
Reactions to Arrow’s impossibility theorem

Introducing assumptions on individual preferences (section
21.D in MWG):

i.e., assuming single-peaked preferences for every individual).

Using a different approach (section 6.3 in JR):

Aggregating the intensity of individual preferences (not only
the ranking of alternatives for each individual) into a social
welfare function that captures the intensity in social
preferences.
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Single-peaked preferences:

Since preferences are defined as single-peaked with respect to
a linear order in X , we first have to define what a linear order
means (standard definition in math):
A binary relation ≥ on the set of alternatives X is a linear
order on X if it is:

reflexive, i.e., x ≥ x for every x ∈ X ,
transitive, i.e., x ≥ y and y ≥ z implies y ≥ z , and
total, i.e., for any two distinct x , y ∈ X , we have that either
x ≥ y or y ≥ x , but not both.
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Single-peaked preferences:

If the set of alternatives is a subset of the real line, i.e., X ⊂ R,
then the linear order ≥ is the natural "greater than or equal
to" order of the real numbers.
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Single-peaked preferences:

The rational preference relation % is single peaked with
respect to the linear order ≥ on X if there is an alternative
x ∈ X with the property that % is increasing with respect to
≥ on the set of alternatives below x , {y ∈ X : x ≥ y}, and
decreasing with respect to ≥ on the set of alternatives above
x , {y ∈ X : y ≥ x}. That is,

If x ≥ z > y then z � y , and
If y > z ≥ x then y � z ,

In words: There is an alternative x that represents a peak of
satisfaction.
Moreover, satisfaction increases as we approach this peak (so
there cannot be any other peak of satisfaction).



Reactions to Arrow’s impossibility theorem

Single-peaked preferences:

Example 21.D.4:
Suppose a set of alternatives X = [a, b] ⊂ R.
Then, a preference relation % on X is single peaked if and only
if it is strictly convex :

That is, if and only if, for every alternative w ∈ X , we have
that, for any two alternatives y and z weakly preferred to w ,
i.e., y % w and z % w where y 6= z , their linear combination
is strictly preferred to w ,

αy + (1− α)z � w for all α ∈ (0, 1)

Figures of utility functions satisfying/violating the
single-peaked property.
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Single-peaked preferences:

We will now restrict our attention to settings in which all
individuals have single-peaked preferences with respect to the
same linear order ≥.
Consider pairwise majority voting.

Formally, for any pair {x , y} ⊂ X , we say
xF̂
(
%1,%2, ...,%I

)
y to be as "x is socially at least as good

as y", if the number of agents that strictly prefer x to y is
larger or equal to the number of agents that strictly prefer y
to x , that is,

if #
{
i ∈ I : x �i y

}
≥ #

{
i ∈ I : y �i x

}
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Single-peaked preferences:

We will next show that, with single-peaked preferences, the
social preferences arising from pairwise majority voting have
maximal elements.

That is, there are alternatives that cannot be defeated by any
other alternatives, i.e, the Condorcet paradox does not hold.
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Single-peaked preferences:

Before doing that, we need a few definitions:
Let xi denote the maximal alternative for individual i
according to his preference %i , i.e., his "peak".
Let us next define what we mean by a median agent:

Agent h ∈ I is a median agent for the profile
(
%1,%2, ...,%I

)
of single-peaked preferences with respect to the linear order ≥
if

# {i ∈ I : xi ≥ xh} ≥
I
2
and # {i ∈ I : xh ≥ xi } ≥

I
2

That is, the number of individuals whose ideal point is larger
than h’s ideal point is larger than half of the population.
Similarly, the number of individuals whose ideal point is
smaller than h’s ideal point is larger than half of the
population.
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Single-peaked preferences:

A natural conclusion of the definition of a median agent is that:

If there are no ties in peaks and the number of individuals is
odd,
then there are exactly I−1

2 individuals with ideal points strictly
smaller than xh , and

I−1
2 individuals with ideal points strictly

larger than xh .
That is, the median agent is unique.
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Single-peaked preferences:
We are now ready to claim the existence of a Condorcet
winner in this setting, and to prove it.

Suppose that ≥ is a linear order on X and consider a profile of

individual preferences
(
%1,%2, ...,%I

)
where, for every

individual i , %i is single peadked with respect to ≥.
Let h ∈ I be a median agent with ideal point xh .
Then, xh F̂

(
%1,%2, ...,%I

)
y for every alternative y ∈ X .
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Single-peaked preferences:
Interpretation of "xhF̂

(
%1,%2, ...,%I

)
y for every alternative

y ∈ X":
The ideal point of the median agent cannot be defeated by
majority voting by any other alternative y .
When an alternative cannot be defeated by majority voting by
any other alternative, we refer to it as a "Condorcet winner".
Hence, a Condorcet winner exists when the preferences of all
agents are single peaked with respect to the same linear order.
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Single-peaked preferences:
Proof of the Condorcet winner result:

Take any alternative y ∈ X and suppose that the ideal point of
the median agent, xh , satisfies xh > y (the argument is
analogous if y > xh).
NTS that alternative y cannot defeat xh , that is,

#
{
i ∈ I : xh �i y

}
≥ #

{
i ∈ I : y �i xh

}
Consider now the set of individuals S ⊂ I with ideal points to
the right-hand side of xh , that is

{i ∈ I : xi ≥ xh} .

Then, xi ≥ xh > y for every individual i ∈ S .
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Single-peaked preferences:
Proof (cont’d):

Hence, by single-peaked preferences, xh %i y for every
individual i ∈ S .

That is, all individuals in S (i.e., all with ideal points to the
right-hand side of xh) will vote for the ideal point of the
median agent, xh .

Finally, because agent h is a median agent, the number of
individuals with ideal points to the right-hand side of xh , i.e.,
#S , satisfies #S ≥ I

2 .
Therefore,

#
{
i ∈ I : xh �i y

}
≥ #S ≥ I

2
≥ # (I\S) ≥ #

{
i ∈ I : y �i xh

}
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Single-peaked preferences:
The existence of a Condorcet winner guarantees that we don’t
run into cyclicality

That is, the order in which pairs of alternatives are confronted
in pairwise majority voting does not affect the final outcome.
However, the previous assumptions don’t guarantee transitivity.
Let’s see one example in which a Condorcet winner exists, yet
transitivity in the social preference relation is violated.
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Example of instransitive social preferences:
Consider a set of alternatives X = {x , y , z} and I = 4
individuals.

Consider the following profile of individual preferences

x � 1y �1 z for individual 1,

z � 2y �2 x for individual 2,

x � 3z �3 y for individual 3, and

y � 4x �4 z for individual 4
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Example of instransitive social preferences:
We thus have that

#
{
i ∈ I : x �i y

}
= #

{
i ∈ I : y �i x

}
=

#
{
i ∈ I : z �i y

}
= #

{
i ∈ I : z �i y

}
= 2

which implies that x is socially indifferent to y and, similarly,
y is socially indifferent to z .

We can then write zF̂
(
%1,%2,%3,%4

)
y and

yF̂
(
%1,%2,%3,%4

)
x .
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Example of instransitive social preferences:
For transitivity, we would need that zF̂

(
%1,%2,%3,%4

)
x .

Can we obtain this result? No:

Since #
{
i ∈ I : x �i z

}
= 3 and #

{
i ∈ I : z �i x

}
= 1

implies

xF̂
(
%1,%2,%3,%4

)
z .

which is the opposite of what we NTS.

Hence, in this case majority voting fails to generate a
transitive social welfare functional.
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Example of instransitive social preferences:
Social preferences are nonetheless acyclic since:

A pairwise majority voting between x and y yields a tie (2 vote
for each);
A pairwise majority voting between y and z yields a tie (2 vote
for each);
A pairwise majority voting between z and x yields alternative z
being the winner (the Condorcet winner) with three votes
against one.

Hence, alternative z is the Condorcet winner:

Trying to confront z against another alternative, such as x or
y , yields either of these alternatives being defeated by z (or a
tie, but they never defeat z).
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How can we guarantee transtivity in the swf?
We need to impose two additional conditions:

Preference relation of every individual i must be strict (no
indifference between alternatives is allowed); and
The number of individuals I is odd.
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Proof of transitivity in the swf:

Consider a set X = {x , y , z}, where xF̂
(
%1,%2, ...,%I

)
y

and yF̂
(
%1,%2, ...,%I

)
z .

Then, x defeats y , and y defeats x .
Since individual preferences are strict and I is odd, there must
be one alternative in X that is not defeated by any other
alternative in X .
Such alternative can be neither y (which is defeated by x) nor
z (which is defeated by y).
Hence, such alternative has to be x , and we can thus cnclude
that xF̂

(
%1,%2, ...,%I

)
z , as required to prove transitivity.
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Hence, imposing the assumption of single-peaked preferences
helped us obtain an acyclic social ranking, thus avoiding the
Condorcet paradox.

But, our discussion considered that X ⊂ R, i.e., the set of
alternatives was unidimensional.

What if, for instance, we are considering a policy issue in
which individual preferences rank alternatives according to two
dimensions?
Bad news: cyclicality emerges again, even if we assume convex
preferences.
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Consider that the space of alternatives is bidimensional and,
in particular, given by the unit square, i.e., X = [0, 1]2.

A specific alternative is, hence, represented now by a pair
x = (x1, x2).

See next figure.
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Consider three individuals with the following utility functions:

u1(x1, x2) = −2x1 − x2,
u2(x1, x2) = x1 + 2x2, and

u3(x1, x2) = x1 − x2.

We can represent their indifference curves in the unit square,
by solving for x2, for a given utility level u,

x2 = −u − 2x1,
x2 =

u − x1
2

, and

x2 = x1 − u.



Reactions to Arrow’s impossibility theorem



Reactions to Arrow’s impossibility theorem



Reactions to Arrow’s impossibility theorem



Reactions to Arrow’s impossibility theorem

Preferences are all convex.

Yet, no pair x = (x1, x2) can be Condorcet winner.

To show that, we need to show that, for every pair
x = (x1, x2), we can find another pair y = (y1, y2) which is
preferred by at least two of the three individuals.
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Consider the following three cases:

Case 1: If x = (0, x2), then a pair y =
(
1
2 , x2

)
is preferred by

agents 2 and 3 to x .

u1(x) = −x1 > u1(y) = −1− x1
u2(x) = 2x2 < u2(y) = 1

2 + x2
u3(x) = −x2 < u3(y) = 1

2 − x2
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Consider the following three cases:

Case 2: If x = (x1, 1), then a pair y =
(
x1, 12

)
is preferred by

agents 1 and 3 to x .

u1(x) = −2x1 − 1 < u1(y) = −2x1 − 1
2

u2(x) = x1 + 2 > u2(y) = x1 + 1
u3(x) = x1 − 1 < u3(y) = x1 − 1

2
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Consider the following three cases:

Case 3: If x1 > 0 and x2 < 1, then a pair y = (x1 − ε, x2 + ε),
where ε > 0, is preferred by agents 1 and 2 to x .

u1(x) = −2x1 − x2 <
u1(y) = −2 (x1 − ε)− (x2 + ε) =

= −2x1 − x2 + ε

u2(x) = x1 + 2x2 <
u2(y) = (x1 − ε) + 2(x2 + ε) =

= x1 + 2x2 + ε

u3(x) = x1 − x2 >
u3(y) = (x1 − ε)− (x2 + ε) =

= x1 − x2 − 2ε
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Multidimensional alternatives:
Let’s not dispair:

We have just found one counterexample in which the
bidimensionality of the alternatives in X yields cyclicality.
But, we can find other settings in which, despite alternatives
being multidimensional, cyclicality doesn’t arise.
More generally, under which conditions can we guarantee that
cyclicality does not emerge?
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Multidimensional alternatives:
Consider alternatives with n-dimensions, x ∈ Rn

Individual preferences are represented by utility function

u(y) = −‖y − x‖

where x denotes the ideal point of this individual. Hence, the
utility of vector y is given by the Euclidean distance from his
ideal point x .

You can think about x as the "peak" of the utility mountain of
this individual, where the level sets of the mountain are circles.
Figure for the case in which X = R2.
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Multidimensional alternatives:
Hence, given two alternatives y and z , an individual with ideal
point x will prefer the one closer to x (where "closer to" is
defined by the Euclidean distance).

Figure for the case in which X = R2.
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Multidimensional alternatives:
Thus, the region peaks of different individuals that prefer y to
z is

A(y , z) = {x ∈ Rn : ‖x − y‖ < ‖x − z‖}
That is, all those individuals whose ideal points, x , are closer
to y than to z .

In the next figure, the boundary of A(y , z) is given by a line
(generally, it could be a hyperplane if n > 2)
This line is perpendicular to the segment connecting y and z ,
and passing through its midpoint.
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Multidimensional alternatives:
Consider now a continuum of individuals, each of them with
the above preferences.

The ideal points, x ∈ Rn, are distributed with density function
g(x).

Then, for any two alternatives y and z , the fraction of the
population that prefers y to z is∫

A(y ,z )
g(z)dz ≡ mg (y , z)
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Multidimensional alternatives:
Let us now show under which conditions there can be a
Condorcet winner, i.e., an alternative x∗ that cannot be
defeated by any other alternative y .

1st line of implication:

If alternative x∗ is a median, then x∗ is a Condorcet winner.

2nd line of implication:

If alternative x∗ is a Condorcet winner, then x∗ is a median.
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Multidimensional alternatives:
Let us now show under which conditions there can be a
Condorcet winner.

Suppose there is an alternative x∗ ∈ Rn such that any
halfspace through x∗ divides Rn into two half-spaces, each
having a total mass of 12 according to the density g(·).
See figure
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Multidimensional alternatives:
Point x∗ then leaves exactly half of the population to the left
(in the Euclidean sense) and the other half to the right:

As a consequence, point x∗ is referred to as "median."
It coincides with the usual notion of median in the case of
n = 1 (see next figure).
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Multidimensional alternatives:
A median x∗ in the above sense is a Condorcet winner:

Point x∗ cannot be defeated by any other alternative y 6= x∗.
In particular, A(x∗, y) becomes larger than the half-space
through x∗. (See next figure).
Therefore, mg (x∗, y) ≥ 1

2 , thus being defeated by point x
∗.
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Multidimensional alternatives:
A median x∗ in the above sense is a Condorcet winner:

Conversely, if x∗ is not a median, then it cannot be a
Condorcet winner. x∗ is a median⇐ x∗ is a Condorcet winner.
Specifically, we can move x∗ in any direction q such that we
give rise to a half-space larger than 1

2 .
More formally, there exists a direction q ∈ Rn such that the
mass of the half-space

{z ∈ Rn : q · z > q · x∗} is larger than
1
2

In other words, point x∗ + qε defeats point x∗; see next figure.

That is, if x∗ is not a median, it cannot be a Condorcet
winner.
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Multidimensional alternatives:
Notice what we just proved:

Consider a density g(·) describing the probability distribution
of ideal points for each individual in the population.
If this density g(·) provides us with a median x∗ that divides
the Euclidean space into two regions of equal area...
then we can claim that such median is a Condorcet winner.

That’s ok, but the most demanding requirement is the second.

We can prove how restrictive this result is, even if we assume a
uniform distribution.
Let’s consider two cases:

One that generates a median, and one that doesn’t.



Reactions to Arrow’s impossibility theorem



Reactions to Arrow’s impossibility theorem

Multidimensional alternatives:
Caplin and Nalebuff (1988) tackled this problematic result and
brought us the now famous "64% majority rule":

They showed that, for a uniform distribution (and, more
generally, for any density function satisfying logarithmic
concavity) there are always points (which they referred to as
"generalized medians")...
with the property that a hyperplane through the point divides
Rn into two regions, each of them with a mass larger than
1
e ' 0.36.

What does that mean?

These points cannot be defeated by any other alternative if the
majority required is not 12 of the votes, but any number larger
than 1− 1

e ' 0.64.
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Second reaction:
Allowing for intensity of individual preferences to enter into
social preferences.

We will do that by using a social welfare function

W
(
u1(·), u2(·), ..., uI (·)

)
We first need to impose two assumptions on W (·):

Utility-level invariant, and
Utility-difference invariant.
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Utility-level invariance:

Motivation: Consider that u1(x) > u1(y) for individual 1, and
u2(x) < u2(y) for individual 2.
In addition, assume that u1(y) > u2(x), i.e., individual 1 is
better off at his least-preferred state than individual 2 is.
Then,

u1(x) > u1(y) > u2(x)

where u2(y) must be larger than u2(x), but could rank
above/below u1(x) or u1(y). (Figure.)



Reactions to Arrow’s impossibility theorem - II



Reactions to Arrow’s impossibility theorem - II

Utility-level invariance:

Assume that, in this context, society seeks to make its least
well off individual as well off as possible. That is,

max
x ,y

{
min

{
u1(x), u1(y)

}
,min

{
u2(x), u2(y)

}}
= max

x ,y

{
u1(y), u2(x)

}
and since u1(y) > u2(x), alternative y is socially preferred to
x .
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Utility-level invariance:

Now, consider strictly increasing transformations ψ1(·) and
ψ2(·) producing the same individual rankings

v1(x) ≡ ψ1(u1(x)) > ψ1(u1(y)) ≡ v1(y), and
v2(x) ≡ ψ2(u2(x)) < ψ2(u2(y)) ≡ v2(y)

but altering the ranking across individuals, i.e., v1(y) < v2(x).
In this setting, society would identify alternative x as socially
preferred to y .
But this new social ranking is troublesome: We have not
changed the individual rankings over alternatives, yet the social
ranking changed. (Figure.)
In order to avoid this possibility, we only need to avoid
different monotonic transformations for individual 1 and 2.
That’s what utility-level invariance guarantees (i.e., ψ1 = ψ2).
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Utility-level invariance:
Definition: A social welfare function W (·) is utility-level
invariant if it is invariant to arbitrary, but common, strictly
increasing transformations ψ applied to every individual’s
utility function.
That is, for every profile of individual preferences

u ≡
(
u1(·), u2(·), ..., uI (·)

)
, where

u(x) ≡
(
u1(x), u2(x), ..., uI (x)

)
and

u(y) ≡
(
u1(y), u2(y), ..., uI (y)

)
denote the profile of

individual utility levels from any two alternatives x 6= y ,
if W (u(x)) > W (u(y)) then W (ψ (u(x))) > W (ψ (u(y)))

under a common strictly increasing transformation ψ (·), where
ψ (u(x)) ≡

(
ψ
(
u1(x)

)
,ψ
(
u2(x)

)
, ...,ψ

(
uI (x)

))
and

similarly for ψ (u(y)) .
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Utility-difference invariance:

Let us now move to a second type of information often used in
making social choices:

The utility that each individual gains/losses when he moves
from an alternative y to another alternative x .
That is, u1(x)− u1(y ) for individual 1, which in this example
was considered positive, and
u2(x)− u2(y ) for individual 2, which in this example is
negative.
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Utility-difference invariance:

A common comparison is then whether individual 1’s gain,
u1(x)− u1(y) of moving to x is larger than individual 2’s loss,
u2(y)− u2(x).

u1(x)− u1(y) > u2(y)− u2(x)

Figure
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Utility-difference invariance:

For the swf to preserve this information, we need that
monotonic transformations are linear, i.e.,

ψi
(
ui (x)

)
= ai + bui (x)

where b > 0 is common to all individuals.
Figure.



Reactions to Arrow’s impossibility theorem - II



Reactions to Arrow’s impossibility theorem - II

Utility-difference invariance:

Definition: A social welfare function W (·) is utility-difference
invariant if it is invariant to strictly increasing transformations
of the form

ψ
(
ui (x)

)
= ai + bui (x),

where b > 0 is common to all individuals.
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Two more assumptions on the SWF:

Anonymity. Let u(x) and ũ(x) be two utility vectors, where
ũ(x) has been obtained from u(x) after a permutation of its
elements. Then,

W (u(x)) = W (ũ(x))

Interpretation:

The social ranking of alternatives should not depend on the
identity of the individuals involved, but only on the levels of
utility each alternative entail.
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Two more assumptions on the SWF:

Hammond Equity. Let u(x) and u(y) be the utility vectors
of two distinct alternatives x and y , where uk (x) = uk (y) for
every individual k except for two individuals: i and j . If

ui (x) < ui (y) < uj (y) < uj (x)

then W (u(y)) ≥ W (u(x)).
Interpretation:

Society has a preference towards the alternative that produces
the smallest variance in utilities across individuals (alternative
y in this case).
Seems reasonable in some cases, but critizable in orders: for
instance,
u i (x) = 1 < u i (y ) = 1.1 < uj (y ) = 1.2 < uj (x) = 100.
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We can now show that some well-known SWF, such as the
Rawlsian and the utilitarian, can be characterized by some of
the properties we just mentioned:

Utility-level invariance,
Utility-difference invariance,
Anonymity (A), and
Hammond Equity (HE),
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The Rawlsian SWF

Welfare is given by that of the worst-off member, that is,

W (x) = min
{
u1(x), ..., uI (x)

}
Theorem 6.2 in JR:

A strictly increasing and continuous swf W satisfies HE if and
only if it can be represented with the Rawlsian form,
W (x) = min

{
u1(x), ..., uI (x)

}
.

As a corollary:

Moreover, W satisfies A and is utility-level invariant.

Let’s prove these results.
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The Rawlsian SWF

Proof :
1st line of implication:

If W is continuous, strictly increasing, and satisfies HE, then
W must be Rawlsian.

2nd line of implication:

If W is Rawlsian, then W is continuous, strictly increasing,
and satisfies HE.
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The Rawlsian SWF

Proof : Suppose that W is continuous, strictly increasing and
satisfies HE.
We then NTS that W takes the form

W (x) = min
{
u1(x), ..., uI (x)

}
That is, W (x) ≥ W (y) if and only if

min
{
u1(x), ..., uI (x)

}
≥ min

{
u1(y), ..., uI (y)

}
Consider the next figure.
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The Rawlsian SWF
Proof:

Here is what we are planning to do:

The social indifference curve of a Rawlsian swf must be a right
angle (and all kinks are crossed by a ray from the origin).
We must then show that, starting from any arbitrary point a
on the 45-degree line:

All points in a horizontal ray starting from the 45-degree line,
and
all points in a vertical ray starting from the 45-degree line,
must yield the same social welfare as in point a.
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The Rawlsian SWF

Consider the next figure.
Choose an arbitrary point a on the 45-degree line, and point u
on the ray extending from a to the right.
We seek to show that W (u) = W (a).
Define region I and II.
Consider a point ũ in region I. Note that

u2 < ũ2 < ũ1 < u
1

Graphically, note that point ũ is closer to the 45-degree line
than u is, thus reducing utility dispersion across individuals; as
depicted in the figure.
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The Rawlsian SWF

Since point ũ implies a smaller utility dispersion than u society
prefers, according to HE, point ũ, i.e., W (ũ) ≥ W (u).
This argument is true for any point ũ in region I, i.e.,
W (I ) ≥ W (u).
What about region II?

We must have that W (II ) < W (u) since W is strictly
increasing and all points in region II are to the southwest of u.
Hence,

W (I ) ≥ W (u) >W (II )



Reactions to Arrow’s impossibility theorem - II

The Rawlsian SWF

What about the points on the frontier between regions I and
II, such as point a?

By continuity of the swf W , since W (I ) ≥ W (u) in region I
and W (u) >W (u) in region II, W (u) = W (a), as we wished
to show.

We can extend the same argument, but now starting from a
ray that extends from a upwards (rather than rightwards).

That is, we have just examined the welfare at points below the
45-degree line, but a similar argument applies for points above
the 45-degree line.
See figure.
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The Rawlsian SWF

Because W is strictly increasing, no other points can yield the
same social welfare than a other than the two rays we just
examined.

That is, the union of the two rays provides us with the social
indifference curve for W . (See figure.)
Therefore, W has the same indifference map as teh function
min

{
u1(x), ..., uI (x)

}
.
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The Rawlsian SWF
Other direction: If W (x) = min

{
u1(x), ..., uI (x)

}
then HE

holds.

Let’s we apply the definition of HE: if uk (x) = uk (y) for every
individual k except for two individuals: i and j , and assume
that

ui (x) < ui (y) < uj (y) < uj (x)

Figure.
We now NTS that the alternative with the smaller utility
dispersion is socially preferred, i.e., W (u(y)) ≥ W (u(x)).
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The Rawlsian SWF
Then, uk (x) = uk (y) lies in either of the following regions:

Region 1, where uk (x) = uk (y) < ui (x).

Then W (u(x)) = uk (x) and W (u(y )) = uk (y ), and
Society is indifferent between alternatives y and x , i.e.,
W (u(y )) = W (u(x)), which is allowed according to the HE
property (recall that we seek to show W (u(y )) ≥ W (u(x))).
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The Rawlsian SWF
Then, uk (x) = uk (y) lies in either of the following regions:

Region 2, where ui (x) < uk (x) = uk (y) < ui (y).

Then W (u(x)) = u i (x) and W (u(y )) = uk (y ), and
Society prefers alternative y to x , i.e., W (u(y )) > W (u(x)),
thus satisfying the HE property.
Intuitively, alternative y yields a smaller utility dispersion than
x does.
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The Rawlsian SWF
Then, uk (x) = uk (y) lies in either of the following regions:

Region 3, where ui (y) < uk (x) = uk (y).

Then W (u(x)) = u i (x) and W (u(y )) = u i (y ), and
Society prefers alternative y to x , i.e., W (u(y )) > W (u(x)),
thus satisfying the HE property.
Intuitively, alternative y yields a smaller utility dispersion than
x does.
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The Rawlsian SWF
Corollary: W (x) = min

{
u1(x), ..., uI (x)

}
satisfies anonymity,

and is utility-level invariant.

Anonymity is obvious. Take a utility vector u1(x), ..., uI (x),
where

min
{
u1(x), ..., uI (x)

}
= uk (x)

Now perform a permutation on the identities of individuals,
and apply the min on their utility levels again. The min is still
uk (x).
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The Rawlsian SWF
Corollary: W (x) = min

{
u1(x), ..., uI (x)

}
satisfies anonymity,

and is utility-level invariant.

What about utility-level invariance?

Let’s first define what we need to show.
Consider a strictly increasing transformation common to all
individuals ψ : R→ R.
If W (u(x)) ≥ W (u(y )) then the social ranking is preserved
after applying a common strictly increasing transformation to
all individuals’utility function, i.e.,

W
(

ψ
(
u1(x)

)
, ...,ψ

(
uI (x)

))
≥ ψ

(
W
(
u1(x), ..., uI (x)

))
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The Rawlsian SWF
Let us now show utility-level invariance.

Define a strictly increasing transformation common to all
individuals ψ : R→ R. Then,

W
(

ψ
(
u1(x)

)
, ...,ψ

(
uI (x)

))
= ψ

(
W
(
u1(x), ..., uI (x)

))
Example: ψ

(
ui (x)

)
= α+ βui (x), then

ψ
(
W
(
u1(x), ..., uI (x)

))
= α+ βmin

{
u1(x), ..., uI (x)

}
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The Rawlsian SWF
Let us now show utility-level invariance.

Therefore,

W
(

ψ
(
u1(x)

)
, ...,ψ

(
uI (x)

))
≥ W

(
ψ
(
u1(y)

)
, ...,ψ

(
u1(y)

))
implies

ψ
(
W
(
u1(x), ..., uI (x)

))
≥ ψ

(
W
(
u1(y), ..., uI (y)

))
which is equivalent to

W
(
u1(x), ..., uI (x)

)
≥ W

(
u1(y), ..., uI (y)

)
as required by utility-level invariance.
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The Rawlsian SWF
What about utility-difference invariance, UDI?

It does not necessarily hold.
To see this, consider a counterexample, where

W (u(x)) = min
{
u1(x), u2(x)

}
= u1(x) = 10, and

W (u(y)) = min
{
u1(y), u2(y)

}
= u2(y) = 5

Hence, W (u(x)) > W (u(y))
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The Rawlsian SWF
What about utility-difference invariance, UDI?

We now apply the linear, but potentially asymmetric, strictly
increasing transformation ψi

(
ui (x)

)
= ai + bui (x), where

b > 0.
Consider for instance b = 1, a1 = 1 and a2 = 150. We then
obtain

W (ψi (u(x))) = min
{
1+ u1(x), 1+ u2(x)

}
= 1+ u1(x) = 11, and

W (ψi (u(y))) = min
{
150+ u1(y), 150+ u2(y)

}
= 150+ u2(y) = 155

which implies that the social ranking between alternatives x
and y is reverted to W (u(x)) > W (u(y)).
Hence, UDI doesn’t necessarily hold for the Rawlsian swf.
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The Utilitarian SWF
This is probably the most commonly used swf in economics.

W (x) = u1(x) + u2(x) + ...+ uI (x) =
I

∑
i=1
ui (x)
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The Utilitarian SWF

Theorem 6.3 in JR:

A strictly increasing and continuous swf W satisfies A and
utility-difference invariance if and only if it can be represented

with the utilitarian form, W (x) =
I

∑
i=1

u i (x).
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The Utilitarian SWF
Proof:

Here is what we need to show:

1st line of implication:

If W is utilitarian, then A and UDI holds.

2nd line of implication:

If A and UDI holds, then W must be utilitarian.
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The Utilitarian SWF
Proof:

When W takes the utilitarian form, A holds since the utility
level of each individual receives the same weight.

That is, a permutation on the identities of individuals will not
alter the social ranking of alternatives.
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The Utilitarian SWF
Proof:

When W takes the utilitarian form, utility-difference invariance
holds as well. In particular,

if W (x) = u1(x) + u2(x) ≥ u1(y) + u2(y) = W (y),

then (
a1 + bu1(x)

)
+
(
a2 + bu2(x)

)
≥

(
a1 + bu1(y)

)
+
(
a2 + bu2(y)

)
also needs to hold.



Reactions to Arrow’s impossibility theorem - II

The Utilitarian SWF
Proof:

This inequality collapses to

b
[
u1(x) + u2(x)

]
≥ b

[
u1(y) + u2(y)

]
which is satisfied since u1(x) + u2(x) ≥ u1(y) + u2(y), and
b > 0 by definition.
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The Utilitarian SWF
Proof:

We now need to show the oppose line of implication: a strictly
increasing and continuous swf satisfying A and utility-difference
invariance can only be represented with the utilitarian form.
Consider the next figure.
Take a point–u on the 45-degree line.
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The Utilitarian SWF
Proof:

Sum the two components in point u, i.e., u1 + u2 ≡ γ.
Consider the set of points for which the sum of their two
components, u1 + u2, yields exactly γ.

Ω =
{
u1 + u2 | u1 + u2 = γ

}
These are all the points in the line that crosses u and has a
slope of -1.
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The Utilitarian SWF
Proof:

Here is what we are planning to do:

The social indifference curve of a utilitarian swf must be linear,
i.e., u2 = W − u1.
We must then show that all points in line Ω yield the same
social welfare as in point u.

W (Ω) = W (u).
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The Utilitarian SWF
Proof:

Choose any point in line Ω, distinct from u, such as ũ.
Point ũT is just a permutation of ũ, i.e., if ũ = (ũ1, ũ2) point
ũT becomes ũT = (ũ2, ũ1).
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The Utilitarian SWF
Proof:

By condition A, points ũ and ũT must be ranked the same
way relative to u.
Note that we are not saying that societies with swf that satisfy
A and UDI are indifferent between points ũ and ũT ; we don’t
know that yet.

We only say that, if W (ũ) ≥ W (u), then such social ranking
is maintained for point ũT , i.e., W (ũT ) ≥ W (u).
Likewise, if W (u) ≥ W (ũ), then such social ranking is
maintained for point ũT , i.e., W (u) ≥ W (ũT ).
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The Utilitarian SWF
Proof:

Suppose that W (u) > W (ũ).
Under UDI, this social ranking must be unaffected by linear
transformations of the form ψi

(
ui (·)

)
= ai + bui (·).

Let b = 1 and ai = ui − ũi , i.e.,

ψi
(
ui (x)

)
= ui (x)− ũi (x)︸ ︷︷ ︸

ai

+ ui (x)

Applying this transformation to ũ yields
ψi
(
ũi (x)

)
= ui (x)− ũi (x) + ũi (x) = ui (x), i.e.,(

ψ1
(
ũ1
)
,ψ2

(
ũ2
))
= u
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The Utilitarian SWF
Proof:

Applying this transformation to u yields
ψi
(
ui (x)

)
= ui (x)− ũi (x) + ui (x) = 2ui (x)− ũi (x)

However, since point u lies on the 45-degree line,
2ui (x) = ũi (x) + ũj (x).
Using this property in our above result yields a transformation
of

ψi
(
ui (x)

)
= 2ui (x)− ũi (x) =

[
ũi (x) + ũj (x)

]
︸ ︷︷ ︸

2u i (x )

− ũi (x) = ũj (x)

That is, (
ψ1
(
u1
)
,ψ2

(
u2
))
= ũT
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The Utilitarian SWF
Proof:

Therefore, point ũ is transformed into u, and point u is
transformed into ũT .
Thus, if W (u) > W (ũ), as we originally assumed, then UDI
implies that W (ũT ) > W (u).

Hence, W (ũT ) > W (u) and W (u) > W (ũ), which implies
W (ũT ) > W (ũ), thus violating A.
Therefore, our initial assumption W (u) > W (ũ) cannot hold.
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The Utilitarian SWF
Proof:

A similar argument applies if we, instead, start our proof
assuming that W (u) < W (ũ).
We can therefore conclude that W (u) = W (ũ) which,
together with A, implies that

W (u) = W (ũ) = W (ũT )

Since point ũ was chosen arbitrarily in the line Ω, we can
claim that the social welfare at point u is the same as any
point along the line Ω, i.e.,

W (u) = W (Ω)
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The Utilitarian SWF
Note that droping the requirement of A, we can expand our
previous results to any "generalized utilitarian" swf of the form

W (x) =
I

∑
i=1

αiui (x)

where αi > 0 represents the weight society assigns to
individual i .
Example: For the case of two individuals, W = α1u1 + α2u2,
which yields a social indifference curve of

u2 =
W
α2
− α1

α2
u1,

thus being still a straight, negatively sloped line, but the slope
is now − α1

α2
.
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Flexible form SWF
In the analysis of certain policies, i.e., moving from x to y , we
might be interested in percentage change in utility for each
individual, u

i (x )−u i (y )
u i (x ) , and

whether such a percentage is large for individual i than for j .

ui (x)− ui (y)
ui (x)

>
uj (x)− uj (y)

uj (x)

If we seek to maintain the ranking of percentage changes
across individuals invariant to monotonic transformations on
the utility functions...

we need monotonic transformations to be linear and common
among individuals, ψ(ui ) = bui , where b > 0 for all i .
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Flexible form SWF
Applying ψ(ui ) = bui , we obtain

bui (x)− bui (y)
bui (x)

>
buj (x)− buj (y)

buj (x)

which reduces to

ui (x)− ui (y)
ui (x)

>
uj (x)− uj (y)

uj (x)

Hence, when the swf is invariant to arbitrary, but linear and
common, strictly increasing transformations of the form we
say that the swf is utility-percentage invariant.



Reactions to Arrow’s impossibility theorem - II

Flexible form SWF
As a consequence, if a swf satisfies utility-percentage
invariance, it must also satisfy:

Utility-level invariance, since for that we need that the strictly
increasing transformations are common across individuals, i.e.,
ψi (·) = ψj (·) for any two individuals i 6= j ; and
Utility-difference invariance, since for that we need that the
strictly increasing transformation for each individual to be
linear, i.e., ψi (ui ) = ai + bui where b > 0.
That is, UPI is a special case of ULI and of UDI.
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Flexible form SWF
UPI allows for whole class of swf, whereby the Rawlsian and
utilitarian are just special cases.

Let’s start demonstrating that UPI yields homothetic social
indifference curves.

Proof :
Consider the following figure.
Choose an arbitrary point u.
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Flexible form SWF

Since W is strictly increasing, the social indifference curve
must be negatively sloped.

Now choose a point through ray OA, i.e., bu, where b > 0.
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Flexible form SWF

Select now another point, ũ, lying on the same social
indifference curve, i.e., W (ũ) = W (u).

Following a similar argument as above, choose a point
through ray OB, i.e., bũ, where b > 0.
By the UPI requirement, W (bũ) = W (bu), so points bu and
bũ must lie on the same social indifference curve.
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Flexible form SWF

We NTS homotheticity of the social indifference curve:

The tangent at point u must coincide with that in point bu,
and
The tangent at point ũ must coincide with that in point bũ.

The slope of chord CC approximates the slope of the tangent
at u, whereas

the slope of chord DD approximates the slope of the tangent
at bu.
(This, of course, happens when points u and ũ are close.)
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Flexible form SWF

Since points bu and bũ have both been increased by the same
factor b, the slope of chord CC coincides with that of DD.
If we choose a point ũ closer and closer to u, the slope of
chords CC and DD still coincide,

but their slopes better approximates that of the tangent
through each point.

In the limit, the slope of the social indifference curve at point
u coincides with that at point bu, proving homotheticity.
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Flexible form SWF
We have just showed that UPI yields homothetic social
indifference curves.

But, what’s the effect of impossing other common
assumptions on the swf in the shape of social indifference
curves?

Anonymity: Social indifference curves become "mirror images"
above and below the 45-degree line.
Quasiconcavity: Similarly as in consumer theory, this
assumption on the swf implies that social indifference curves
are bowed-in towards the origin.

Intuitively, society prefers "balanced" utility vectors to
"unbalanced" ones, i.e., preference for equality.
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Flexible form SWF
We can encompass all previous forms of swf into the following
CES:

W (x) =
I

∑
i=1

[(
ui (x)

)ρ
] 1

ρ

where 0 6= ρ < 1.

Hence, the constant elasticity of social substitution between
the utility of any two individuals, σ, can be expressed as
σ = 1

1−ρ .

This swf satisfies three properties mentioned above (A, WP,
and quasiconcavity).
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Flexible form SWF
This swf also satisfies a property we discussed in EconS 501:

Strong separability : The MRSu i ,u j only depends on u
i and uj ,

but not on uk for any other individual k 6= i , j .
In particular, MRSu i ,u j of this CES swf is

MRSu i ,u j = −
(
ui

uj

)ρ−1
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Flexible form SWF
Figures in next slide with three cases of CES swf, as
parameter ρ decreases:

ρ→ 1 (linear social indifference curves, i.e., utilitarian swf),
−∞ < ρ < 1 (curvy social indifference curves),
ρ→ −∞ (right-angel social indifference curves, i.e., Rawlsian
swf).
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