EconS 501 - Micro Theory I
Recitation #4b - Demand theory (Applications)!

1. Exercise 3.1.7T MWG: There are three commodities (i.e., L=3) of which the third is
a numeraire (let p3 = 1) the Walrasian demand function for each good z(p, w) is

r1(p, w) = a+ bpy + cpy

z2(p,w) = d + ep1 + gp2
a) Give the parameter restrictions implied by utility maximization.
e Intuitively, note that:

1. b <0 for ULD (i.e., Ap- Az < 0) to be satisfied (T p1 =] x1)
2. g <0 for ULD to be satisfied (T p2 =] z2)

3. What about the sign of ¢ (or e)?

(a) if ¢ > 0, then py =7 x; (i.e., 1 and x5 are substitutes)

(b) if ¢ < 0, then py =] z1 (i.e., 7 and x5 are complements)

Let’s analyse this more formally. By applying Walras’ law and homogeneity of degree
zero, we can obtain the demand functions for all three goods defined over the domain
{(p,w) € R® xR :p>0}. Thus, we can obtain the 3 x 3 Slutsky matrix as well from
the demand functions. In particular, since there are no income effects (by looking at the
Walrasian demand, we can see that =%~ Oz (p ©) —  for any good k), we can express the Slutsky
matrix as follows (Where each entry in the Slutsky matrix implies that substitution and total

effect coincide):

dzi(pw) Ozm(pw) Ozi(pw) Oz1(p,w)  Oz1(p,w) 0
Op1 Op2 Ops 0 7]
S( ’lU) _ 8552837“)) 83526777”) 8328’7“1) — 81:28)1,10) Gxgg;pZ,w) 0
p; Op1 Op2 Ops Op1 Op2
8&336},’11}) 8x3€p,w) Bxggjp,w) 0 0 0
6])1 8])2 a133

[Recall that we can delete the third column and third row because all their elements are zero
and the 3rd principal minor is also zero.] The 2 x 2 submatrix of the Slutsky matrix that is
obtained by deleting the bottom row and the right-hand column is:

81(19(p,w) 3963(1771”) b ¢
S(p7w) = 3;1:2831,111) 8a:2€)p2,w) - |: :|

e
Op1 Op2 g
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The original 3 x 3 Slutsky matrix is symmetric if and only if this 2 x 2 matrix is symmetric.?
Moreover, just as in the proof of Theorem M.D.4(iii), we can show that the 3 x 3 Slutsky
matrix is negative semidefinite on R? if and only if the 2 x 2 matrix is negative semidefinite.
In particular this matrix is symmetric if ¢ = e, and negative semidefinite if the elements
along the main diagonal satisfy b < 0, g < 0, and its determinent, bg — 2, is positive.

b) Estimate the Equivalent Variation for a change of prices from (p, ps) = (1, 1)
to (p;, Py) = (2,2). Verify that without appropriate symmetry, there is no
path independence. Assume independence for the rest of the exercise.

Let p be any price vector and u, u’ be any two utility levels. By duality (see ,for instance,
(3.E.4) in MWG) we have:

hi(p,u) = x(p,e(p,u)) and hy(p,u') = x;(p,e(p,u’)) for every good [ =1,2

also, since the walrasian demands in this exercise z;(e) do not depend on wealth, we can
write

xl<p7 e(p7 U)) - xl(p7 @(p, U/))
then we have h;(p,u) = hy(p,u'). Hence, the hicksiand demands h;(p,u) do not depend on
utility level and they are the same as the z;(p, w) in this exercise.

Let us now examine how the path of price increases might affect the size of the equivalent
variation (EV):

First path Let us first assume that prices change following the path (1,1) — (2,1) — (2,2):
First, we must find the EV of increasing p; from p; = 1 to p; = 2. Second, we must
find the EV of increasing ps from py = 1 to ps = 2, as follows;

2 2

EV = /hl(ph ]-7 U>dp1 + /h2(27 D2, U)dp2
1 1
And since Hicksian and Walrasian demands coincide in this exercise,

2
EV = / (p1, 1, w dp1+/x2 (2, p2, w)dps
1

Plugging the expression the Walrasian demand functions,

2 2

EV = /(a + bpy + ¢)dpy + /(d + 2e + gpa)dps

1 1

2Note that if the 2 x 2 matrix is symetric, then adding a new column of zeros at the right hand side and
a row of zeros at the bottom row still yields a symmetric matrix (indeed, all elements above and below the
main diagonal coincide).



where we fixed p, = 1 in the first term (where only p; changes) and p; = 2 in the second
term (where only p, changes). Integrating,

EVz(@—l—%b—l—c)—ir(d—l—Qe—l—gg) (1)

Second path ~ Let us now consider that prices change following the path (1,1) — (1,2) —
(2,2). Note that using this path for increasing prices, we first raise p, from ps = 1 to
p2 = 2, and then we raise p; from p; = 1 to p; = 2. Hence, in order to find the EV of
these price changes, we must first find the EV of increasing p, (from py = 1 to ps = 2),
and second, for a fixed level of p; = 2, we must find the EV of increasing p; (from
p1 =1 to p; = 2), as follows;

2 2
EV = /h2(1> P2, w)dps + /hl(]?b 2, u)dp,
1 1

And since Hicksian and Walrasian demands coincide in this exercise,

2 2
EV = /I’2<1, D2, w)dp2 + /xl(pla 27 w)dpl
1 1

Plugging the Walrasian demand function, yields

2

2
EV = /(d + e+ gp2)dps + /(a + bpy + 2¢)dpy
1 1

where we fixed p; = 1 in the first term (where only p, changes)and p, = 2 in the second
term (where only p; changes). Integrating,

3 3
EV—<d+e+§g>+<a+§b+20) (2)
Note that the equivalent variation following the first path (expression 1) and following the
second path (expression 2) coincide if and only if ¢ = e (which we required in order to have

a symmetric Slustky matrix).

e Hence, when the Slustky matrix is symmetric we can guarantee that an increase in the
price of the two goods is “path independent”, since it yields the same EV regardless
of whether p; or ps is the first to change.

c) Let EVi, EV; and EV be the equivalent variations for a change of prices
from (p;, p2) = (1,1) to respectively (2,1),(1,2), and (2,2). Compare EV with
EVi4+EV; as a function of the parameters of the problem. Interpret.



Let us define the notation we will use in this part of the exercise.

e EV) measures the EV for the price change (1,1) to (2,1) - Only p; increases.
e EV, measures the EV for the price change (1,1) to (1,2) - Only ps increases.

e 'V measures the EV for the price change (1,1) to (2,2) - Both prices increase simul-
taneously.

EV;. Following a similar approach as in part (b) of the exercise, if only p;increases from
p1 = 1 to p; = 2 (while p, remains at p; = 1), we obtain an equivalent variation of

2
3
EVi = /xl(pl, 1, w)dp' =a+ §b+ c
1
as depicted in figure 1.
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Figure 1. EV;

EVj,. If only pyincreases from py = 1 to po = 2 (while p; remains at p; = 1), the equivalent

variation is
2

3
EVy = /502(1, P’ wydp* =d+e+ g
1
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Fgure 2. EV5.

EV.We now want to find the equivalent variation from a simultaneous increase in the price
of both goods denoted by E'V in this exercise. Remember from part (b) that we can
increase the price of both goods following two different paths. Let us first find the EV
from increasing the price of both goods by following the first path:

2 2
EV = /wl(pl, 1, w)dp' +/:v2(2, p?, w)dp®
1

1

3 3
EV:(a—|—§b—|—c)+(d+26+§g)

Let us now find the EV by following the second path:

2 2

EV = /wQ(l, P, w)dp2+/wl(p2, 2, w)dp'

1 1

3 3
EV = <d—|—e+§g> + <a—|—§b+2c>
And in the case that the Slutsky matrix is symmetric, ¢ = e, we have that the EV from
increasing the price of both goods is “path independent” and takes the value:

3 3
EV:a+§b+36+d+§g

Difference between EV and (EVi+EV3). Let us now find the difference between EV (resulting
from simultaneous increasing the price of both goods) and the sum of EV; and EV5.



3 3 3 3
EV — (EVi + EVy) = <a+§b+3c—|—d—|—§g) - (a+§b—|—20—|—d+§g> =c.

The sum EV; + EV, does not contain the effect on the equivalent variation due to the shift
of the graph of the demand function for the second commodity when p; goes up to 2 (or
equivalently, the shift of the graph of the demand function for the first commodity when p,
goes up to 2). (See figures at the end of the handout, for a graphical comparison between
the area EV; + E'V, and the area E'V.

d) Suppose that the prices increases described in part (c) are due to taxes.
Denote the deadweight losses for each of the three experiments by DWW,
DW,, and DW. Compare DW with DW; + DW, as a function of parameters
of the problem.

DW; . We first calculate the deadweight loss if the tax affects the price of good 1 alone,
DW1, raising it from p; = 1 to p; = 2. First, note that the tax rate is $1. Hence, since

r1(2,L,w) =a+2b+c¢

the tax revenue from the first good is equal to 77 = 1 x z;(2,1,w). (See the figure 3
representing DIWV;).

)
A DI (1.1 —(1.2)

* Note that :the shaded square measures
total revenue from tax,

e The loss in consumer welfare due to the
tax (measured by EV1) that does not go
to tax revenue is the DW1 from
taxation.
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Figure 3. DW;.



Thus, since the equivalent variation represents a welfare loss from the introdution of
the tax, —E'V; =T + DWW, then

3 b
DWy =T, - EVi = (a+2b+c) — <a—|—§b+c) =3

DW,.  We secondly calculate the deadweight loss if the tax affects the price of good 2 alone,
DW,, raising it from py = 1 to p, = 2. First, note that the tax rate is $1. Hence, since
—EVy =T, + DWs, then

ro(1,2,w) =d+e+2g

the tax revenue from the second good is equal to To = 1 X x5(1,2,w). (See the figure
4 representing DW5).
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Figure 4. DW,.

Thus, since the equivalent variation represents a welfare loss from the introdution of
the tax, —EV, =T, + DW,, then

3
DWy =Ty, — EVy = (d+ e+ 2g) — (d—i—e+§g) :g.

DW.  Third, we now find the deadweight loss from a tax that affects both the price of
good 1 and the price of good 2. First, note that since z1(2,2,w) = a + 2b + 2¢, and
x2(2,2,w) = d + 2e + 2g, the tax revenue from taxing both commodities is equal to:



T=1x(a+2b+2c)+1x(d+2e+2g9)=a+2b+4c+d+2g
Then, since —EV =T + DW, the deadweight loss in this case is DW =T — EV

b
DW =T — EV = (a+2b+ 4c+ d + 2g) — (a+gb+3c+d+gg> :§+c+g

Let us finally examine the difference between calculating the deadweight loss of the tax that
simultaneously affects the price of both commodities, DW, and the sum of the deadweight
loss of the tax affecting the price of each commodity separately, i.e., DW; + DWs. 1t is easy

to check that
DW — (DW; + DW,) = ¢

e) Suppose the initial tax situation has prices (p;, p2) = (1,1). The government
wants to raise a fixed (small) amount of revenue R through commodity
taxes. Call t; and ¢, the tax rates for the two commodities. Determine
the optimal tax rates as a function of the parameters of demand if the

optimality criterion is the minimization of the deadweight loss.

The government’s problem is:

min DW(tl, tg)

(t1,t2)
2
subject to Zhl(l +t,1+to,u) xt; > R
=1
where DW(tl, tg) = TR(tl, t2) - EV(tl, tg) iS,
EV(tl,tQ)

A\

2
DW (ty,ta) = > (1 +t1, 1+ ty,u)ty — [e(1+ b1, 1+ by, u) — e(1, 1u)]

=

-~

TR(tl,tz)

where T R(t1, 1) represents the total tax revenue from setting a sales tax t;(t2) on good 1
(good 2, repectively), while EV (t1,t3) denotes the equivalent variation of experiencing an
increase in both goods prices from (p1, p2) = (1,1) to (p1,p2) = (14t1, 1+ t3) ofter the taxes

are introduced.
Setting up the Lagrangian

L(tl, tg, )\) - DW(tl, tg) + )\(R - TR(tl, tg))
Then the first order condition with respect to t; is:

3Dﬂg§t1,t2) — )\aTRa(zl’ f2) =0 for every good | = {1,2} (3)
I l

Note that the term in the left-hand side can be rewritten as



— hl(l + 11,1 +t2,u)

aDW(tl, tg) _ i 8hk(1 -+ tl, 1+ tQ,U)t _ 66(1 -+ tl, 1+ tQ,U)
6tl 1 8tl b atl

since —86(”%;11”2’“) = hy(1+t1, 1+t5, u) in the last term. Then, —8DW f1,%2) Zk 1 Ohy(1+E1,1 41p.u) HEZHQ’ )tlm

on the other hand, the second term of expression (3) can be rew1tten as

OTR(ty,t2)

2
ahk 1+t1,1—|—t2, )
t
8tl Z

:hl(1+t171+t27 +

k
k=1

Hence, the above first order condition can be written as:

iahk1+t1,1+t2, w) bl +tyu),

—0
ot k

2
Ohi(1 4+
te— NP1+t 1+ ta,u) + Y it
k=1 k=1

And rearranging,

Ohk(l + tl, 1+ tg, U)
ot

te(L4+X) = Ay(1+t,14+to,u) =0 forall [ =1,2.
k=1

From this expression and TR = 212:1 hi(1 4+ t1,1 4 to,u) X t; we obtain

btl + Ctg Ctl + gt2

Ca+b(14+2t) Fe(14+2t)  a+c(l+2t) +g(l+ 2ty)

and

R=la+b(1+4+t)+c(l+t2)]t1+ [d+ c(1+t1) + g(1 +t2)] L2

Therefore, any combination of tax rates (¢1, t2) that satisfies the previous condition minimizes
the total deadweight loss of taxation, DWW, and allows the tax authority to reach a minimal
tax revenue of TR dollars. For instance, if R = $4, and the parameters in the demand
function are a = ¢ =d =1 and b = g = —1 the above expression becomes

$4

1—(1+t)+ A +t)t1+[1+ 1 4+1t)—(1+12)]ts (4)

which only depends on t; and t5. Hence, any (t1,%2)—combinations satisfying equation (4)
allow the regulator reach a tax revenue of R = $4, while minimizing the deadweight less of
taxation.
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