
EconS 503 - Advanced Microeconomics II
Handout on Repeated Games

1. MWG 9.B.9

Consider the game in which the following simultaneous-move game as depicted in �gure 1 is
played twice:

Player 2

Player 1

b1 b2 b3
a1 10; 10 2; 12 0; 13
a2 12; 2 5; 5 0; 0
a3 13; 0 0; 0 1; 1

Figure 1: Stage Game Normal Form.

The players observe the actions chosen in the �rst stage of the game prior to the second
stage. What are the pure strategy subgame perfect Nash equilibria of this game?

Answer:

To begin, we must �rst determine the pure strategy Nash Equilibria of the stage game.
Performing a simple best response procedure for each player will show that (a2; b2) and
(a3; b3) are the two Nash Equilibria of the stage game. We know that any strategy where a
Nash Equilibrium of the stage game is played in every period is subgame perfect, and hence,
we already have 4 strategies that are subgame perfect. They are

Player 1 - Play ai in stage 1 and aj in stage 2

Player 2 - Play bi in stage 1 and bj in stage 2

where i; j 2 f2; 3g. We are not done, however, as the presence of more than one Nash
Equilibrium enables us to design carrot and stick strategies conditional on the discount
factor for each player. For example, consider the following strategy:

Player 1 - Play a1 in stage 1. Play a2 in stage 2 if player 2 played b1 in stage 1, a3 otherwise

In this case, if player 2 cooperates and chooses b1, he will receive a payo¤ of 10 in the �rst
stage and 5 in the second stage for a total payo¤ of

10 + �25

Where �2 is player 2�s discount factor. If player 2 were to deviate, his best deviation would
be to play b3 for a payo¤ of 13 in the �rst stage, and then be punished with a payo¤ of 1 in
the second stage. Hence, his total payo¤ would be

13 + �21
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Therefore, to support cooperation, player 2�s total payo¤must be weakly better when coop-
erating than it is while deviating, i.e.,

10 + �25 � 13 + �21

=) �2 �
3

4

Hence, if �2 � 3
4
, player 2 would prefer to cooperate with player 1�s strategy, and this strategy

can be supported as a subgame perfect Nash Equilibrium (Note that a symmetric strategy
pro�le of player 2 selecting the same actions as player 1 can also be supported as long as
�1 � 3

4
. All other analyses in this problem will be assumed to be symmetric among players

1 and 2).

There are two more strategies for player 1 to consider, as well. Player 1 may not be limited
to solely the pareto optimal outcome of (a1; b1) in stage 1 of the game. Let�s consider the
following strategy:

Player 1 - Play a2 in stage 1. Play a2 in stage 2 if player 2 played b1 in stage 1, a3 otherwise

In this case, if player 2 cooperates and chooses b1, he will receive a payo¤ of 2 in the �rst
stage and 5 in the second stage for a total payo¤ of

2 + �25

whereas his optimal deviation would be to play b2 in the �rst stage (The Nash Equilibrium
becomes the outcome) for a payo¤ of 5 and then be punished with a payo¤ of 1 in the second
stage. His total payo¤ becomes

5 + �21

Therefore, to support cooperating, we must have

2 + �25 � 5 + �21

=) �2 �
3

4

Lastly, we must consider the following strategy pro�le:

Player 1 - Play a3 in stage 1. Play a2 in stage 2 if player 2 played b1 in stage 1, a3 otherwise

In this �nal case, if player 2 cooperates and chooses b1, he will receive a payo¤ of 0 in the
�rst stage and 5 in the second stage for a total payo¤ of

0 + �25

whereas his optimal deviation would be to play b3 in the �rst stage for a payo¤ of 1 and then
be punished with a payo¤ of 1 in the second stage. His total payo¤ becomes

1 + �21
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Therefore, to support cooperating, we must have

�25 � 1 + �21

=) �2 �
1

4

Hence, conditional on the discount value for player 2, there could be anywhere from three to
six subgame perfect Nash equilibria for player 1. (Likewise, due to symmetry, there could be
three to six subgame perfect Nash Equilibria for player 2 conditional on player 1�s discount
vlaue). Interestingly, the most greedy strategy is the strategy that can be supported with
the lowest discount value. This is due to the fact that the su¤ering player�s very low payo¤
from deviating in stage one makes the carrot of getting 5 times that in stage two all the
much sweeter.

2. MWG 9.B.14

At time t = 0; an incumbent �rm (firm I) is already in the widget market, and a potential
entrant (firm E) is considering entry. In order to enter, firm E must incur a cost of K > 0.
Firm E�s only opportunity to enter is at time 0. There are three production periods. In
any period in which both �rms are active in the market, the game in �gure 2 is played.
Firm E moves �rst, deciding whether to stay in or exit the market. If it stays in, firm
I decides whether to �ght or not. If firm I �ghts, firm E receives a payo¤ of �1 while
firm E receives a payo¤ of y. Whereas, if firm I accommodates, firm E receives a payo¤
of 1 while firm I receives a payo¤ of z. Once firm E plays "out," it is out of the market
forever; firm E earns zero in any period during which it is out of the market, and firm I
earns x: The discount factor for both �rms is �:

Firm	E

Firm	I
0
x

1
z

­1
y

Out In

Accom Fight

Figure 2: Extensive Form Stage Game
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Assume that:

x > z > y

y + �x > (1 + �)z

1 + � > K

a. What is the (unique) subgame perfect Nash Equilibrium of this game?

Answer:

The extensive form of the game is depicted in �gure 3 below. Simple backward induction
(using the assumptions) leads to the unique SPNE which is shown by arrows in the �gure:
firm E enters at t = 0; and always plays In thereafter. Firm I accommodates for all
t = 1; 2; 3:
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Figure 3: Extensive Form of the Repeated Game.

b. Suppose now that firm E faces a �nancial constraint. In particular, if firm I �ghts once
against firm E (in any period), firm E will be forced out of the market from that
point on. Now what is the (unique) subgame perfect Nash equilibrium of this game?
(If the answer depends on the values of parameters beyond the three assumptions,
indicate how.)
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Answer:

The extensive form of the modi�ed game is depicted in �gure 4: Using backward induction,
firm I will always accommodate in period t = 3; and therefore if t = 3 is reached, firm
E will play In. This causes firm I to choose Fight in t = 2 since y + �x > (1 + �)z by
our second assumption. This causes firm E to exit the market forcibly at the beginning of
period 3,which causes firm E to choose Out in t = 2.

Working backward we get that at t = 1, firm I chooses to accommodate and firm E choose
In. However, the choice of firm E at t = 0 depends on the value of K: If K > 1 then firm
E will choose not to enter, and if K < 1 then firm E will enter. For K = 1 both are part of
the (unique) continuation subgame perfect Nash Equilibrium, so there are up to two SPNE
in this case.
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Figure 4: Extensive Form of the Repeated Game

3. MWG 12.D.1

Consider an in�nitely repeated Bertrand duopoly with discount factor � < 1: Both players
use the following strategies:
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pjt (Ht�1) =

�
pm if all elements of Ht�1 equal (pm; pm) or t = 1
c otherwise

�
Intuitively, this strategy has both players playing the monopoly price and splitting the
monopoly pro�ts evenly until one of them deviates (by charging a price of pm � " and
claiming the whole market for himself). After a deviation is detected, both players will
revert to the Nash Equilibrium of the stage game (A Grim-Trigger strategy) and charge
pj = c forever after, earning zero pro�ts. Determine the conditions under which strategies
of the form above sustain the monopoly price in each of the following cases:

a. Market demand in period t is xt (p) = 
tx (p) where 
 > 0:

Answer:

This demand function is characterized by growth (either positive or negative) of 
 each
period. Monopoly pro�t in period t is

max
p

tx (p) (p� c) = 
tmax

p
x (p) (p� c) = 
t�m

Of which each player gets half, or

�jt = 

t�
m

2

Summing up each player�s lifetime pro�ts, we have

�m

2
+ 
�

�m

2
+ (
�)2

�m

2
+ � � � =

1X
t=o

(
�)t
�m

2
=

1

1� 
�
�m

2

If a player chooses to deviate, they will charge pj = pm � " (Intuitively, the lowest possible
deviation for the monopoly price). For simplicity, we assume that " is so small that it will
not a¤ect the actual amount of pro�ts obtained. Hence, the deviating player will receive the
entire market (�m), and the cooperating player will receive nothing. Once the deviation is
detected, both players will charge marginal cost for all future periods, wiping out all future
pro�ts. Therefore, to sustain cooperation, we must have the lifetime discounted pro�ts be
weakly higher than seizing the market for one period and receiving nothing afterwards, i.e.,

1

(1� 
�)
�m

2
� �m =) � � 1

2


Hence, the minimal discount factor supporting cooperation decreases in the rate of growth of
demand, i.e., cooperation can be sustained under a larger set of discount factors as demand
grows faster across periods. See �gure 5 below.
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Deviate
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½
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Figure 5: Cooperation Regions
as a Function of 
.

b. At the end of each period, the market ceases to exist with probability 1� 
 2 [0; 1] :

Answer:

If a �rm deviates, it can obtain �m in that period, and it will get zero forever after. If it
does not deviate, its expected payo¤ is

�m

2
+�

�



�
�m

2
+ �

�



�
�m

2
+ � � �

��
+ (1� 
)0

�
+ (1� 
)0

�
=

1X
t=0

(
�)t
�m

2
=

1

(1� 
�)
�m

2

Intuitively, note that the interpretation of the discount factor is very similar to how we
are treating 
 in this case. What we essentially have are two discount factors that enter
into this equation multiplicatively. Like before, deviation is not pro�table if and only if the
lifetime expected payo¤ is weakly higher than deviating for one period and claiming the
whole market, i.e.,

1

(1� 
�)
�m

2
� �m =) � � 1

2


Since 
; � 2 [0; 1], we have a few interesting features of this relationship. For any 
 < 1
2
,

there does not exist a value for � in which cooperation can be sustatined since the necessary
value for � would be greater than 1, outside of its domain. Figure 6 below illustrates this
relationship.
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as a function of 
.

c. It takes K � 1 periods to detect and respond to a deviation from the collusive agreement.

Answer:

In this case, a �rm will receive �m

2
each period for cooperating, yielding a lifetime payo¤ of

�m

2
+ �

�m

2
+ �2

�m

2
+ � � � =

1X
t=0

�t
�m

2
=

1

1� �
�m

2

If, in contrast, the �rm wanted to deviate, it would be able to deviate for several periods
before being caught deviating and then receiving zero pro�ts from then on. Hence, we can
express the deviation payo¤ as

�m + ��m + �2�m + � � � �K�1�m =
K�1X
t=0

�t�m =
1� �K

1� � �
m

It may be helpful to recall geometric series here to derive the second term of this equation,
let

a = �m + ��m + �2�m + � � � �K�1�m

�a = ��m + �2�m + �3�m + � � � �K�m

a� �a = �m � �K�m =) a =
1� �K

1� � �
m

Therefore, cooperation can be sustained if and only if the payo¤ from cooperating is weakly
higher than that from deviating, i.e.,
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1

(1� �)
�m

2
�
�
1� �K

�
(1� �) �

m =) � �
�
1

2

� 1
K

Hence, the more periods of time K that a cheating �rm remains undetected by its colluding
partners, the more attractive cheating becomes. Cooperation therefore can only be sustained
under more restrictive sets of parameter values. Figure 7 demonstrates this (Note that this
�gure portrays K as a continuous variable, when in actuality it can only take on integer
values).

Deviate

Cooperate

δ	=	(½)K
1

δ

K

½

¼

1

¾

21 43

Figure 7: Cooperation
Regions as a Function of K.

4. Collusion when N �rms compete in prices

Consider a homogenous industry where n �rms produce at zero cost and play the Bertrand
game of price competition for an in�nite number of periods. Assume that:

� When �rms choose the same price, they earn a per-period pro�t �(p) = p�D(p)
n
, where

parameter � represents the state of demand and D(p) represents the quantity demand
for the good.

� When a �rm i charges a price of pi lower than the price of all of the other �rms, it
earns a pro�t �(pi) = pi�D(pi), and all of the other �rms obtain zero pro�ts.

Imagine that in the current period demand is characterized by � = 1, but starting from the
following period demand will be characterized by � = � in each of the following periods. All
the players know exactly the evolution of the demand state at the beginning of the game,
and �rms have the same common discount factor, �.

11



Assume that � > 1 and consider the following trigger strategies. Each �rm plays the
monopoly price Pm in the �rst period of the game, and continues to charge such a price
until a pro�t equal to zero is observed. When this occurs, each �rm charges a price equal to
zero (the marginal cost) forever. Under which conditions does this trigger strategy represent
an equilibrium? [Hint: In particular, show how � and n a¤ects such a condition, and give
an economic intuition for this result.]

Answer:

[Cooperation :] Let us denote the collusive price by P c 2 (c; Pm]. At time t = 0; parameter
� takes the value of � = 1, whereas at any subsequent time period t = f1; 2; : : :g, � = �.
Hence, by colluding, �rm i obtains a discounted stream of pro�ts of

� (P c)

n
+ ��

� (P c)

n
+ �2�

� (P c)

n
+ �3�

� (P c)

n
+ � � �

=
� (P c)

n

�
1 + �� + �2� + �3� + � � �

�
=

�
1 +

��

1� �

�
�(P c)

n

[Deviation :] Deviating �rm i charges a price marginally lower than the collusive price, i.e.,
P d = P c � " and captures all the market, thus obtaining a pro�t level of � (P c) (We
assume that the price di¤erence is so small that pro�ts are unchanged). However, after
that deviation, all �rms revert to the Nash equilibrium of the unrepeated Bertrand game,
which yields a pro�t of zero thereafter. Therefore, the payo¤ stream from deviating is
� (P c) + 0 + �0 + � � � = � (P c).
Incentives to collude: Hence, every �rm i colludes as long as

�
1 +

��

1� �

�
�(P c)

n
� � (P c)

1 +
��

1� � � n =) � � n� 1
n� 1 + �

For compactness, we hereafter denote the previous ratio as n�1
n�1+� � ~� (n; �). Figure 8 depicts

this critical threshold of the discount factor, evaluated at � = 1:2; i.e., demand increases 20%
after the �rst year.
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Figure 8: Critical Threshold ~�(n; �):

In particular, if �rms seek to collude on a collusive price equal to that under monopoly, i.e.,
P c = Pm, such equilibrium can be sustained as long as � � ~� (n; �).

Comparative statics :We can next examine how the critical discount factor ~� (n; �) is a¤ected
by changes in demand, �, and in the number of �rms, n. In particular,

@~� (n; �)

@�
=

� (n� 1)
(n� 1 + �)2

< 0;

whereas
@~� (n; �)

@n
=

�

(n� 1 + �)2
> 0:

In words, the higher the increments in demand, �, the higher the present value of the stream
of pro�ts received from t = 1 onwards. That is, the opportunity cost of deviation increases as
demand becomes stronger. Graphically, the critical discount factor ~� (n; �) shifts downwards,
thus expanding the region of (�; n)-pairs for which collusion can be sustained. Figure 9
provides an example of this comparative statics result, whereby � is evaluated at � = 1:2 and
at � = 1:8. On the other hand, when n increases, the collusion is more di¢ cult to sustain in
equilibrium.
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Figure 9: Cuto¤ ~�(n; �) for � = 1:2 and � = 1:8.

5. Aliprantis 7.22

[A Subgame Perfect Equilibrium of an In�nite-Horizon Repeated Game with a

Stage Game That Does Not Have a Pure-Strategy Nash Equilibrium]

We revisit the in�nite-horizon repeated game, with the stage game given in �gure 11. Con-
sider the strategy pro�le � = (�1; �2) of this in�nite-horizon game, in which

1. For t = 1, we let

�1;1
�
h0
�
= U and �1;2

�
h0
�
= L:

2. For t > 1 and each

ht�1 =

26664
s1;1 s1;2
s2;1 s2;2
...

...
st�1;1 st�1;2

37775 2 H t�1;
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we de�ne

�t;1
�
ht�1

�
=

�
U if (st�1;1; st�1;2) is either (U;L) or (D;R)
D otherwise.

�
and

�t;2
�
ht�1

�
=

�
L if (st�1;1; st�1;2) is either (U;L) or (D;R)
R otherwise.

�
We claim that � is a subgame perfect equilibrium for this in�nite-horizon repeated game,
and will show that it is. Consider the subgame starting at t+ 1. We distinguish two cases.

[Case 1:] (st;1; st;2) =either (U;L) or (D;R)

In this case the outcome of the strategy pro�le � from period t+ 1 onward is as depicted in
�gure 11 below.

((U;L) ; (U;L) ; (U;L) ; � � �) :

Player 2

Player 1

L R
U 3; 3 1; 2
D 4; 0 0; 1

Figure 11: Normal Form of the Stage Game

This implies that the discounted utility of both players for the subgame starting at t+1 are

vt+11 (�) = vt+12 (�) =
1X

s=t+1

�s�t�13 =
3

1� � :

Notice �rst that since 3 is the highest payo¤player 2 can receive in each period, it follows that
vt+12 (�) is the highest discounted payo¤ that player 2 can get starting at t+ 1; irrespective
of the strategies of the two players. In particular, player 2 cannot improve his payo¤ in the
subgame starting at period t + 1 by changing his strategy when player 1 continues to play
�1.

Now assume that player 2 continues to play �2 while player 1 deviates. We have two cases
to check.

1) The action in period t is (U;L) : Because player 2 does not change his strategy, player
2 plays R in period t + 1. If player 1 deviates in period t + 1 and then plays �1 from
period t+ 2 onward, the outcome is
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((D;L) ; (D;R) ; (U;L) ; (U;L) ; :::) ;

which gives player 1 the discounted payo¤

4 + 0� � + 3�2 + 3�3 + � � � (1)

versus his discounted payo¤ from cooperating of

3 + 3� + 3�2 + 3�3 + � � � = vt+11 (�)

We can verify that player 1 will cooperate as long as

3 + 3� + 3�2 + 3�3 + � � � � 4 + 0� � + 3�2 + 3�3 + � � �

which holds for � � 1
3
. If player 1 deviates in periods t+ 1 and t+ 2 and the plays �1, then

his discounted payo¤ is

4 + 0� � + 0� �2 + 3�3 + � � �
< 4 + 0� � + 3�2 + 3�3 + � � � < vt+11 (�)

for all values of �. In fact, it can be checked that the larger the number of periods that
player 1 deviates from playing �1; the lower the discounted payo¤.

2) The action in period t is (D;R) : In this case if player 1 deviates in period t+1 and then
plays �1; the outcome is

((D;L) ; (D;R) ; (U;L) ; (U;L) ; :::) ;

which the discounted payo¤

4 + 0� � + 3�2 + 3�3 + � � � ;
which, as in (1), is no more than vt+11 (�) for � � 1

3
. If player 1 deviates in both periods t+1

and t+ 2 and the plays �1, the outcome is

((D;L) ; (U;R) ; (D;R) ; (U;L) ; (U;L) ; :::) ;

whose discounted payo¤ is

4 + � + 0� �2 + 3�3 � 4 + 0� � + 3�2 + 3�3 + � � � < vt+11 (�)

which, again holds for � � 1
3
.

Again as in (1) ; it can be checked that the larger the number of periods for which player 1
deviates, the lower the discounted payo¤ of player 1.
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[Case 2:] (st;1; st;2) =either (D;L) or (U;R)

1) The action in period t is (D;L) : If the players play � from period t + 1 onward, then
the outcome in the subgame is

((D;R) ; (U;L) ; (U;L) ; (U;L) ; :::) ;

The discounted payo¤ of player 1 is

0 + 3� + 3�2 + 3�3 + � � � = vt+11 (�) ;

and the discounted payo¤ of player 2 is

1 + 3� + 3�2 + 3�3 + � � � = vt+12 (�) :

If player 1 deviates in period t+ 1 and then plays �1; the outcome is

((U;R) ; (D;R) ; (U;L) ; (U;L) ; :::) ;

with the discounted payo¤

1 + 0:� + 3�2 + 3�3 + � � � .
For � � 1

3
, we have our cooperation condition holding, i.e.,

1 + 0� � + 3�2 + 3�3 + � � � � 0 + 3� + 3�2 + 3�3 + � � � :
Thus, player 1 does not gain by deviating in period t+ 1 if � � 1

3
:

If player 1 deviates in periods t+ 1 and t+ 2 and the plays �1, then the outcome is

((U;R) ; (U;R) ; (D;R) ; (U;L) ; (U;L) ; :::) :

Its payo¤ is

1 + � + 0� �2 + 3�3 + � � � � 1 + 0� � + 3�2 + 3�3 + � � � < vt+11 (�)

for any value of � � 1
3
: Therefore, player 1 cannot gain by deviating in t + 1 and t + 2. In

fact, it can be checked that if � � 1
3
; then the larger the number of periods during which

player 1 deviates, the lower is the discounted payo¤.

Now consider deviations by player 2. If player 2 deviates in period t + 1 and then plays �2
while player 1 now continues to play �1; the outcome is

((D;L) ; (D;R) ; (U;L) ; (U;L) ; :::) ;

and the discounted payo¤ of player 2 is

0 + � + 3�2 + 3�3 + � � � < 1 + 3� + 3�2 + 3�3 + � � � = vt+12 (�) :

for all values of �. Therefore, player 2 cannot gain by deviating in period t+ 1:
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If player 2 deviates in periods t+ 1 and t+ 2 and then plays �2; then the outcome is

((D;L) ; (D;L) ; (D;R) ; (U;L) ; (U;L) ; :::) :

The discounted payo¤ is

0 + 0� � + 3�2 + 3�3 + � � � � 1 + 3� + 3�2 + 3�3 + � � � = vt+12 (�) :

which holds for all values of �. Therefore, player 2 cannot gain by deviating in periods t+ 1
and t + 2. In fact, exactly as in the case of player 1, it can be checked that the larger the
number of periods during which player 2 deviates, the lower is the discounted payo¤.

2) The action in period t is (U;R) : If the players play � from period t + 1 onward, then
the outcome in the subgame is

((D;R) ; (U;L) ; (U;L) ; (U;L) ; :::) ;

and the discounted payo¤ of player 1 is

0 + 3� + 3�2 + 3�3 + � � � = vt+11 (�) :

The discounted payo¤ of player 2 is

1 + 3� + 3�2 + 3�3 + � � � = vt+12 (�) :

If player 1 deviates in period t+ 1 and then plays �1; the outcome is

((U;R) ; (D;R) ; (U;L) ; (U;L) ; :::) ;

and as in (1) ; above player 1 cannot gain by deviating if � � 1
3
:

If player 1 deviates in periods t+ 1 and t+ 2 and then plays �1; then the outcome is

((U;R) ; (U;R) ; (D;R) ; (U;L) ; (U;L) ; :::) :

And arguing exactly as in (1) ; it then follows that player 1 cannot gain by deviating if � � 1
3
:

The argument that player 2 cannot gain by deviating is now exactly as in Case 2 (1) :

We have thus shown that if � � 1
3
; then neither player 1 nor player 2 can gain by deviating

from the strategy pro�le � = (�1; �2) in the subgame starting from period t + 1 given any
period t outcome (U;L) ; (D;R) ; (D;L) ; and (U;R) : Because the strategy pro�le � depends
only on these outcomes in period t, we have shown that � is an equilibrium strategy pro�le
in any subgame starting from period t+ 1 given any history ht: Because this is true for any
t � 0, we have shown that the strategy pro�le � is a subgame perfect equilibrium strategy
pro�le.
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