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Summarizing...

@ We learned how to find msNE in games:
e with 2 players, each with 2 available strategies (2x2 matrix)
e e.g., matching pennies game, battle of the sexes, etc.
e with 2 players, but each having 3 available strategies (3x3
matrix)

o e.g., tennis game (which actually reduced to a 2x2 matrix after
deleting strictly dominated strategies), and

e the rock-paper-scissors game, where we couldn’t identify
strictly dominated strategies and, hence, had to make players
indifferent between their three available strategies.

@ What about games with 3 players?



More advanced mixed strategy games

What if we have three players, instead of two?
(Harrington pp 201-204). "Friday the 13th!"




More advanced mixed strategy games

Friday the 13th!

Beth
Front Back
Front 0,0,0 @, 1,2 Front
Tommy Tommy
Back 1,02 2,22 Back

Jason, Front

Front Back

332 | 1,2

®12 | 000

Jason, Back




More advanced mixed strategy games

Friday the 13th!

Beth Beth
Front Back Front Back
Front 0,0,0 @, 1,2 Front 3,32 1,32
Tommy Tommy
Back 1,0, 2 2,2,2 Back o, 1,2 0,0,0
Jason, Front Jason, Back

@ First step: let's check for strictly dominated strategies
(none).

@ Second step: let's check for psNE (none). The movie is
getting interestin!

@ Third step: let's check for msNE. (note that all strategies are
used by all players), since there are no strictly dominated
strategies.



msNE with three players

@ Since we could not delete any strictly dominated strategy,
then all strategies must be used by all three players.

@ In this exercise we need three probabilities, one for each player.
@ Let's denote:

e t the probability that Tommy goes through the front door
(first row in both matrices).

e b the probability that Beth goes through the front door (first
column in both matrices).

o j the probability that Jason goes through the front door
(left-hand matrix).



msNE with three players

Let us start with Jason, EU,(F) = EU,(B), where

EUJ(F) = th0+t(1—b)2 + (1 —t)b2+ (1 —t)(1— b)(—2)
Tommy goes through Tommy goes through
the front door, t the back door, (1—t)

— —2+44t+4b—6th

and

EU)(B) = th(—2)+t(1—b)2+ (1—t)b2+ (1—t)(1— b)O
= 2t+2b—06tb

since EU,(F) = EU,(B) we have

—2+4t+4b—6th=2t+2b—6th < t+b=1 (1)
h\/—/

Condition (1)



msNE with three players

Let us now continue with Tommy, EUt(F) = EU7(B), where

EUr(F) =

and

EUr(B) =

bjo+ (1 = b)j(—4) +b(1—j)3+ (1 = b)(1 —j)(1)
1+2b— 5/ — 2bj

bjl + (1= b)j2+ b(1 —j)(=4) + (1= b)(1 - j)(0)
—4b+2j + 3bj

since EUT(F) = EUT(B) we have

1+2b—5j—2bj = —4b+2j+3bj — 7j—6b+bj=1 (2)

Condition (2)



msNE with three players

e And given that the payoffs for Tommy and Beth are
symmetric, we must have that Tommy and Beth's probabilities
coincide, t = b. Hence we don't need to find the indifference
condition EUg(F) = EUg(B) for Beth. Instead, we can use
Tommy's condition (2) (i.e., 7j — 6b+ bj = 1), to obtain the
following condition for Beth:

7j—6t+tj=1 ((3))

@ We must solve conditions (1),(2) and (3).



@ First, by symmetry we must have that t = b. Using this result
in condition (1) we obtain

1

t+b=1— t+t=1— t=b=7
@ Using this result into condition (2), we find
. . o1 1.

Solving for j we obtain j = %.



msNE with three players

@ Representing the msNE in Friday the 13th:

1 1 1 1 8 7
<2Front, 2Back>, <2Front, 2Back>, <15Front, 15Back)

/

-~

Tommy Beth Jason



msNE with three players

@ Just for fun: What is then the probability that Tommy and
Beth scape from Jason?

e They scape if they both go through a door where Jason is not

located.
11 8 L1 7 15
15 22 15 60
~—~ ~—~
Jason goes Front Jason goes Back

@ The first term represents the probability that both Tommy
and Beth go through the Back door (which occurs with
%% = % probability) while Jason goes to the Front door.

@ The second term represents the opposite case: Tommy and
Beth go through the Front door (which occurs with %% = %

probability) while Jason goes to the Back door.



msNE with three players

@ Even if they escape from Jason this time, there is still...




Testing the Theory

@ A natural question at this point is how we can empirically
test, as external observers, if individuals behave as predicted
by our theoretical models.

o In other words, how can we check if individuals randomize with

approximately the same probability that we found to be
optimal in the msNE of the game?



Testing the Theory

@ In order to test the theoretical predictions of our models, we
need to find settings where players seek to "surprise" their
opponents (so playing a pure strategy is not rational), and
where stakes are high.

e Can you think of any?



Penalty kicks in soccer




Penalty kicks in soccer

Payoffs represent the Left
probability he scores.

Kicker Center

Right

His payoffs represent the probability that
the kicker does not score (That is why
within a given cell, payoffs sum up to one).

Goalkeeper
Left Center Right

.65,.35 | .95,.05 | .95,.05

.95, .05 0,1 .95, .05

.95,.05 | .95,.05 | .65,.35




Penalty kicks in soccer

@ We should expect soccer players randomize their decision.

o Otherwise, the kicker could anticipate where the goalie dives
and kick to the other side. Similarly for the goalie.

@ Let's describe the kicker's expected utility from kicking the
ball left, center or right.



Penalty kicks in soccer

EUKicker(Left) = g *%x0.65+4+ g, x0.95+ (1 — g — g/) x 0.95
0.95 — 0.3, (1)

EUkicker(Center) = g %095+ g, %095+ (1 — g, —g/) x0
0.95(gr + &) (2)

EUkicker(Right) = g/%0.95+4 g, x0.65+ (1 — g — g7) *0.95
0.95 - 0.3g, (3)



Penalty kicks in soccer

@ Since the kicker must be indifferent between all his strategies,
EUKicker(Left) - EUKicker(Right)

095—-03g/=095—-03g, — g =g — g =8 =&
Using this information in (2), we have

0.95(g+g)=19¢
Hence,

0.95—0.3g = 1.9g = g=—-——=043
_— =

EUK,Cker(Left) EUkicker (Center)
EUchker(R’ght)



Penalty kicks in soccer

@ Therefore,

(01, 0¢c,0r) = (0.43, 0.14 , 043 )
g1 From the fact that r
gi+gr+gc=1 where g/1=g,=g

o If the set of goalkeepers is similar, we can find the same set of
mixed strategies,

(01,0¢c,0r) = (0.43,0.14,0.43)



Penalty kicks in soccer

@ Hence, the probability that a goal is scored is:

o Goalkeeper dives left —

0.43 % (0.43 x0.65 + 0.14 x0.95 + 0.43 %0.95)

Kicker Kicker Kicker
aims aims aims
left center right

o Goalkeeper dives center —
+0.14 % (0.43 % 0.95 + 0.14 %« 0 4 0.43 % 0.95)
o Goalkeeper dives right —

40.43 % (0.43 % 0.95 + 0.14 % 0.95 + 0.43 * 0.65)

= 0.82044, i.e., a goal is scored with 82% probability.



Penalty kicks in soccer

@ Interested in more details?
o The above slides were based on the article:

e "Professionals play Minimax" by Ignacio Palacios-Huerta,
Review of Economic Studies, 2003.

o This author published a very readable book last year:

e Beautiful Game Theory: How Soccer Can Help Economics.
Princeton University Press, 2014.



Summarizing...

@ So far we have learned how to find msNE is games:

e with two players (either with 2 or more available strategies).
o with three players (e.g., Friday the 13th movie).

@ What about generalizing the notion of msNE to games with N
players?

o Easy! We just need to guarantee that every player is
indifferent between all his available strategies.



msNE with N players

e Example: "Extreme snob effect" (Watson).

@ Every player chooses between alternative X and Y (Levi's and Calvin
Klein). Every player i's payoff is 1 if he selects Y, but if he selects X
his payoff is:

e 2 if no other player chooses X, and
e 0 if some other player chooses X as well




@ Let's check for a symmetric msNE where all players select Y with
probability &. Given that player i must be indifferent between X and
Y, EU;(X) = EU;(Y), where

EU:(X) = a" 12 + (1—a" 10
— &\,_/

all other n—1 players select Y Not all other players select Y



msNE with N players

@ and EU;(Y) =1, then EU;(X) = EU;(Y) implies

n—1 1)t
4 2=1 < a= 5

o Comparative statics of «, the probability a player selects
the "conforming" option Y, a = (3)7:
@ « increases in the size of the population n.

o That is, the larger the size of the population, the more likely it
is that somebody else chooses the same as you, and as a
consequence you don't take the risk of choosing the snob
option X. Instead, you select the "conforming" option Y.



msNE with N players

@ Probability of choosing strategy Y as a function of the
number of individuals, n.

a @Probability

1.000

9999

pmb(x)l [

/ prob(y)

0.998

prob(X) + prob(Y) = 1, prob(X)...then, (X) =1 — prob(Y)



Another example of msNE with N players

o Another example with N players: The bystander effect
@ The "bystander effect" refers to the lack of response to help
someone nearby who is in need.

e Famous example: In 1964 Kitty Genovese was attacked near
her apartment building in New York City. Despite 38 people
reported having heard her screams, no one came to her aid.

e Also confimed in laboratory and field studies in psychology.




Another example of msNE with N players

@ General finding of these studies:

e A person is less likely to offer assistance to someone in need
when the person is in a large group than when he/she is alone.

e e.g., all those people who heard Kitty Genovese's cries knew
that many others heard them as well.

e In fact, some studies show that the more people that are there
who could help, the less likely help is to occur.

@ Can this outcome be consistent with players maximizing their
utility level?

e Yes, let's see how.



Another example of msNE with N players

Other players
All ignore At least one
helps
Helps a C
Player
Ignores d b

@ where a > d — so if all ignore, | prefer to help the person in
need.

@ but b > ¢ — so, if at least somebody helps, | prefer to
ignore.

@ Note that assumptions are not so selfish : people would prefer
to help if nobody else does.



Another example of msNE with N players

@ msNE:

o Let's consider a symmetric msNE whereby every player i:

@ Helps with probability p, and
@ lIgnores with probability 1 — p.



Another example of msNE with N players

EU/(Help) = (1—p)"txa+[l1—(1—p)" '] *c
If everybody If at least one of the
else ignores other n—1 players helps

EU(Ignore) = (1—p)" tsd+[1—(1—p)"]*b
If everybody If at least one of the
else ignores other n—1 players helps

@ When a player randomizes, he is indifferent between help and
ignore,
EUi(Help) = EU;(Ignore)
(1—p)"txa+ 1-(1- p)”fl] xC
= (1—p)”71*d—|—[1—(1—p)”71]*b
(1—-p)"a—c—d+b)=b—c



Another example of msNE with N players

@ Solving for p,

b—c

1— n—1 —
( P) a—c—d+b

1

— 1— — L "
p= a—c—d+b

— p'=1 b—c .
P = a—c—d+b»b

o Example: a =4, b =3, c =2, d = 1, satisfying the initial
assumptions: a > d and b > ¢

1 1

. 3_1 nfl_ 1 n—1
=l (4—2—1+3> =1 (4)




Another example of msNE with N players

@ Probability of a person helping, p*

More people makes me less likely to help.



Another example of msNE with N players

n

@ Probability that the person in need receives help, (p*)

1 2 3 - 5 6 7 8 9 10

More people actually make it less likely that the victim is
helped!



@ Intuitively, the new individual in the population brings a
positive and a negative effect on the probability that the
victim is finally helped:

o Positive effect : the additional individual, with his own
probability of help, p*, increases the chance that the victim is

helped.

o Negative effect : the additional individual makes more likely,
that someone will help the victim,thus leading each individual
citizen to reduce his own probability of helping, i.e.,p*
decreades in n.

@ However, the fact that (p*)” decreases in n implies that the
negative effect offsets the positive effect.



