cost for all future periods, wiping out all future
profits. Therefore, to sustain cooperation, we must have the lifetime discounted profits be
weakly higher than seizing the market for one period and receiving nothing afterwards, i.e.,

Hence, the minimal discount factor supporting cooperation decreases in the rate of growth of
demand, i.e., cooperation can be sustained under a larger set of discount factors as demand
grows faster across periods. See figure 5 below.
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Figure 5: Cooperation Regions
as a Function of ~.

b. At the end of each period, the market ceases to exist with probability 1 —~ € [0, 1].

Answer:

If a firm deviates, it can obtain 7™ in that period, and it will get zero forever after. If it
does not deviate, its expected payoff is

o0

] o e R RRTET)  ali s

t=0

Intuitively, note that the interpretation of the discount factor is very similar to how we
are treating 7 in this case. What we essentially have are two discount factors that enter
into this equation multiplicatively. Like before, deviation is not profitable if and only if the
lifetime expected payoff is weakly higher than deviating for one period and claiming the
whole market, i.e.,

Since 7,0 € [0,1], we have a few interesting features of this relationship. For any v < %,
there does not exist a value for ¢ in which cooperation can be sustatined since the necessary
value for 0 would be greater than 1, outside of its domain. Figure 6 below illustrates this
relationship.
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Figure 6:Cooperation Regions
as a function of ~.

c. It takes K > 1 periods to detect and respond to a deviation from the collusive agreement.

Answer:
In this case, a firm will receive % each period for cooperating, yielding a lifetime payoff of

T T T 2 qm 1 ™
AT S ST — gt — -
2 + 2 + 2 + ; 2 1—-6 2

If, in contrast, the firm wanted to deviate, it would be able to deviate for several periods
before being caught deviating and then receiving zero profits from then on. Hence, we can
express the deviation payoff as

1-0"
1=

ﬂ_m

7rm—{—67rm—{—527rm—{—---5K_17rm: 5t7rm

It may be helpful to recall geometric series here to derive the second term of this equation,
let

a = 746" 4 8™ 4. 5K

da = o™ 468%™+ &am . 6K

m K__m 1_5K m

a—0a = 7" =671 :azl 57?

Therefore, cooperation can be sustained if and only if the payoff from cooperating is weakly
higher than that from deviating, i.e.,

10



==

1 oo (1=6%) 1
02" 00" — 52(5)

Hence, the more periods of time K that a cheating firm remains undetected by its colluding
partners, the more attractive cheating becomes. Cooperation therefore can only be sustained
under more restrictive sets of parameter values. Figure 7 demonstrates this (Note that this
figure portrays K as a continuous variable, when in actuality it can only take on integer
values).

Cooperate

34 1
) 5= ()
£V

Deviate
Y

1 2 3 4 K

Figure 7: Cooperation
Regions as a Function of K.

4. Collusion when N firms compete in prices

Consider a homogenous industry where n firms produce at zero cost and play the Bertrand
game of price competition for an infinite number of periods. Assume that:

e When firms choose the same price, they earn a per-period profit 7(p) = pa%, where

parameter « represents the state of demand and D(p) represents the quantity demand
for the good.

e When a firm ¢ charges a price of p; lower than the price of all of the other firms, it
earns a profit m(p;) = p;aD(p;), and all of the other firms obtain zero profits.

Imagine that in the current period demand is characterized by o = 1, but starting from the
following period demand will be characterized by a = # in each of the following periods. All
the players know exactly the evolution of the demand state at the beginning of the game,
and firms have the same common discount factor, 4.

11



Assume that # > 1 and consider the following trigger strategies. Each firm plays the
monopoly price P, in the first period of the game, and continues to charge such a price
until a profit equal to zero is observed. When this occurs, each firm charges a price equal to
zero (the marginal cost) forever. Under which conditions does this trigger strategy represent
an equilibrium? [Hint: In particular, show how 6 and n affects such a condition, and give
an economic intuition for this result.]

Answer:

[Cooperation :] Let us denote the collusive price by P° € (¢, P,,]. At time t = 0, parameter
« takes the value of o = 1, whereas at any subsequent time period ¢t = {1,2,...}, a = 6.
Hence, by colluding, firm 7 obtains a discounted stream of profits of

GG R PG B LA I PG
n n n n
= 7T(P)(1+60+520+539+~..): 1+5_9 ()
n 1—96 n

[Deviation :] Deviating firm ¢ charges a price marginally lower than the collusive price, i.e.,
P? = P¢ — ¢ and captures all the market, thus obtaining a profit level of m(P¢) (We
assume that the price difference is so small that profits are unchanged). However, after
that deviation, all firms revert to the Nash equilibrium of the unrepeated Bertrand game,
which yields a profit of zero thereafter. Therefore, the payoff stream from deviating is
T (P°)+0+00+---=m(P°).

Incentives to collude: Hence, every firm ¢ colludes as long as

1+ 00 S>p — §> " 1
[ n —_—
1—6 — “n—1+4+86
For compactness, we hereafter denote the previous ratio as n’:_lw =4 (n,0). Figure 8 depicts

this critical threshold of the discount factor, evaluated at # = 1.2, i.e., demand increases 20%
after the first year.

12



5 (8.1) — pairs for which collusion can be sustained.
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Figure 8: Critical Threshold d(n, ).

In particular, if firms seek to collude on a collusive price equal to that under monopoly, i.e.,
P¢ = P,,, such equilibrium can be sustained as long as 6 > § (n, 0).

Comparative statics : We can next examine how the critical discount factor 0 (n, ) is affected
by changes in demand, #, and in the number of firms, n. In particular,

0 —(n—1
94 (n, 0) _ (n )2 <0,
00 (n—140)
whereas -
94 (n,0) _ 0 -0
on (n—1+6)

In words, the higher the increments in demand, 6, the higher the present value of the stream
of profits received from ¢ = 1 onwards. That is, the opportunity cost of deviation increases as
demand becomes stronger. Graphically, the critical discount factor ) (n, 6) shifts downwards,
thus expanding the region of (J,n)-pairs for which collusion can be sustained. Figure 9
provides an example of this comparative statics result, whereby 6 is evaluated at 6 = 1.2 and
at # = 1.8. On the other hand, when n increases, the collusion is more difficult to sustain in
equilibrium.

13
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Figure 9: Cutoff §(n, ) for # = 1.2 and § = 1.8.

5. Aliprantis

7.22

[A Subgame Perfect Equilibrium of an Infinite-Horizon Repeated Game with a

Stage Game That Does Not Have a Pure-Strategy Nash Equilibrium)|

We revisit the infinite-horizon repeated game, with the stage game given in figure 11. Con-
sider the strategy profile ¢ = (01, 03) of this infinite-horizon game, in which

1. For t =1, we let

2. For t > 1 and each

01,1 (h0> = U and 01,2 (ho) = L.

S1,1 51,2
5211 52,2

hltfl — c Htfl’

St—1,1  St—1,2

14



we define

- (htfl) _ Uif (s4-11,81-12) is either (U,L) or (D, R)
b1 D otherwise.

and

- (ht_l) _ Lif (s¢—11,81-12) is either (U,L) or (D, R)
&2 R otherwise.

We claim that ¢ is a subgame perfect equilibrium for this infinite-horizon repeated game,
and will show that it is. Consider the subgame starting at ¢t + 1. We distinguish two cases.

[Case 1:| (s;1, S12) =either (U, L) or (D, R)

In this case the outcome of the strategy profile o from period ¢ 4+ 1 onward is as depicted in
figure 11 below.

((U>L)7(U>L)7(U7L)7"')'

Player 2
L R
Ul33]1,2
Player 1 D40]0.1

Figure 11: Normal Form of the Stage Game
This implies that the discounted utility of both players for the subgame starting at ¢ + 1 are

t+1

W (o) =i (o) = Y 613 = %

s=t+1
Notice first that since 3 is the highest payoff player 2 can receive in each period, it follows that
vi™ (o) is the highest discounted payoff that player 2 can get starting at ¢ + 1, irrespective
of the strategies of the two players. In particular, player 2 cannot improve his payoff in the
subgame starting at period t 4+ 1 by changing his strategy when player 1 continues to play
o1.

Now assume that player 2 continues to play o, while player 1 deviates. We have two cases
to check.

1) The action in period t is (U, L) : Because player 2 does not change his strategy, player
2 plays R in period t + 1. If player 1 deviates in period ¢ + 1 and then plays o; from
period t 4+ 2 onward, the outcome is

15



(D, L), (D,R), (U L),(U,L),..),
which gives player 1 the discounted payoff

44+0x35+30%+38° 4 (1)

versus his discounted payoff from cooperating of
3435 +3524+30°+--- =0l (0)
We can verify that player 1 will cooperate as long as
34+36+30°+38°+-->4+0x6+30°+38° +---

which holds for § > % If player 1 deviates in periods t + 1 and t + 2 and the plays o1, then
his discounted payoff is

440x040x06%+358%+---
< 4+0x0+30%+38% 4+ <ol (o)

for all values of §. In fact, it can be checked that the larger the number of periods that
player 1 deviates from playing o, the lower the discounted payoff.

2) The action in period t is (D, R) : In this case if player 1 deviates in period ¢+ 1 and then
plays oy, the outcome is

((D7 L) Y (D7 R) ) (U7 L) ) (U7 L) ) "') )
which the discounted payoff

440X 64302 +38%+---,

which, as in (1), is no more than v{*" (o) for § > £. If player 1 deviates in both periods ¢ + 1
and t 4+ 2 and the plays o1, the outcome is

(D,L),(UR),(D,R),(U,L),(UL),...),

whose discounted payoff is

A464+0x06%4+36% <4+0x35+30%+308°+--- <ol (0)
which, again holds for § > %

Again as in (1), it can be checked that the larger the number of periods for which player 1
deviates, the lower the discounted payoff of player 1.

16



[Case 2:| (s;1, S12) =either (D, L) or (U, R)

1) The action in period t is (D, L) : If the players play o from period ¢ + 1 onward, then
the outcome in the subgame is

((D,R),(U,L),(U,L),(U,L),...),
The discounted payoft of player 1 is

0+36+36%+36° +--- =i (o),
and the discounted payoff of player 2 is

1435 +36+358%+ - = vt (o).
If player 1 deviates in period t 4+ 1 and then plays oy, the outcome is

(U,R),(D,R),(U,L),(UL),..),
with the discounted payoff

14+06+3024+30%+---.

For 6 > %, we have our cooperation condition holding, i.e.,
1+0x86+30%+38°+---<0+35+35°+30°+---.
Thus, player 1 does not gain by deviating in period t + 1 if § > %
If player 1 deviates in periods ¢t 4+ 1 and ¢ + 2 and the plays o1, then the outcome is
((U,R),(U,R),(D,R),(U,L),(U,L),...).

Its payoft is

14+6+0x82+36% +--- <1+0x38+36%+30° 4 - <ol (o)

for any value of § > % Therefore, player 1 cannot gain by deviating in ¢ + 1 and ¢t + 2. In
fact, it can be checked that if & > %, then the larger the number of periods during which
player 1 deviates, the lower is the discounted payoff.

Now consider deviations by player 2. If player 2 deviates in period ¢ + 1 and then plays o9
while player 1 now continues to play oy, the outcome is

(D, L), (D,R), (U, L), (U, L),..),
and the discounted payoff of player 2 is

0464362 +35 - < 1435438 +38°+ - = ol (0).

for all values of . Therefore, player 2 cannot gain by deviating in period ¢ + 1.

17



If player 2 deviates in periods ¢ + 1 and ¢ + 2 and then plays o, then the outcome is

(D,L),(D,L),(D,R),(U/L),(U/L),..).
The discounted payoft is

0+0x0+302+30°+---<14+354+302+3°+--- =t (o).

which holds for all values of . Therefore, player 2 cannot gain by deviating in periods t + 1
and t 4+ 2. In fact, exactly as in the case of player 1, it can be checked that the larger the
number of periods during which player 2 deviates, the lower is the discounted payoft.

2) The action in period t is (U, R) : If the players play o from period ¢ + 1 onward, then
the outcome in the subgame is

(D,R),(U,L),(U,L),(U,L),..),
and the discounted payoff of player 1 is

0+36+36%+30° +--- =0l (o).
The discounted payoft of player 2 is

1435 +36%+358°+ - =vit (o).
If player 1 deviates in period ¢ + 1 and then plays o1, the outcome is

(U,R),(D,R),(U,L),(U/L),..),

and as in (1), above player 1 cannot gain by deviating if 6 > 3.
If player 1 deviates in periods ¢ + 1 and ¢ + 2 and then plays oy, then the outcome is

(UR),(U,R),(D,R),(U,L),(U/L),...).
And arguing exactly as in (1), it then follows that player 1 cannot gain by deviating if 6 > %

The argument that player 2 cannot gain by deviating is now exactly as in Case 2 (1).

We have thus shown that if § > %, then neither player 1 nor player 2 can gain by deviating
from the strategy profile o = (01, 02) in the subgame starting from period ¢ + 1 given any
period t outcome (U, L), (D, R), (D, L), and (U, R) . Because the strategy profile o depends
only on these outcomes in period ¢, we have shown that ¢ is an equilibrium strategy profile
in any subgame starting from period ¢ + 1 given any history h'. Because this is true for any
t > 0, we have shown that the strategy profile o is a subgame perfect equilibrium strategy
profile.
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