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Looking back...

@ So far we have been able to find the NE of a relatively large
class of games with complete information:
o Games with two or several (n > 2) players.

e Games where players select among discrete or continuous
actions.

@ But, can we assure that all complete information games where
players select their actions simultaneously have a NE?

e We couldn't find a NE for the matching pennies game!! (Next
slide)

o We will be able to claim existence of a NE if we allow players
to randomize their actions.



Remembering the "matching pennies" game...

@ Recall that this was an example of an anti-coordination game:

P,
Head Tail
Head 1,a m,1
Py
Tail a,1 1A

Indeed, there is no strategy pair in which players select a
particular action 100% of the times.

@ We need to allow players to randomize their choices.



Mixed strategy Nash equilibrium

@ Tadelis: Chapter 6.

o First, note that if a player plays more than one strategy with
strictly positive probability, then he must be indifferent
between the strategies he plays with strictly positive
probability.

@ Notation: "non-degenerate" mixed strategies denotes a set of
strategies that a player plays with strictly positive probability.

o Whereas "degenerate" mixed strategy is just a pure strategy

(because of degenerate probability distribution concentrates all
its probability weight at a single point).



Degenerate Probability Distributions

@ Example of non-degenerate probability distributions

Prob. Prob.

Wl

-

Output, q Output, ¢
0 1 million units 0 q=5 g=10



Degenerate Probability Distributions

@ Example of a degenerate probability distribution

Prob.
1

Output, g
0 q = 8 units

@ The player (e.g., firm) puts all probability weight (100%) on
only one of its possible actions: g = 8.



o Definition of mixed strategy:

o Consider player i's finite strategy space S; = (s1, %, ..., Sm)-
e We can then define AS; to be the simplex of S;, i.e., the set
of all probability distributions over S;.
o (Figures for m =2 and m = 3)

o Therefore, a mixed strategy is an element (i.e., a point) of the
simplex, 0; € AS;

oi ={0oi(s1),0i(s2), ... 0i(sm) }

where 7;(sy) denotes the probability that player i plays the
pure strategy sy.

o As usual, 0;(s,) >0 for all k ={1,2,..., m}, and
Yses Tilsk) = 1.



e Definition of mixed strategy (cont’d):
o As usual, we require that:
e 0i(sg) >0forall k={1,2,...,m}, and
° Yges 0i(sk) =1

e When a pure strategy s, receives a strictly positive probability
by o, i.e., oi(sx) > 0, we say that it is in the support of the
mixed strategy o;.

o Otherwise, pure strategy si is not in its support.



e Definition of mixed strategy (cont’d):

e What about defining mixed strategies for continuous actions
spaces, e.g., s; € R47

@ We then need to rely on cdf’s.
o A mixed strategy for player i is a cdf

F,' : S,' — [0, 1}
o where, as usual, for a given value x, F;(x) represents
F,'(X) = Pr{s,- < X}.
o If F;(x) has a density f;(x), then f;(x) can be understood as

the probability of strategy s; = x being selected by player i's
mixed strategy.



@ Definition of msNE:

o Consider a strategy profile ¢ = (01,09, ...,0,) where 7} is a
mixed strategy for player i. ¢ is a msNE if and only if

ui(oj, o) > ui(sl,o_;) for all s] € S; and for all i

e That is, 0} is a best response of player i to the strategy profile
o_; of the other N — 1 players, i.e., 0; = BR;(0_;).



o Remark:
o Note that we wrote u;(0j,0_;) > uj(s}, 0_;) instead of
U,‘((T,',OL,‘) Z U,‘(O';-, 0',,').
e Why?
e If a player was using (7:-, then he would be indifferent between

all pure strategies to which (7;- puts a positive probability, for

example between §; and §;.
e That is why it suffices to check that no player has a profitable

pure-strategy deviation.



Example 1:Matching pennies

e Matching pennies

Player 2
q l1-gq
Heads Tails

Player 1 p Heads | 1,—1 | —1,1
1—p Tails -1,11]1,-1

e Two alternative interpretations of players’
randomization:

o If player 1 is using a mixed strategy, he must be indifferent
between Heads and Tails

o Alternatively, if player 1 is indifferent between Heads and Tails,
it must be that player 2 mixes with a probability g such that
player 1 is made indifferent between Heads and Tails:

EUi1(H) = EU(T) <= 19+ (1—q)(-1) = (-1)q+1(1—q)



Matching pennies

e Matching pennies (example of a normal form game with no
psNE):

Player 2
q l-gq
Heads Tails
Player 1 P Heads | 1,—-1 | —1,1
1—-p Tails | —=1,1 | 1,—-1

@ Solving for the EU comparison, we obtain

EUi(H) = EUi(T) <= 1g+(1—q)(-1) = (-1)g+1(1—q)

~—

g = — — Graphical Interpretation

N~



Matching pennies

@ How to interpret this cutoff of g = % graphically?

@ We know that if g > % then player 2 is very likely playing

Heads. Then, player 1 prefers to play Heads as well (p = 1).
o Alternatively, note that g > % implies EU; (H) > EUy(T).

@ Go to the figure on the next slide, and draw p = 1 for every
q> 3.

Qlfg< % player 2 is likely playing Tails. Then, player 1 prefers
to play Tails as well (p = 0).

© Graphically, draw p = 0 for every g < %



Matching pennies

(Player 2) g
Heads 1

BRi(q)

q:l/z\ \\

From 1stand

2nd steps
From 3" and
4t steps
(Player 1) p
Tails

Heads



Matching pennies

@ Similarly, if player 2 is using a mixed strategy, it must be that
he is indifferent between Heads and Tails:

EUs(H) = EUs(T)

(-)p+1(1—p)=1p+(-1)(1—-p) <= p=3
o (See figure after next slide)



Matching pennies

o Player 2

@ We know that if p > % player 1 is likely playing heads. Then
player 2 wants to play tails instead, i.e.,, g = 0.

@ Go to the figure on the next slide, and draw g = 0 for all
p> 3.

QIlfp< % player 1 is likely playing tails. Then player 2 wants to
play heads, i.e., g = 1.

: _ 1
© Graphically, draw g =1 for all p < 5.



Matching pennies

(Player 2) q
Heads 1

Tails

/ g=1forall p< ¥ (3"¢and 4™ steps)

BR>(p)

dg=0forall p>
(15t and 2" Steps)

(Player 1) p



Matching pennies

@ We can represent these BRFs as follows:
e Player 1
Heads if g > %
BR1(q) = { {Heads, Tails} if g = %
Tails if g < §
o Player 1 is indifferent between Heads and Tails when q is
exactly g = %
o Player 2
Tails if p >
BRy(p) = { {Heads, Tails} if p = 1
Heads if p < %

o Player 2 is indifferent between Heads and Tails when p is
exactly p = %



Matching pennies

(Player 2) g
Heads 1
BRi(q)
q="%%
Unique msNE
N NE
(No psNE) BRy(p)
/ (Player 1) p
Tails © p=%Y

Heads

e Player 1: When g > % Player 1 prefers to play Heads
(p = 1); otherwise, Tails.

o Player 2: When p > 1, Player 2 prefers to play Tails (g = 0);
otherwise, Heads.



Matching pennies

@ Therefore, the msNE of this game can be represented as

Uaa7) (a27)

where the first parenthesis refers to player 1(row player), and
the player 2(column player).



Battle of the sexes

2. Battle of the sexes (example of a normal form game with 2
psNE already!):

Wife
q 18g
Football Opera
p  Football 31 0,0
Husband
1@p Opera 0,0 1,3

If the Husband is using a mixed strategy, it must be that he
indifferent between Football and Opera:

EU,(F) = EU.(0)
3¢g+0(1—q) = 0g+1(1—q)
3g = 1—gq

1

q 9=



Battle of the sexes

Similarly, if the Wife is using a mixed strategy, it must be that she
is indifferent between Football and Opera:

EU,(F) = EU,(0)
Practice!
3
Pr= 3

Therefore, the msNE of this game can be represented as

3_1 1_3

Husband Wife




Battle of the sexes

(Wife) q
Football 1

BRy(p) BRi(q)

>
N

(Husband) p
Opera p=%
Football

e Husband: When g > %, he prefers to go to the Football
game (p = 1); otherwise, the Opera.

o Wife: When p > 3 she prefers to go to the Football game
(g = 1); otherwise, the Opera.



Battle of the sexes

@ Best Responses for Battle of the Sexes are hence:
o Player 1 (Husband)

Football if g > }

BRi(q) = { {Football, Opera} if g = %
Opera if g < %
o Player 2 (Wife)
Football if p > %
BRy(p) = { {Football, Opera} if p = 3
Operaif p < %



Battle of the sexes

@ Note the differences in the cutoffs: They reveal each player's
preferences.

e Husband: "I will go to the football game as long as there is a
slim probability that my wife will be there."

o Wife: "I will only go to the football game if there is more than
a 75% chance my husband will be there."



Prisoner’'s Dilemma

3. Prisoner’s Dilemma (One psNE, but are there any msNE?):

Player 2
q 1 Bg
Confess Not Confess

D Confess @, B Q, A5

Player1

Not
1ep Confess @as, 0 o, e

If the first player is using a mixed strategy, it must be that he
indifferent between Confess and Not Confess:

EU;(C) = EU(NC)

-5q+0(1—q) = —15¢+(-1)(1—q)
—5g = —15g—1+g¢q
1
9q = -1 = g=—="

9



Prisoner’'s Dilemma

@ Similarly, if player 2 is using a mixed strategy, it must be that
she is indifferent between Confess and Not Confess:

EU,(C) = EU(NC)
—5p+0(1—p) = —15p+(-1)(1—p)
—5p = —15p—1+4p
1

9

@ Hence, such msNE would not assign any positive weight to
strategies that are strictly dominated.

o Some textbooks refer to this result by saying that "the support
of the msNE is positive only for strategies that are not strictly
dominated."



Tennis game (msNE with three available strategies)

4. Tennis game (No psNE, but how do we operate with 3
strategies?):

Player 2
q 108g
F C B
F 0,5 2,3 2,3
Player1 p C 2,3 1,5 3,2
1@p B 50 3,2 2,3

@ Remember this game? We used it as an example of how to
delete an strategy that was strictly dominated by the
combination of two strategies of that player.

o Let's do it again.



Tennis game (msNE with three available strategies)

o F is strictly dominated for Player 1:

Player 2
q 10Bg
F C B
F 0,5 2,3 2,3
Player1 pas B
lc.2B | 4,1 £,3 £,8 Io+43)=4%
7 A s N
1@+ ) =%=4 tw+i®=1% le+i@=1%
I3 +40=1 lo)+5@=9=3

@ We can hence rule out F from Player 1 because it is strictly
dominated by (3C, 2B).



Tennis game (msNE with three available strategies)

o After deleting F from Player 1's available actions, we are left

with:
Player 2
F C B
C 2,3 1,5 3,2
Player 1
B 50 3,2 2,3

@ Where we can rule out F from Player 2 because of being
strictly dominated by C.



Tennis game (msNE with three available strategies)

@ Once strategy F has been deleted for both players, we are left

with:

Player1

@ But we cannot identify any psNE, Let's check for msNE:
o If the first player is using a mixed strategy, it must be that he
indifferent between C and B:

EU(C)

p C

1op B

Player 2
q 108q
c B
1,5 3,2
3,2 2,3

EUy(B

)

} Practice!



Tennis game (msNE with three available strategies)

@ Similarly, if player 2 is using a mixed strategy, it must be that
she is indifferent between C and B:

EU>(C) = EUy(NC)

Practice!

p = 5

@ (See figure on next slide)



Tennis game (msNE with three available strategies)

(Player 2) q
Center 1
BR,(p)
mSNE BRi(q)
1
9= 3
0 E (Player 1) p
Back P=" Center

e Player 1: If g > % then Player 1 prefers Back (p = 0);
otherwise Center.

o Player 2: If p > %, then Player 2 prefers Center (g = 1);
otherwise Back.



Tennis game (msNE with three available strategies)

@ Best Responses in the Tennis Game
e Player 1
Back if g > %

BRi(q) = {Center, Back} if g = %
Center if g < 1

@ (Recall that p = 0 implies playing strategy back with
probability one).

o Player 2
Center if p > %

BRy(p) = { {Center, Back} if p= %
Back if p < }



A few tricks we just learned...

o Indifference: If it is optimal to randomize over a collection of
pure strategies, then a player receives the same expected
payoff from each of those pure strategies.

e He must be indifferent between those pure strategies over
which he randomizes.

e Odd number: In almost all finite games (games with a finite
set of players and available actions), there is a finite and odd
number of equilibria.

o Examples: 1 NE in matching pennies (only one msNE), 3 NE
in BoS (two psNE, one msNE), 1 in PD (only one psNE), etc.

@ Never use strictly dominated strategies: If a pure strategy
does not survive the IDSDS, then a NE assigns a zero
probability to that pure strategy.

e Example: PD game, where NC is strictly dominated, it does
not receive any positive probability.



What if players have three undominated strategies?

@ Consider the rock-paper-scissors game

Rock

Player1 Paper

Scissors

e First, note that neither player selects a pure strategy (with

100% probability).

Player 2
Rock Paper Scissors
0,0 @, 1 1A
1A 0,0 m,1
@a,1 1A 0,0




What if players have three undominated strategies?

@ Second, every player must be mixing between all his three
possible actions, R, P and S.

Player?2
Rock Paper Scissors
If Player 1 only
mixes between | Rock 0,0 @, 1 1, @
Rock and Paper
Player1 |Paper 1,a 0,0 @, 1
Scissors @, 1 1, @ 0,0

@ Otherwise: if P1 mixes only between Rock and Paper, then
Player 2 prefers to respond with Paper rather than Rock.

@ But if Player 2 never uses Rock, then Player 1 gets a higher
payoff with Scissors than Paper. Contradicton!

@ Then players cannot be mixing between only two of their
available strategies.



What if players have three undominated strategies?

@ Are you suspecting that the msNE is o = (3, 3, 3)? You're

right!
Player?
Rock Paper Scissors
Rock 0,0 @, 1 1, A
Player1 Paper 1,a 0,0 [, 1
Scissors m,1 1, A 0,0

@ We must make every player indifferent between using Rock,
Paper, or Scissors.

e That is, uy(Rock,02) = uy(Paper,0y) = ui(Scissors, 03) for
Player 1, and

o uy(01, Rock) = uy (01, Paper) = ux (01, Scissors) for Player 2.



What if players have three undominated strategies?

@ Let's separately find each of these expected utilities.
e If player 1 chooses Rock (first row), he obtains

Ul(ROCk,O'z) = OU'Q(R)+(-1)0’2(P)+1(1—0’2(R)—U'Q(P))
= —10’2(P)+1—0’2(R)—0’2(P)

Player 2
First Row Rock  paper " setssare
Rock 0,0 @, 1 1,7
Player1 Paper 1, A 0,0 m,1
Scissors @, 1 1,a 0,0




What if players have three undominated strategies?

o If player 1 chooses Paper (second row), he obtains

up(Paper,03) = 102(R) +002(P) 4+ (=1)(1 — 02(R) — 02(P))
= 0'2(R>—1—|—(72(R)—|—0’2<P)

Second Row

Player 1

Player 2
a2(R) o2(P) 1 o> (R) Boz(P)
Rock Paper Scissors
Rock 0,0 A, 1 1,A
Paper 1, A 0,0 o, 1

Scissors @, 1 1, A 0,0




What if players have three undominated strategies?

e If player 1 chooses Scissors (third row), he obtains

up (Scissors,03) = (=1)02(R) + 102(P) +0(1 — 02(R) — 02(P))
= —02(R)+02(P)

Player?2
O-Z(R) O'z(P) 1 @Uz(R) Uz(P)
Rock Paper Scissors
Rock 0,0 @, 1 1, A
Player1 Paper 1, A 0,0 a,1
Third Row | Scissors @, 1 1,2 0,0




What if players have three undominated strategies?

@ Making the three expected utilities

up(Rock,02) = —102(P)+1—02(R) — 02(P),
up (Paper,02) = 02(R) — 14 02(R) + 02(P), and
ui(Scissors, 03) = —02(R) +02(P)

equal to each other, we obtain
UQ(R) = U'Q(P) =1- UQ(R) — (TQ(P)

@ Hence, player 2 assigns the same probability weights to his
three available actions, thus implying

s (P11
27\3'3'3

@ A similar argument is applicable to player 1, since players’
payoffs are symmetric.



