EconS 301

Review Session \#6 - Chapter 8: Cost Curves

8.12. Consider a production function with two inputs, labor and capital, given by $\mathrm{Q}=(\sqrt{L}+$ $\sqrt{K})^{2}$. The marginal products associated with this production function are as follows:

$$
\begin{aligned}
& M P_{L}=\left[L^{\frac{1}{2}}+K^{\frac{1}{2}}\right] L^{\frac{-1}{2}} \\
& M P_{K}=\left[L^{\frac{1}{2}}+K^{\frac{1}{2}}\right] K^{\frac{-1}{2}}
\end{aligned}
$$

Let $\mathrm{w}=2$ and $\mathrm{r}=1$
a) Suppose the firm is required to produce Q units of output. Show how the costminimizing quantity of labor depends on the quantity Q . Show how the costminimizing quantity of capital depends on quantity Q .

Starting with the tangency condition we have

$$
\begin{aligned}
\frac{M P_{L}}{M P_{K}} & =\frac{w}{r} \\
\frac{\left[L^{1 / 2}+K^{1 / 2}\right] L^{-1 / 2}}{\left[L^{1 / 2}+K^{1 / 2}\right] K^{-1 / 2}} & =\frac{2}{1} \\
\frac{K}{L} & =4 \\
K & =4 L
\end{aligned}
$$

Plugging this into the total cost function yields

$$
\begin{aligned}
& Q=\left[L^{1 / 2}+(4 L)^{1 / 2}\right]^{2} \\
& Q=\left[3 L^{1 / 2}\right]^{2} \\
& Q=9 L \\
& L=\frac{Q}{9}
\end{aligned}
$$

Inserting this back into the solution for K above gives

$$
K=\frac{4 Q}{9}
$$

b) Find the equation of the firm's long-run total cost curve.

$$
\begin{aligned}
& T C=2\left(\frac{Q}{9}\right)+\frac{4 Q}{9} \\
& T C=\frac{2 Q}{3}
\end{aligned}
$$

c) Find the equation of the firm's long-run average cost curve.

$$
\begin{aligned}
& A C=\frac{T C}{Q}=\left(\frac{2 Q}{3}\right) / Q \\
& A C=\frac{2}{3}
\end{aligned}
$$

d) Find the solution to the firm's short-run cost-minimization problem when capital is fixed at a quantity of 9 units (i.e. $\bar{K}=9$).

When $Q \leq 9$ the firm needs no labor. If $Q>9$ the firm must hire labor. Setting $\bar{K}=9$ and plugging in for capital in the production function yields

$$
\begin{aligned}
Q & =\left[L^{1 / 2}+9^{1 / 2}\right]^{2} \\
Q^{1 / 2} & =L^{1 / 2}+3 \\
L^{1 / 2} & =Q^{1 / 2}-3 \\
L & =\left[Q^{1 / 2}-3\right]^{2}
\end{aligned}
$$

Thus,

$$
L= \begin{cases}{\left[Q^{1 / 2}-3\right]^{2}} & \text { if } Q>9 \\ 0 & \text { if } Q \leq 9\end{cases}
$$

e) Find the short-run total cost curve, and graph it along with the long-run total cost curve.

$$
T C= \begin{cases}2\left(Q^{1 / 2}-3\right)^{2}+9 & \text { when } Q>9 \\ 9 & \text { when } Q \leq 9\end{cases}
$$

Graphically, short-run and long-run total cost are shown in the following figure.

f) Find the associated short-run average cost curve.

$$
A C=\frac{T C}{Q}= \begin{cases}\frac{2\left(Q^{1 / 2}-3\right)^{2}+9}{Q} & \text { if } Q>9 \\ \frac{9}{Q} & \text { if } Q \leq 9\end{cases}
$$

8.14. A hat manufacturing firm has the following production function with capital and labor being the inputs: $\mathrm{Q}=\min (4 \mathrm{~L}, 7 \mathrm{~K})$-that is it has a fixed-proportions production function. If w is the cost of a unit of labor and r is the cost of a unit of capital, derive the firm's long-run total cost curve and average cost curve in terms of the input prices and Q .

The fixed proportions production function implies that for the firm to be at a cost minimizing optimum, $4 L=7 \mathrm{~K}$ and both of these equal Q. Therefore, $L=Q / 4$ and $K=Q / 7$. So the firm's total cost is $w L+r K=w Q / 4+r Q / 7=\left[\frac{w}{4}+\frac{r}{7}\right] Q$.

The average cost curve is $L R A C=T C / Q=\frac{w}{4}+\frac{r}{7}$. Note that this average cost curve is independent of Q and is simply a straight line.
8.19. Consider a production function of three inputs, labor, capital, and materials, given by $\mathrm{Q}=\mathrm{LKM}$. The marginal products associated with this production function are as followsL $\mathrm{MP}_{\mathrm{L}}=\mathrm{KM}, \mathrm{MP}_{\mathrm{K}}=\mathrm{LM}$, and $\mathrm{MP}_{\mathrm{M}}=\mathrm{LK}$. Let $w=5, r=1$, and $m=2$, where m is the price per unit of materials.
a) Suppose that the firm is required to produce Q units of output. Show how the costminimizing quantity of labor depends on the quantity Q . Show how the cost-minimizing quantity of capital depends on the quantity Q . Show how the cost-minimizing quantity of materials depends on the quantity Q .

Equating the bang for the buck between labor and capital implies

$$
\begin{aligned}
\frac{M P_{L}}{M P_{K}} & =\frac{w}{r} \\
\frac{K M}{L M} & =\frac{5}{1} \\
K & =5 L
\end{aligned}
$$

Equating the bang for the buck between labor and materials implies

$$
\begin{aligned}
& \frac{M P_{L}}{M P_{M}}=\frac{w}{m} \\
& \frac{K M}{K L}=\frac{5}{2} \\
& M=\frac{5 L}{2}
\end{aligned}
$$

Plugging these into the production function yields

$$
\begin{aligned}
& Q=L(5 L)\left(\frac{5 L}{2}\right) \\
& Q=\frac{25 L^{3}}{2} \\
& L^{3}=\frac{2 Q}{25} \\
& L=\left(\frac{2 Q}{25}\right)^{1 / 3}
\end{aligned}
$$

Substituting into the tangency condition results above implies

$$
K=5\left(\frac{2 Q}{25}\right)^{1 / 3}
$$

and

$$
M=\frac{5}{2}\left(\frac{2 Q}{25}\right)^{1 / 3}
$$

b) Find the equation of the firm's long-run total cost curve.

$$
\begin{aligned}
& T C=5\left(\frac{2 Q}{25}\right)^{1 / 3}+5\left(\frac{2 Q}{25}\right)^{1 / 3}+2\left(\frac{5}{2}\right)\left(\frac{2 Q}{25}\right)^{1 / 3} \\
& T C=15\left(\frac{2 Q}{25}\right)^{1 / 3}
\end{aligned}
$$

c) Find the equation of the firm's long-run average cost curve.

$$
A C=\frac{T C}{Q}=\frac{15}{Q}\left(\frac{2 Q}{25}\right)^{1 / 3}
$$

d) Suppose that the firm is required to produce Q units of output, but that its capital is fixed at a quantity of 50 units (i.e. $\bar{K}=50$). Show how the cost-minimizing quantity of labor depends on the quantity Q . Show how the cost-minimizing quantity of materials depends on the quantity Q .
Beginning with the tangency condition

$$
\begin{aligned}
& \frac{M P_{L}}{M P_{M}}=\frac{w}{m} \\
& \frac{K M}{K L}=\frac{5}{2} \\
& M=\frac{5 L}{2}
\end{aligned}
$$

Setting $\bar{K}=50$ and substituting into the production function yields

$$
\begin{aligned}
& Q=L(50)\left(\frac{5 L}{2}\right) \\
& Q=125 L^{2} \\
& L=\sqrt{\frac{Q}{125}}
\end{aligned}
$$

Substituting this result into the tangency condition result above implies

$$
\begin{aligned}
& M=\frac{5 \sqrt{\frac{Q}{125}}}{2} \\
& M=\sqrt{\frac{Q}{20}}
\end{aligned}
$$

e) Find the equation of the short-run total cost curve when capital is fixed at a quantity of 50 units (i.e. $\bar{K}=50$) and graph it along with the long-run total cost curve.

In the short run,

$$
\begin{aligned}
& T C=5 \sqrt{\frac{Q}{125}}+50+2 \sqrt{\frac{Q}{20}} \\
& T C=2 \sqrt{\frac{Q}{5}}+50
\end{aligned}
$$

Graphically, short-run and long-run total cost curves are shown in the following figure.

f) Find the equation of the associated short-run average cost curve.

Short run average cost is given by

$$
A C=\frac{T C}{Q}=\frac{2 \sqrt{\frac{Q}{5}}+50}{Q}
$$

