

Screening models in the labor market

Felix Munoz-Garcia

*EconS 503 - Advanced Microeconomics II - Washington State
University*

Screening

- Workers' types are still unobservable.
- Firms often offer a menu of contracts (w_H, t_H) and (w_L, t_L) where w denotes wages and t represents the task assigned to the worker (we assume the task to

$$u(w, t | \theta) = w - c(t, \theta)$$

Screening

- Similarly as in previous section, $c(0, \theta) = 0$, and

$$c_t(t, \theta) > 0$$

$$c_{tt}(t, \theta) > 0$$

- positive and increasing marginal costs from the task and

$$c_\theta(t, \theta) < 0$$

$$c_{t\theta}(t, \theta) < 0 \rightarrow S.C.C$$

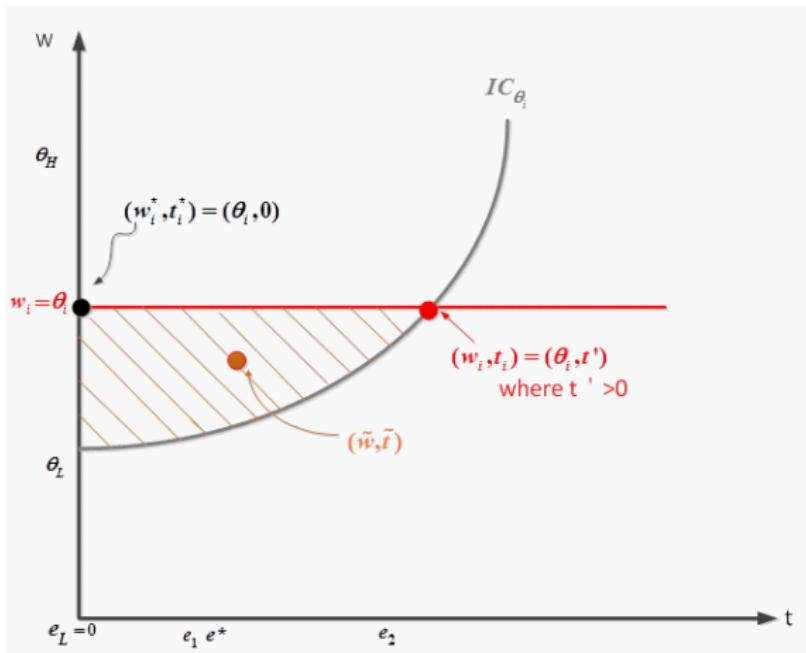
Benchmark-Observable Types

In any SPNE of the screening game, firms offer $(w_i^*, t_i^*) = (\theta_i, 0)$ to an type- θ worker and firms earn no profits.

Proof:

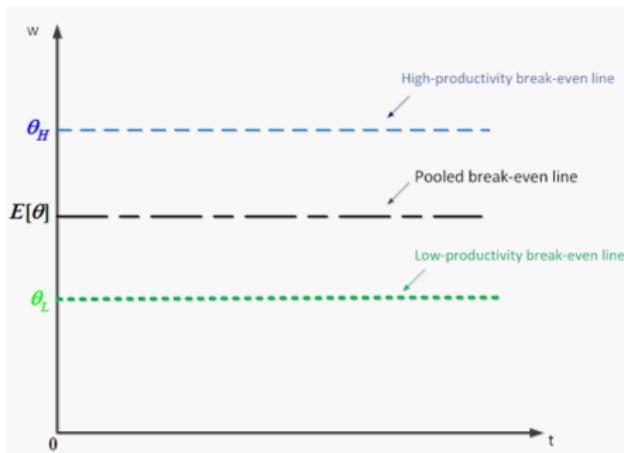
- For a given $t_i = 0$, $w_i > \theta_i$ would lead to losses and $w_i < \theta_i$ would lead to profits (other firms could offer $w_i + \epsilon$)
- For a given $w_i = \theta_i$ any $t'_i > 0$ cannot be part of the equilibrium, as any competing firm could offer a (w, t) -pair in the shaded region, which would be accepted by the worker, such as point (\tilde{w}, \tilde{t}) in the following figure.

Benchmark-Observable Types



Unobservable Types

- Let us start depicting the break-even lines of contracts, (w, t) -pairs, that would yield zero profits if they attract: only high-productive workers, only low-productive workers, or both types of workers.



Unobservable Types

- **Firms make no profits.**
- **Proof (1st part, Separating).**
- Contracts $(w_L, t_L) \neq (w_H, t_H)$ induce separation. If a firm obtains positive profits, e.g., $w_H < \theta_H$ and $w_L < \theta_L$, then another firm could offer a new pair of contracts $(w_L + \epsilon, t_L)$ and $(w_H + \epsilon, t_H)$. These new contracts are accepted by all low-productive workers and all high-productive workers, respectively. In addition, since $\epsilon \rightarrow 0$, such contract offer is profitable for the firm.
- However, a similar argument would apply for rival firms, successively approaching wages to marginal productivity, i.e., $w_i = \theta_i$ for all types $i = H, L$.
 - Ultimately, firms make no profits.

Unobservable Types

Proof (2nd part, Pooling):

- Contracts

$$(w_L, t_L) = (w_H, t_H) = (w_p, t_p)$$

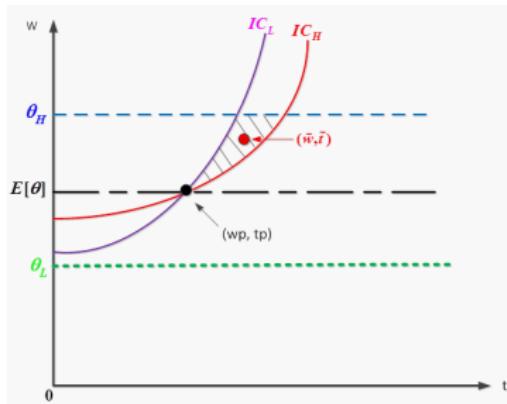
and induce a pooling of all workers (same argument as above, but with a unique contract that attracts all workers). That is, any firm could offer $(w_p + \epsilon, t_p)$, attract all workers, and make larger profits (by making $\epsilon \rightarrow 0$).

- Then no firm makes profits and (w_p, t_p) must lie on the pooling break-even line.

Unobservable Types

No pooling equilibrium exists.

Proof (easy): By contradiction, assume a pooling equilibrium contract (w_p, t_p) exists, as in the next figure.



Either firm could deviate by offering a contract on the shaded area, such as (\tilde{w}, \tilde{t}) , which only attracts the high-productive worker, and allows a profit margin of $(\theta_H - \tilde{w}) > 0$.

Unobservable types

- Summary of what we did thus far:
 - Firms make no profits.
 - No pooling equilibrium exists.
 - Let's then analyze the separating equilibrium next.

Separating SPNE-Salaries

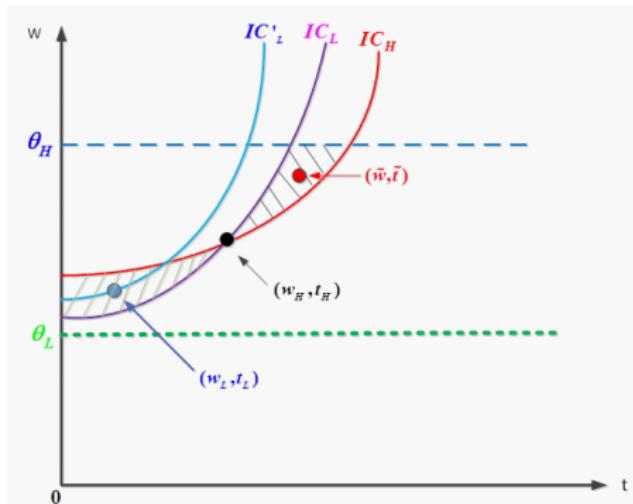
- In the SPNE, contracts (w_H, t_H) and (w_L, t_L) must satisfy $w_H = \theta_H$ and $w_L = \theta_L$, yielding zero profits. (we will analyze tasks later)

Proof:

- (*Low types*) If a firm offers $w_L < \theta_L$, then other firms can earn profits by offering $(w_L, t_L) = (\tilde{w}, t_L)$ where $\theta_L > \tilde{w} > w_L$.
 - All low-ability workers accept it, leaving a positive margin to the firm since $\tilde{w} < \theta_L$.
 - However, this cannot be an equilibrium as other firms would have the incentives to further increase \tilde{w} closer to θ_L , ultimately stopping at exactly $w_L = \theta_L$, as we needed to show.

Separating SPNE-Salaries

Proof (cont'd): (High types) If a firm offers $w_H < \theta_H$, then (w_L, t_L) contract must lie on the dashed LHS region of the next figure: this guarantee that L-type doesn't profitably deviate to (w_H, t_H) , nor H-type is tempted to choose (w_L, t_L) .



Separating SPNE-Salaries

- However, any firm could offer a contract such as (\tilde{w}, \tilde{t}) on the shaded area. By doing so, it attracts all H-type workers and none of the L-types.
- This argument applies for all $w_H < \theta_H$, implying that $w_H = \theta_H$.
 - That is, once $w_H = \theta_H$ we cannot find other contracts that are preferable for the H-type and disliked by the L-type.

Separating SPNE-Tasks

- So far we identified that wages satisfy

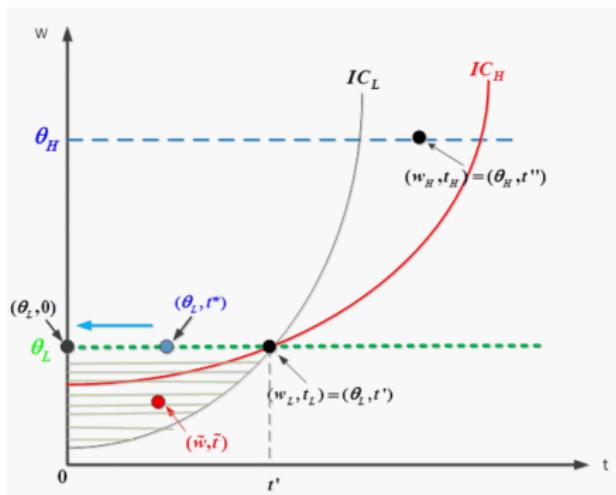
$$w_H = \theta_H \text{ and } w_L = \theta_L,$$

- But what about the tasks t_H and t_L in contracts (w_H, t_H) and (w_L, t_L) ?

Separating SPNE-Tasks

Low type $(w_L, t_L) = (\theta_L, 0)$

- We are just claiming that $t_L = 0$ since we already knew that $w_L = \theta_L$.
- Let's prove it by contradiction: Can we have $t_L = t' > 0$?



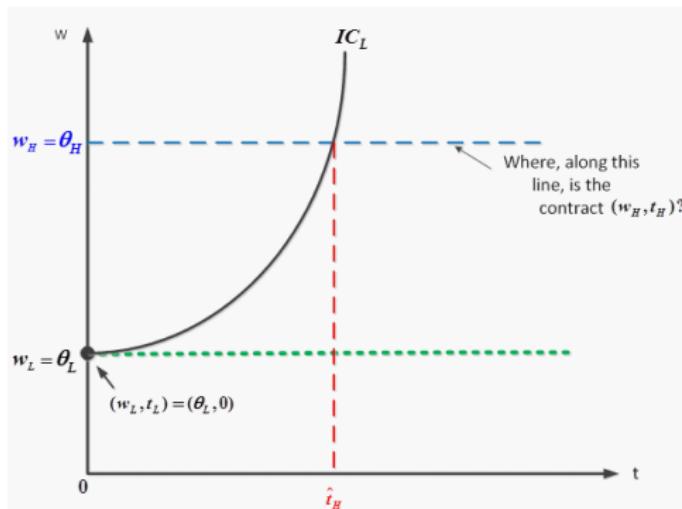
Separating SPNE-Tasks

- If a firm offers $(w_L, t_L) = (\theta_L, t')$, other firms could attract all low-productive workers by offering a contract on the shaded region, such as (\tilde{w}, \tilde{t}) , and obtain positive profits from all workers (low or high ability).
- Strictly speaking, once we proved $w_L = \theta_L$, the above argument would imply that competing firms would offer a contract $(\tilde{w}, \tilde{t}) = (\theta_L, t^*)$, where $t^* < t'$, along the horizontal line of $w_L = \theta_L$ moving leftward.
 - This argument holds until you reach the axis, i.e., $(w_L, t_L) = (\theta_L, 0)$.
 - Hence, the low-productive worker receives the same contract $(w_L, t_L) = (\theta_L, 0)$ as under complete information (observable types, our initial benchmark).

Separating SPNE-Tasks

High type

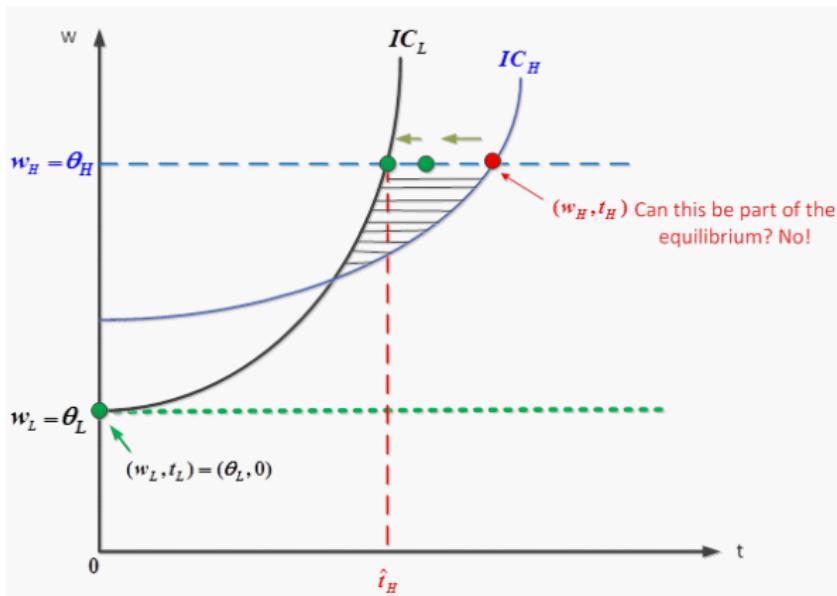
- Once we determined $(w_L, t_L) = (\theta_L, 0)$ for the low types, and the salary $w_H = \theta_H$ to the high type, we only need to find his task t_H .



Separating SPNE-Tasks

- Any contract $(w_H, t_H) = (\theta_H, \hat{t}_H)$, or with $t_H \geq \hat{t}_H$, prevents L-types from choosing it.
- Any contract with $w_H = \theta_H$ but with $t_H > \hat{t}_H$ cannot be part of the equilibrium:
 - Competing firms could offer a contract $(w_H, t_H) = (\tilde{w}, \tilde{t})$, as in the shaded area of the next figure, attracting only high-productive workers and making positive profits.

Separating SPNE-Tasks



Hence, only $t_H = \hat{t}_H$ can be part of the separating equilibrium.

Separating SPNE-Tasks

- Reductions in the task until \hat{t}_H attract all high-productive workers.
 - Firms' competition will thus successively reduce t_H until \hat{t}_H .
- We cannot move below \hat{t}_H (left of this cutoff).
 - Otherwise, both high- and low-productive workers would be attracted, thus not achieving separation (self-selection).

Separating SPNE - Summary

Therefore, we can summarize the separating SPNE as follows:

- Firms offer the menu of contracts
 - $(w_L, t_L) = (\theta_L, 0)$ and
 - $(w_H, t_H) = (\theta_H, \hat{t}_H)$, where \hat{t}_H solves
$$\theta_H - c(\hat{t}_H, \theta_L) = \theta_L - c(0, \theta_L).$$
- [As a remark, this condition can be further simplified to $\theta_H = \theta_L + c(\hat{t}_H, \theta_L)$ since $c(0, \theta) = 0$ for all θ by assumption.]
- Low-productive workers accept contract $(w_L, t_L) = (\theta_L, 0)$.
- High-productive workers accept contract $(w_H, t_H) = (\theta_H, \hat{t}_H)$.

Separating SPNE - Summary

Practice:

If $c(t, \theta) = \frac{t^2}{\theta}$, where $\theta = \{1, 2\}$, we can easily find contracts $(w_L, t_L) = (1, 0)$ and $(w_H, t_H) = (2, \hat{t}_H)$, where the task \hat{t}_H is found with

$$\theta_H - c(\hat{t}_H, \theta_H) = \theta_L - c(0, \theta_L)$$

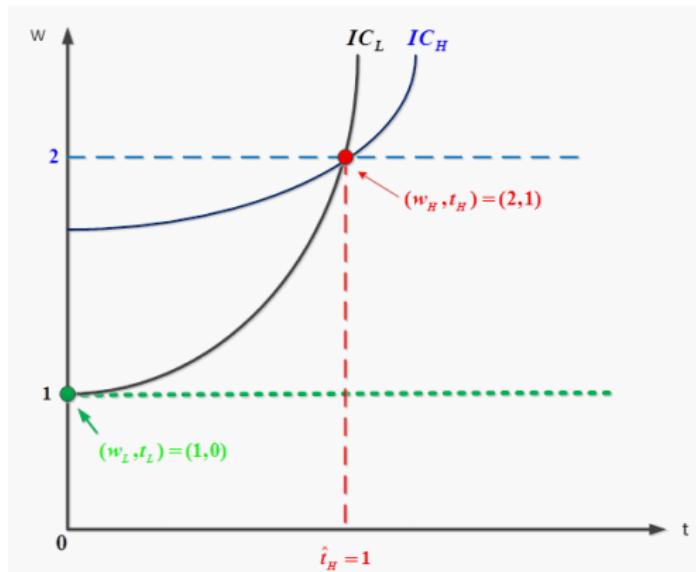
since $c(0, \theta) = 0$ for all θ ,

$$2 - \frac{(\hat{t}_H)^2}{2} = 1 - 0 \iff 4 - (\hat{t}_H)^2 = 2$$

$$\iff 2 = (\hat{t}_H)^2 \iff \hat{t}_H = \sqrt{2} \cong 1.42$$

Separating SPNE-Tasks

Summary of our numerical example:



Please note that \hat{t}_H should be placed at $\hat{t}_H = 1.42$, not at $\hat{t}_H = 1$.

Separating SPNE - When does it exist?

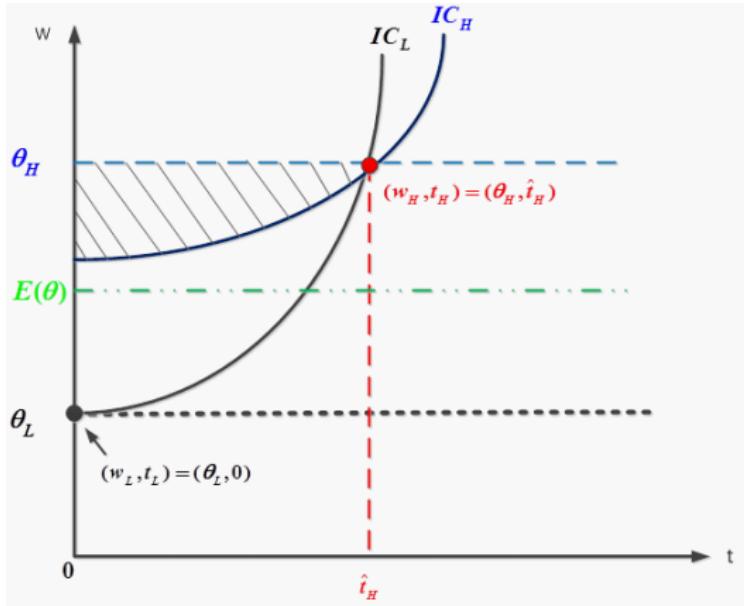
- When the horizontal intercept's of the high-productive worker's indifference-curve lies above $E(\theta)$.
 - That is, if his utility function is $u_H = w_H - c(t_H, \theta_H)$, solving for w_H we obtain

$$w_H = u_H + c(t_H, \theta_H),$$

and since $c(0, \theta_H) = 0$ by assumption, the horizontal intercept is u .

- We hence need that $u_H > E(\theta)$.
- Why do we need this condition (see next figure)?

Separating SPNE - When does it exist?



Separating SPNE - When does it exist?

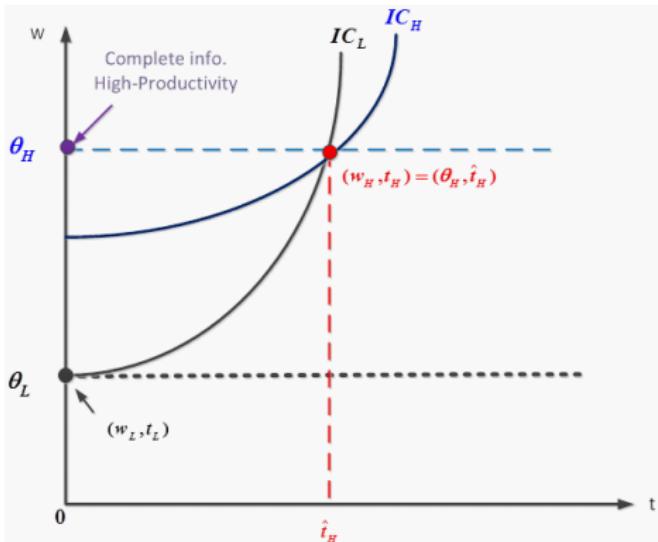
- Firms cannot increase their profits by offering an alternative contract different from (w_L, t_L) and (w_H, t_H) , attracting only high- or only low-productivity workers
 - Let's look at the above figure.
- However, firms could attract both types of workers, by offering (w, t) -pairs in the shaded region.
 - But doing so is only profitable for the firm if $w < E(\theta)$, which is not the case here.
 - How would that figure look like?
 - In that case, a separating SPNE does not exist, but a pooling SPNE does.

Payoff Comparison relative to Complete Information

- We can now compare the equilibrium payoff that each type of worker obtains in this setting (incomplete information with the firm using screening to distinguish workers' types) against two benchmarks:
 - **Complete information**, where the firm can observe workers' types, implying $w_L = \theta_L$ and $w_H = \theta_H$; and
 - **Incomplete information without screening** (or if screening was banned).

Payoff Comparision relative to Complete Information

- *Low-productivity worker*: under complete info, he would receive $w_L = \theta_L$ and no need of doing unproductive tasks. Hence, he is as well-off as under the separating SPNE.



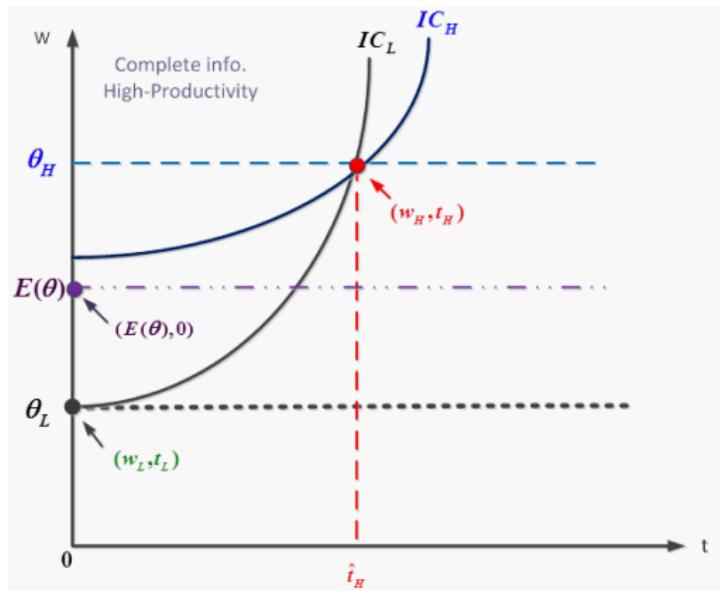
Payoff Comparision relative to Complete Information

- *High-productivity worker:*

- Under complete info, he would receive $w_H = \theta_H$ and no need to execute unproductive tasks.
- His utility level would be higher than in the separating SPNE, with an indifference curve passing through point $(\theta_H, 0)$ on the vertical axis.
- That is, high-ability workers engage in unproductive tasks simply to separate themselves from low-ability workers.

Payoff Comparision relative to No Screening

Under no screening, uninformed firms have to offer a unique contract $(w, t) = (E[\theta], 0)$, on the vertical axis of the next figure.



Payoff Comparision relative to No Screening

- *Low-productivity worker*: he is better off if screening is not available.
- *High-productivity worker*: he is worse off if screening is not available.

Alternatively, screening must make the high-ability worker better-off, otherwise a separating PBE would not exist.