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Summarizing...

We learned how to �nd msNE in games:

with 2 players, each with 2 available strategies (2x2 matrix)

e.g., matching pennies game, battle of the sexes, etc.

with 2 players, but each having 3 available strategies (3x3
matrix)

e.g., tennis game (which actually reduced to a 2x2 matrix after
deleting strictly dominated strategies), and
the rock-paper-scissors game, where we couldn�t identify
strictly dominated strategies and, hence, had to make players
indi¤erent between their three available strategies.

What about games with 3 players?



More advanced mixed strategy games

What if we have three players, instead of two?
(Harrington pp 201-204). "Friday the 13th!"



More advanced mixed strategy games
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More advanced mixed strategy games

Friday the 13th!
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1 First step: let�s check for strictly dominated strategies
(none).

2 Second step: let�s check for psNE (none). The movie is
getting interestin!

3 Third step: let�s check for msNE. (note that all strategies are
used by all players), since there are no strictly dominated
strategies.



msNE with three players

Since we could not delete any strictly dominated strategy,
then all strategies must be used by all three players.

In this exercise we need three probabilities, one for each player.

Let�s denote:

t the probability that Tommy goes through the front door
(�rst row in both matrices).
b the probability that Beth goes through the front door (�rst
column in both matrices).
j the probability that Jason goes through the front door
(left-hand matrix).



msNE with three players

Let us start with Jason, EUJ (F ) = EUJ (B), where

EUJ (F ) = tb0+ t(1� b)2| {z }
Tommy goes through
the front door, t

+ (1� t)b2+ (1� t)(1� b)(�2)| {z }
Tommy goes through
the back door, (1�t)

= �2+ 4t + 4b� 6tb

and

EUJ (B) = tb(�2) + t(1� b)2+ (1� t)b2+ (1� t)(1� b)0
= 2t + 2b� 6tb

since EUJ (F ) = EUJ (B) we have

�2+ 4t + 4b� 6tb = 2t + 2b� 6tb () t + b = 1| {z }
Condition (1)

(1)



msNE with three players

Let us now continue with Tommy, EUT (F ) = EUT (B), where

EUT (F ) = bj0+ (1� b)j(�4) + b(1� j)3+ (1� b)(1� j)(1)
= 1+ 2b� 5j + 2bj

and

EUT (B) = bj1+ (1� b)j2+ b(1� j)(�4) + (1� b)(1� j)(0)
= �4b+ 2j + 3bj

since EUT (F ) = EUT (B) we have

1+ 2b� 5j + 2bj = �4b+ 2j + 3bj () 7j � 6b+ bj = 1| {z }
Condition (2)

(2)



msNE with three players

And given that the payo¤s for Tommy and Beth are
symmetric, we must have that Tommy and Beth�s
probabilities coincide, t = b.

Hence we don�t need to �nd the indi¤erence condition
EUB (F ) = EUB (B) for Beth.
Instead, we can use Tommy�s condition (2) (i.e.,
7j � 6b+ bj = 1), to obtain the following condition for Beth:

7j � 6t + tj = 1

We must solve conditions (1),(2) and (3).



First, by symmetry we must have that t = b. Using this result
in condition (1) we obtain

t + b = 1 =) t + t = 1 =) t = b =
1
2

Using this result into condition (2), we �nd

7j � 6b+ bj = 7j � 61
2
+
1
2
j = 1

Solving for j we obtain j = 8
15 .



msNE with three players

Representing the msNE in Friday the 13th:
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msNE with three players

Just for fun: What is then the probability that Tommy and
Beth scape from Jason?

They scape if they both go through a door where Jason is not
located.

1
2
1
2

8
15|{z}

Jason goes Front

+
1
2
1
2

7
15|{z}

Jason goes Back

=
15
60

The �rst term represents the probability that both Tommy
and Beth go through the Back door (which occurs with
1
2
1
2 =

1
4 probability) while Jason goes to the Front door.

The second term represents the opposite case: Tommy and
Beth go through the Front door (which occurs with 1

2
1
2 =

1
4

probability) while Jason goes to the Back door.



msNE with three players

Even if they escape from Jason this time, there is still...

There are actually NO sequels:

Their probability of escaping Jason is then ( 1560 )
10,about 1 in

a million !



Testing the Theory

A natural question at this point is how we can empirically
test, as external observers, if individuals behave as predicted
by our theoretical models.

In other words, how can we check if individuals randomize with
approximately the same probability that we found to be
optimal in the msNE of the game?



Testing the Theory

In order to test the theoretical predictions of our models, we
need to �nd settings where players seek to "surprise" their
opponents (so playing a pure strategy is not rational), and
where stakes are high.

Can you think of any?



Penalty kicks in soccer



Penalty kicks in soccer
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Penalty kicks in soccer

We should expect soccer players randomize their decision.

Otherwise, the kicker could anticipate where the goalie dives
and kick to the other side. Similarly for the goalie.

Let�s describe the kicker�s expected utility from kicking the
ball left, center or right.



Penalty kicks in soccer

EUKicker(Left) = gl � 0.65+ gr � 0.95+ (1� gr � gl ) � 0.95
= 0.95� 0.3gl (1)

EUKicker(Center) = gl � 0.95+ gr � 0.95+ (1� gr � gl ) � 0
= 0.95(gr + gl ) (2)

EUKicker(Right) = gl � 0.95+ gr � 0.65+ (1� gr � gl ) � 0.95
= 0.95� 0.3gr (3)



Penalty kicks in soccer

Since the kicker must be indi¤erent between all his strategies,
EUKicker(Left) = EUKicker(Right)

0.95� 0.3gl = 0.95� 0.3gr =) gl = gr =) gl = gr = g

Using this information in (2), we have

0.95(g + g) = 1.9g

Hence,

0.95� 0.3g| {z }
EUKicker(Left)

or
EUKicker(Right)

= 1.9g|{z}
EUKicker(Center )

=) g =
0.95
2.2

= 0.43



Penalty kicks in soccer

Therefore,

(σL, σC , σR ) = (0.43|{z}
gl

, 0.14|{z}
From the fact that
gl+gr+gc=1

, 0.43|{z}
gr ,

where gl=gr=g

)

If the set of goalkeepers is similar, we can �nd the same set of
mixed strategies,

(σL, σC , σR ) = (0.43, 0.14, 0.43)



Penalty kicks in soccer

Hence, the probability that a goal is scored is:

Goalkeeper dives left �!

0.43 � ( 0.43|{z}
Kicker
aims
left

�0.65+ 0.14|{z}
Kicker
aims
center

�0.95+ 0.43|{z}
Kicker
aims
right

�0.95)

Goalkeeper dives center �!

+0.14 � (0.43 � 0.95+ 0.14 � 0+ 0.43 � 0.95)

Goalkeeper dives right �!

+0.43 � (0.43 � 0.95+ 0.14 � 0.95+ 0.43 � 0.65)

= 0.82044, i.e., a goal is scored with 82% probability.



Penalty kicks in soccer

Interested in more details?

First, read Harrington pp. 199-201.
Then you can have a look at the article

"Professionals play Minimax" by Ignacio Palacios-Huerta,
Review of Economic Studies, 2003.

This author published a very readable book last year:

Beautiful Game Theory: How Soccer Can Help Economics.
Princeton University Press, 2014.



Summarizing...

So far we have learned how to �nd msNE is games:

with two players (either with 2 or more available strategies).
with three players (e.g., Friday the 13th movie).

What about generalizing the notion of msNE to games with N
players?

Easy! We just need to guarantee that every player is
indi¤erent between all his available strategies.



msNE with N players

Example: "Extreme snob e¤ect" (Watson).
Every player chooses between alternative X and Y (Levi�s and Calvin
Klein). Every player i�s payo¤ is 1 if he selects Y, but if he selects X
his payo¤ is:

2 if no other player chooses X, and
0 if some other player chooses X as well



Let�s check for a symmetric msNE where all players select Y with
probability α. Given that player i must be indi¤erent between X and
Y, EUi (X ) = EUi (Y ), where

EUi (X ) = αn�12| {z }
all other n�1 players select Y

+ (1� αn�1)0| {z }
Not all other players select Y



msNE with N players

and EUi (Y ) = 1, then EUi (X ) = EUi (Y ) implies

αn�12 = 1 () α =

�
1
2

� 1
n�1

Comparative statics of α, the probability a player selects
the "conforming" option Y, α =

� 1
2

� 1
n�1 :

α increases in the size of the population n.

That is, the larger the size of the population, the more likely it
is that somebody else chooses the same as you, and as a
consequence you don�t take the risk of choosing the snob
option X. Instead, you select the "conforming" option Y.



msNE with N players

Probability of choosing strategy Y as a function of the
number of individuals, n.

prob(x)

prob(y)

α	­	Probability

n

α	=	(½)
1

n	­	1

prob(X ) + prob(Y ) = 1, prob(X )...then, (X ) = 1� prob(Y )



Another example of msNE with N players

Another example with N players: The bystander e¤ect
The "bystander e¤ect" refers to the lack of response to help
someone nearby who is in need.

Famous example: In 1964 Kitty Genovese was attacked near
her apartment building in New York City. Despite 38 people
reported having heard her screams, no one came to her aid.
Also con�med in laboratory and �eld studies in psychology.



Another example of msNE with N players

General �nding of these studies:

A person is less likely to o¤er assistance to someone in need
when the person is in a large group than when he/she is alone.

e.g., all those people who heard Kitty Genovese�s cries knew
that many others heard them as well.

In fact, some studies show that the more people that are there
who could help, the less likely help is to occur.

Can this outcome be consistent with players maximizing their
utility level?

Yes, let�s see how.



Another example of msNE with N players

a c

d b

All	ignore At	least	one	
helps

Helps

Ignores
Player

Other	players

where a > d �! so if all ignore, I prefer to help the person in
need.
but b > c �! so, if at least somebody helps, I prefer to
ignore.
Note that assumptions are not so sel�sh : people would prefer
to help if nobody else does.



Another example of msNE with N players

msNE:

Let�s consider a symmetric msNE whereby every player i :

Helps with probability p, and
Ignores with probability 1� p.



Another example of msNE with N players

EUi (Help) = (1� p)n�1 � a| {z }
If everybody
else ignores

+
�
1� (1� p)n�1

�
� c| {z }

If at least one of the
other n�1 players helps

EUi (Ignore) = (1� p)n�1 � d| {z }
If everybody
else ignores

+
�
1� (1� p)n�1

�
� b| {z }

If at least one of the
other n�1 players helps

When a player randomizes, he is indi¤erent between help and
ignore,

EUi (Help) = EUi (Ignore)

(1� p)n�1 � a+
�
1� (1� p)n�1

�
� c

= (1� p)n�1 � d +
�
1� (1� p)n�1

�
� b

=) (1� p)n�1(a� c � d + b) = b� c



Another example of msNE with N players

Solving for p,

(1� p)n�1 =
b� c

a� c � d + b

=) 1� p =
�

b� c
a� c � d + b

� 1
n�1

=) p� = 1�
�

b� c
a� c � d + b

� 1
n�1

Example: a = 4, b = 3, c = 2, d = 1, satisfying the initial
assumptions: a > d and b > c

p� = 1�
�

3� 1
4� 2� 1+ 3

� 1
n�1
= 1�

�
1
4

� 1
n�1



Another example of msNE with N players

Probability of a person helping, p�

More people makes me less likely to help.



Another example of msNE with N players

Probability that the person in need receives help, (p�)n

More people actually make it less likely that the victim is
helped!



Intuitively, the new individual in the population brings a
positive and a negative e¤ect on the probability that the
victim is �nally helped:

Positive e¤ect: the additional individual, with his own
probability of help, p�, increases the chance that the victim is
helped.
Negative e¤ect: the additional individual makes more likely,
that someone will help the victim,thus leading each individual
citizen to reduce his own probability of helping, i.e., p�

decreades in n.

However, the fact that (p�)n decreases in n implies that the
negative e¤ect o¤sets the positive e¤ect.


