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Looking back...

So far we have been able to �nd the NE of a relatively large
class of games with complete information:

Games with two or several (n > 2) players.
Games where players select among discrete or continuous
actions.

But, can we assure that all complete information games where
players select their actions simultaneously have a NE?

We couldn�t �nd a NE for the matching pennies game!! (Next
slide)
We will be able to claim existence of a NE if we allow players
to randomize their actions.



Remembering the "matching pennies" game...

Recall that this was an example of an anti-coordination game:

1,	­1 ­1,	1

­1,	1 1,	­1

Head Tail

Head

Tail
P1

P2

Indeed, there is no strategy pair in which players select a
particular action 100% of the times.

We need to allow players to randomize their choices.



Mixed strategy Nash equilibrium

Tadelis: Chapter 6.

First, note that if a player plays more than one strategy with
strictly positive probability, then he must be indi¤erent
between the strategies he plays with strictly positive
probability.

Notation: "non-degenerate" mixed strategies denotes a set of
strategies that a player plays with strictly positive probability.

Whereas "degenerate" mixed strategy is just a pure strategy
(because of degenerate probability distribution concentrates all
its probability weight at a single point).



Degenerate Probability Distributions

Example of non-degenerate probability distributions

Prob.

Output,	q
0 1	million	units

Prob.

Output,	q
0 q	=	5 q	=	10

2
3

1
3



Degenerate Probability Distributions

Example of a degenerate probability distribution

Prob.

Output,	q
0 q	=	8	units

1

The player (e.g., �rm) puts all probability weight (100%) on
only one of its possible actions: q = 8.



De�nition of mixed strategy:

Consider player i�s �nite strategy space Si = (s1, s2, ..., sm).
We can then de�ne 4Si to be the simplex of Si , i.e., the set
of all probability distributions over Si .

(Figures for m = 2 and m = 3)

Therefore, a mixed strategy is an element (i.e., a point) of the
simplex, σi 2 4Si

σi = fσi (s1), σi (s2), ...., σi (sm)g

where σi (sk ) denotes the probability that player i plays the
pure strategy sk .
As usual, σi (sk ) � 0 for all k = f1, 2, ...,mg, and
∑sk2Si σi (sk ) = 1.



De�nition of mixed strategy (cont�d):

As usual, we require that:

σi (sk ) � 0 for all k = f1, 2, ...,mg, and
∑sk2Si σi (sk ) = 1.

When a pure strategy sk receives a strictly positive probability
by σi , i.e., σi (sk ) > 0, we say that it is in the support of the
mixed strategy σi .
Otherwise, pure strategy sk is not in its support.



De�nition of mixed strategy (cont�d):

What about de�ning mixed strategies for continuous actions
spaces, e.g., si 2 R+?

We then need to rely on cdf�s.
A mixed strategy for player i is a cdf

Fi : Si ! [0, 1]

where, as usual, for a given value x , Fi (x) represents
Fi (x) = Prfsi � xg.
If Fi (x) has a density fi (x), then fi (x) can be understood as
the probability of strategy si = x being selected by player i�s
mixed strategy.



De�nition of msNE:

Consider a strategy pro�le σ = (σ1, σ2, ..., σn) where σi is a
mixed strategy for player i . σ is a msNE if and only if

ui (σi , σ�i ) � ui (s 0i , σ�i ) for all s 0i 2 Si and for all i

That is, σi is a best response of player i to the strategy pro�le
σ�i of the other N � 1 players, i.e., σi = BRi (σ�i ).



Remark:
Note that we wrote ui (σi , σ�i ) � ui (s0i , σ�i ) instead of
ui (σi , σ�i ) � ui (σ0i , σ�i ).
Why?

If a player was using σ0i , then he would be indi¤erent between
all pure strategies to which σ0i puts a positive probability, for
example between ŝi and ši .
That is why it su¢ ces to check that no player has a pro�table
pure-strategy deviation.



Example 1:Matching pennies

Matching pennies

Player 2
q 1� q

Heads Tails
Player 1 p Heads 1,�1 �1, 1

1� p Tails �1, 1 1,�1
Two alternative interpretations of players�
randomization:

If player 1 is using a mixed strategy, he must be indi¤erent
between Heads and Tails
Alternatively, if player 1 is indi¤erent between Heads and Tails,
it must be that player 2 mixes with a probability q such that
player 1 is made indi¤erent between Heads and Tails:

EU1(H) = EU1(T ) () 1q+(1�q)(�1) = (�1)q+ 1(1�q)



Matching pennies

Matching pennies (example of a normal form game with no
psNE):

Player 2
q 1� q

Heads Tails
Player 1 p Heads 1,�1 �1, 1

1� p Tails �1, 1 1,�1

Solving for the EU comparison, we obtain

EU1(H) = EU1(T ) () 1q+(1�q)(�1) = (�1)q+ 1(1�q)

q =
1
2
�! Graphical Interpretation



Matching pennies

How to interpret this cuto¤ of q = 1
2 graphically?

1 We know that if q > 1
2 , then player 2 is very likely playing

Heads. Then, player 1 prefers to play Heads as well (p = 1).

Alternatively, note that q > 1
2 implies EU1(H) > EU1(T ).

2 Go to the �gure on the next slide, and draw p = 1 for every
q > 1

2 .
3 If q < 1

2 , player 2 is likely playing Tails. Then, player 1 prefers
to play Tails as well (p = 0).

4 Graphically, draw p = 0 for every q < 1
2 .



Matching pennies

(Player	2)	q

0

1

(Player	1)	p
1

q	=	½	

BR1(q)

From	1st	and	
2nd	steps

From	3rd	and	
4th	steps

Heads

Heads
Tails



Matching pennies

Similarly, if player 2 is using a mixed strategy, it must be that
he is indi¤erent between Heads and Tails:

EU2(H) = EU2(T )

(�1)p + 1(1� p) = 1p + (�1)(1� p) () p = 1
2

(See �gure after next slide)



Matching pennies

Player 2
1 We know that if p > 1

2 , player 1 is likely playing heads. Then
player 2 wants to play tails instead, i.e., q = 0.

2 Go to the �gure on the next slide, and draw q = 0 for all
p > 1

2 .
3 If p < 1

2 , player 1 is likely playing tails. Then player 2 wants to
play heads, i.e., q = 1.

4 Graphically, draw q = 1 for all p < 1
2 .



Matching pennies

(Player	2)	q

0

1

(Player	1)	p
1p	=	½	

Heads

Heads
Tails

q =	1	for	all	p <	½	(3rd and	4th steps)

q =	0	for	all	p >	½	
(1st

d

and	2nd Steps)	

BR2(p)



Matching pennies

We can represent these BRFs as follows:

Player 1

BR1(q) =

8<:
Heads if q > 1

2
fHeads, Tailsg if q = 1

2
Tails if q < 1

2

Player 1 is indi¤erent between Heads and Tails when q is
exactly q = 1

2

Player 2

BR2(p) =

8<:
Tails if p > 1

2
fHeads, Tailsg if p = 1

2
Heads if p < 1

2

Player 2 is indi¤erent between Heads and Tails when p is
exactly p = 1

2



Matching pennies

(Player	2)	q

0

1

(Player	1)	p
1p	=	½	

Heads

Heads
Tails

BR2(p)

BR1(q)

q	=	½	

Unique	msNE	
(No	psNE)

Player 1: When q > 1
2 , Player 1 prefers to play Heads

(p = 1); otherwise, Tails.
Player 2: When p > 1

2 , Player 2 prefers to play Tails (q = 0);
otherwise, Heads.



Matching pennies

Therefore, the msNE of this game can be represented as��
1
2
H,
1
2
T
�
,

�
1
2
H,
1
2
T
��

where the �rst parenthesis refers to player 1(row player), and
the player 2(column player).



Battle of the sexes

2. Battle of the sexes (example of a normal form game with 2
psNE already!):

3,	1 0,	0

0,	0 1,	3

Football Opera

Football

Opera
Husband

Wife

p

q

1	­	p

1	­	q

If the Husband is using a mixed strategy, it must be that he
indi¤erent between Football and Opera:

EU1(F ) = EU1(O)

3q + 0(1� q) = 0q + 1(1� q)
3q = 1� q

4q = 1 =) q =
1
4



Battle of the sexes

Similarly, if the Wife is using a mixed strategy, it must be that she
is indi¤erent between Football and Opera:

EU2(F ) = EU2(O)9=;Practice!
p =

3
4

Therefore, the msNE of this game can be represented as

msNE =

8>>><>>>:
�
3
4
F ,
1
4
O
�

| {z }
Husband

,

�
1
4
F ,
3
4
O
�

| {z }
Wife

9>>>=>>>;



Battle of the sexes

(Wife)	q

0

1

(Husband)	p
1p	=	¾		

Football

Football
Opera

BR2(p) BR1(q)

q	=	¼		
msNE

Husband: When q > 1
4 , he prefers to go to the Football

game (p = 1); otherwise, the Opera.

Wife: When p > 3
4 , she prefers to go to the Football game

(q = 1); otherwise, the Opera.



Battle of the sexes

Best Responses for Battle of the Sexes are hence:

Player 1 (Husband)

BR1(q) =

8<:
Football if q > 1

4
fFootball, Operag if q = 1

4
Opera if q < 1

4

Player 2 (Wife)

BR2(p) =

8<:
Football if p > 3

4
fFootball, Operag if p = 3

4
Opera if p < 3

4



Battle of the sexes

Note the di¤erences in the cuto¤s: They reveal each player�s
preferences.

Husband: "I will go to the football game as long as there is a
slim probability that my wife will be there."
Wife: "I will only go to the football game if there is more than
a 75% chance my husband will be there."



Prisoner�s Dilemma

3. Prisoner�s Dilemma (One psNE, but are there any msNE?):

­5,	­5 0,	­15

­15,	0 ­1,	­1

Confess Not	Confess

Confess

Not	
Confess

Player	1

Player	2

p

q

1	­	p

1	­	q

If the �rst player is using a mixed strategy, it must be that he
indi¤erent between Confess and Not Confess:

EU1(C ) = EU1(NC )

�5q + 0(1� q) = �15q + (�1)(1� q)
�5q = �15q � 1+ q

9q = �1 =) q = �1
9

?



Prisoner�s Dilemma

Similarly, if player 2 is using a mixed strategy, it must be that
she is indi¤erent between Confess and Not Confess:

EU2(C ) = EU2(NC )

�5p + 0(1� p) = �15p + (�1)(1� p)
�5p = �15p � 1+ p

9p = �1 =) p = �1
9

Hence, such msNE would not assign any positive weight to
strategies that are strictly dominated.

Some textbooks refer to this result by saying that "the support
of the msNE is positive only for strategies that are not strictly
dominated."



Tennis game (msNE with three available strategies)

4. Tennis game (No psNE, but how do we operate with 3
strategies?):

0,	5 2,	3

2,	3 1,	5

C B

C

B

Player	1

Player	2

p

q

1	­	p

1	­	q

2,	3

3,	2

5,	0 3,	2 2,	3

F

F

Remember this game? We used it as an example of how to
delete an strategy that was strictly dominated by the
combination of two strategies of that player.

Let�s do it again.



Tennis game (msNE with three available strategies)

F is strictly dominated for Player 1:

0,	5 2,	3

4,	1 	,	3

C B

C	,					B1
Player	1

Player	2
q 1	­	q

2,	3

,	

F

F

3
2
3

7
3

7
3

8
3

(2)	+				(5)	=						=41
3

2
3

12
3

(3)	+				(0)	=	11
3

2
3

(1)	+				(3)	=1
3

2
3

7
3

(5)	+				(2)	=						=31
3

2
3

9
3

(3)	+				(2)	=1
3

2
3

7
3

(2)	+				(3)	=1
3

2
3

8
3

We can hence rule out F from Player 1 because it is strictly
dominated by ( 13C ,

2
3B).



Tennis game (msNE with three available strategies)

After deleting F from Player 1�s available actions, we are left
with:

2,	3 1,	5

5,	0 3,2

C B

Player	1

Player	2

3,	2C

F

B 2,	3

Where we can rule out F from Player 2 because of being
strictly dominated by C .



Tennis game (msNE with three available strategies)

Once strategy F has been deleted for both players, we are left
with:

1,	5

3,	2

C B

Player	1

Player	2

3,	2C

B 2,	3

p

q

1	­	p

1	­	q

But we cannot identify any psNE, Let�s check for msNE:
If the �rst player is using a mixed strategy, it must be that he
indi¤erent between C and B:

EU1(C ) = EU1(B) ....	
Practice!

q =
1
3



Tennis game (msNE with three available strategies)

Similarly, if player 2 is using a mixed strategy, it must be that
she is indi¤erent between C and B:

EU2(C ) = EU2(NC ) ...9=;Practice!
p =

1
4

(See �gure on next slide)



Tennis game (msNE with three available strategies)

(Player	2)	q

0

1

(Player	1)	p
1p	=		 CenterBack

BR2(p)

BR1(q)

q	=		

msNE

Center

1
3

1
4

Player 1: If q > 1
3 , then Player 1 prefers Back (p = 0);

otherwise Center.

Player 2: If p > 1
4 , then Player 2 prefers Center (q = 1);

otherwise Back.



Tennis game (msNE with three available strategies)

Best Responses in the Tennis Game

Player 1

BR1(q) =

8<:
Back if q > 1

4
fCenter, Backg if q = 1

4
Center if q < 1

4

(Recall that p = 0 implies playing strategy back with
probability one).

Player 2

BR2(p) =

8<:
Center if p > 1

4
fCenter, Backg if p = 1

4
Back if p < 1

4



A few tricks we just learned...

Indi¤erence: If it is optimal to randomize over a collection of
pure strategies, then a player receives the same expected
payo¤ from each of those pure strategies.

He must be indi¤erent between those pure strategies over
which he randomizes.

Odd number: In almost all �nite games (games with a �nite
set of players and available actions), there is a �nite and odd
number of equilibria.

Examples: 1 NE in matching pennies (only one msNE), 3 NE
in BoS (two psNE, one msNE), 1 in PD (only one psNE), etc.

Never use strictly dominated strategies: If a pure strategy
does not survive the IDSDS, then a NE assigns a zero
probability to that pure strategy.

Example: PD game, where NC is strictly dominated, it does
not receive any positive probability.



What if players have three undominated strategies?

Consider the rock-paper-scissors game

0,	0 ­1,	1

1,	­1 0,	0

Rock Paper

Rock

PaperPlayer	1

Player	2

1,	­1

­1,	1

­1,	1 1,	­1 0,	0

Scissors

Scissors

First, note that neither player selects a pure strategy (with
100% probability).



What if players have three undominated strategies?

Second, every player must be mixing between all his three
possible actions, R, P and S.

0,	0 ­1,	1

1,	­1 0,	0

Rock Paper

Rock

PaperPlayer	1

Player	2

1,	­1

­1,	1

­1,	1 1,	­1 0,	0

Scissors

Scissors

If	Player	1	only	
mixes	between	
Rock	and	Paper

Otherwise: if P1 mixes only between Rock and Paper, then
Player 2 prefers to respond with Paper rather than Rock.
But if Player 2 never uses Rock, then Player 1 gets a higher
payo¤ with Scissors than Paper. Contradicton!
Then players cannot be mixing between only two of their
available strategies.



What if players have three undominated strategies?

Are you suspecting that the msNE is σ = ( 13 ,
1
3 ,
1
3 )? You�re

right!

0,	0 ­1,	1

1,	­1 0,	0

Rock Paper

Rock

PaperPlayer	1

Player	2

1,	­1

­1,	1

­1,	1 1,	­1 0,	0

Scissors

Scissors

We must make every player indi¤erent between using Rock,
Paper, or Scissors.

That is, u1(Rock, σ2) = u1(Paper , σ2) = u1(Scissors, σ2) for
Player 1, and

u2(σ1,Rock) = u2(σ1,Paper) = u2(σ1,Scissors) for Player 2.



What if players have three undominated strategies?

Let�s separately �nd each of these expected utilities.
If player 1 chooses Rock (�rst row), he obtains

u1(Rock, σ2) = 0σ2(R) + (�1)σ2(P) + 1(1� σ2(R)� σ2(P))

= �1σ2(P) + 1� σ2(R)� σ2(P)

0,	0 ­1,	1

1,	­1 0,	0

Rock Paper

Rock

PaperPlayer	1

Player	2

1,	­1

­1,	1

­1,	1 1,	­1 0,	0

Scissors

Scissors

σ2(R) σ2(P) 1	­	σ2(R)	­	σ2(P)First	Row



What if players have three undominated strategies?

If player 1 chooses Paper (second row), he obtains

u1(Paper , σ2) = 1σ2(R) + 0σ2(P) + (�1)(1� σ2(R)� σ2(P))

= σ2(R)� 1+ σ2(R) + σ2(P)

0,	0 ­1,	1

1,	­1 0,	0

Rock Paper

Rock

PaperPlayer	1

Player	2

1,	­1

­1,	1

­1,	1 1,	­1 0,	0

Scissors

Scissors

σ2(R) σ2(P) 1	­	σ2(R)	­	σ2(P)

Second	Row



What if players have three undominated strategies?

If player 1 chooses Scissors (third row), he obtains

u1(Scissors, σ2) = (�1)σ2(R) + 1σ2(P) + 0(1� σ2(R)� σ2(P))

= �σ2(R) + σ2(P)

0,	0 ­1,	1

1,	­1 0,	0

Rock Paper

Rock

PaperPlayer	1

Player	2

1,	­1

­1,	1

­1,	1 1,	­1 0,	0

Scissors

Scissors

σ2(R) σ2(P) 1	­	σ2(R)	­	σ2(P)

Third	Row



What if players have three undominated strategies?

Making the three expected utilities

u1(Rock, σ2) = �1σ2(P) + 1� σ2(R)� σ2(P),

u1(Paper , σ2) = σ2(R)� 1+ σ2(R) + σ2(P), and

u1(Scissors, σ2) = �σ2(R) + σ2(P)

equal to each other, we obtain

σ2(R) = σ2(P) = 1� σ2(R)� σ2(P)

Hence, player 2 assigns the same probability weights to his
three available actions, thus implying

σ�2 =

�
1
3
,
1
3
,
1
3

�
A similar argument is applicable to player 1, since players�
payo¤s are symmetric.


