

Extensions-I

- Consider a model in which:
 - The difficulty of the task, θ , is unobservable; and
 - The effort that the manager exerts, e , is also unobservable.
- However, assume that the relationship between effort and profits is deterministic, given by function $\pi(e), \dots$
 - rather than stochastic (as we described at the beginning of this week).

Extensions-I

- In this setting, contract pairs (w_H, e_H) and (w_L, e_L) can be designed in the same fashion as in the last model we considered (in which θ was the only piece of information the principal could not observe).
 - Intuitively, the observation of profits allows the principal to perfectly infer effort, even if effort was not directly observable.
- In particular:
 - The principal offers contract pairs (w_H, e_H) and (w_L, e_L) to the agent (same pairs as those found in the hidden information model we just described).
 - Then, the agent privately observes the realization of θ .
 - The agent then chooses one of the two contract pairs anticipating that, when profits $\pi(e_H) = \pi_H$ are observed by the principal, he pays w_H ; whereas when profits $\pi(e_L) = \pi_L$ are observed, he pays w_L .

Extensions-I

- We can think about this contract as a **direct mechanism** in which:
 - For a given announcement $\hat{\theta}$ from the agent to the principal, the principal offers a wage-profit pair $(w(\hat{\theta}), \pi(\hat{\theta}))$.
- From the above analysis of hidden information models (specifically, from the I.C. constraints), the agent has incentives to truthfully report $\hat{\theta} = \theta_L$ when he observes that the realization of parameter θ is θ_L , and similarly when he observes that its realization is θ_H .

Extensions-I

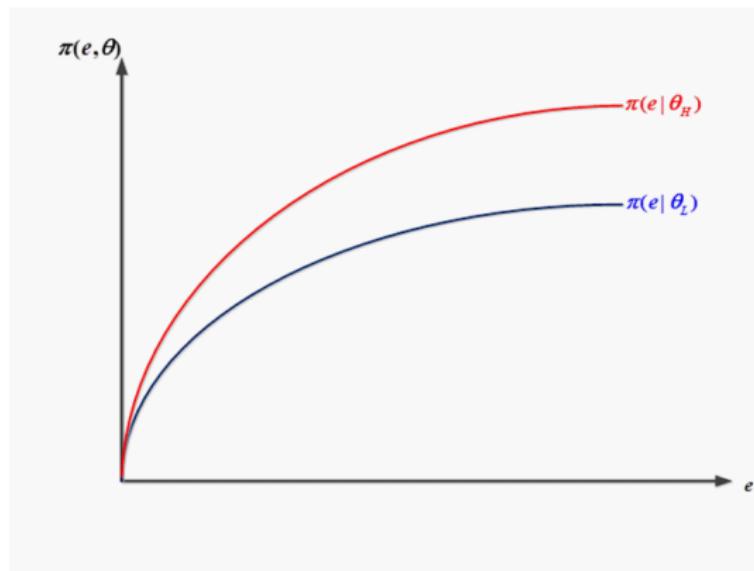
- Indeed, note that for any required profit π , the effort \tilde{e} necessary to achieve such profit is that solving $\pi(\tilde{e}) = \pi$.
- Solving for e , we obtain the effort function $\tilde{e}(\pi)$.
- We can then relabel the manager's effort function $g(\tilde{e}(\pi), \theta) = \tilde{g}(\pi, \theta)$
- But then, the model is exactly equivalent to the hidden information model we solved above, where:
 - The observable variable is the effort $\tilde{e}(\pi) = \pi$, and
 - The unobservable variable is the disutility of effort $\tilde{g}(\pi, \theta)$.

Extensions-II

- In the hidden information model we solved the principal could not observe the realization of θ , and thus didn't know the agent's disutility of effort, $g(e, \theta)$.
- What if, instead, the principal cannot observe the relationship between effort and profits, i.e., the marginal productivity of effort?
 - Now the disutility of effort is perfectly known, $g(e)$.
 - However, the profit function is $\pi(e, \theta)$, where...
 - $\pi_e(e, \theta) > 0$, $\pi_{ee}(e, \theta) < 0$, $\pi_\theta(e, \theta) > 0$, and $\pi_{e\theta}(e, \theta) > 0$
 - That is, effort increases profits at a decreasing rate; profits increase in the realization of parameter θ , and marginal profits also increase in this realization.

Extensions-II

- Profit function $\pi(e, \theta)$



Extensions-II

- Similarly as in the first extension, we can think of direct mechanisms specifying:
 - For a given announcement $\hat{\theta}$ from the agent to the principal, the principal offers a wage-profit pair $(w(\hat{\theta}), \pi(\hat{\theta}))$.
- In this context, the effort \tilde{e} necessary to achieve any profit level π is that solving $\pi(\tilde{e}, \theta) = \pi$.
- Solving for e , we obtain the effort function $\tilde{e}(\pi, \theta)$.
- We can then relabel the manager's effort function as $g(\tilde{e}(\pi, \theta)) = \tilde{g}(\pi, \theta)$
- But then, the model is exactly equivalent to the hidden information model we solved above, where:
 - The observable variable is the effort $\tilde{e}(\pi, \theta) = \pi$, and
 - The unobservable variable is the disutility of effort $\tilde{g}(\pi, \theta)$.

Moral Hazard with multiple signals

- Consider a setting in which the principal, still not observing effort e , observes profits π and a signal s , e.g., a middle management report about the manager.
 - Such a signal provides no intrinsic economic value (i.e., s does not affect profits), but provides information about the effort e .
- How should the principal use this information?

$$\frac{1}{v'(w)} = \gamma + \mu \left[1 - \frac{f(\pi, s|e_L)}{f(\pi, s|e_H)} \right]$$

Moral Hazard with multiple signals

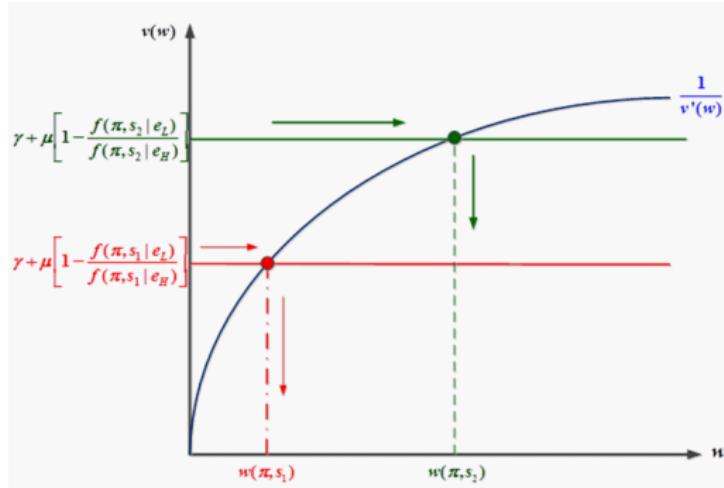
- Variations in s affect wages only if

$$f(\pi, s|e) \neq f(\pi|e)$$

i.e., π is *not* a sufficient statistic of e . Intuitively, (π, s) contains more information about e than π alone.

- Figure

Moral Hazard with multiple signals



- Hence, salary is increasing in signal (e.g., middle management report) s , i.e., $w(\pi, s_2) > w(\pi, s_1)$, if only if $\frac{f(\pi, s_1 | e_L)}{f(\pi, s_1 | e_H)} > \frac{f(\pi, s_2 | e_L)}{f(\pi, s_2 | e_H)}$ \leftarrow the likelihood ratio decreases in the report s .

Moral Hazard with multiple signals

- **Sufficient statistic theorem** (Holstrom, 1979):
 - The principal conditions the agent's wage on a sufficient statistic for all the signals he receives, e.g., $w(\pi, s)$.

Moral Hazard with several agents

- Consider now a setting in which the principal deals with N agents, and can offer a different salary w_i to each of them (e.g., WSU).
- If the profits that employee i brings to the firm, π_i , are a function of his effort, e_i , and that of other employees, e_{-i} , then

$$f(\pi_i, \pi_{-i} | e_i) \neq f(\pi_i | e_i)$$

- Therefore, the principal uses π_{-i} as an additional signal, and the previous "sufficient statistic theorem" applies, i.e., $w_i(\pi_i, \pi_{-i})$.

Moral Hazard with several agents

- A similar argument applies if π_i depends on my own effort as agent i , e_i , on an idiosyncratic noise only affecting π_i , ε_i , and on a common noise affecting all employees, ε , e.g.,

$$\pi_i = ae_i + b\varepsilon_i + c\varepsilon.$$

- Typical example: sellers of the same product to different clients.
- Then, by the sufficient statistic theorem, the principal offers a salary $w_i(\pi_i, \pi_{-i})$ to agent i .

Moral Hazard with several agents

- If there was no common noise, the principal could separately treat his relationship with each agent as a standard principal-agent model, offering $w_i(\pi_i)$ to agent i and inducing effort e_i for every agent $i \in N$.
- However, the presence of a common noise affecting all agents, leads the principal to design a compensation $w_i(\pi_i, \pi_{-i})$ which depends on both π_i and π_{-i} .
 - Importantly, the salary induces competition, i.e., $w_i(\pi_i, \pi_{-i})$ increases in my own outcomes π_i but decreases in the other agents', π_{-i} .
 - This incentive structure helps the principal extract better information about the common noise; see Holsmtrom (1982).
- More references in Chapter 8 of Bolton and Dewatripont's *Contract Theory* textbook.

Future extensions

- Moral hazard with multiple tasks.
 - Tradeoff so the agent dedicates enough time to each of them, which induces less powerful incentives.
 - Section 6.2 in Bolton and Dewatripont's *Contract Theory*.
- Repeated moral hazard.
 - Sections 10.1 and 10.2 in Bolton and Dewatripont.
- Empirical models on moral hazard and adverse selection.
 - Chapter 8 in Bernard Salanie's *The Economics of Contracts*.

Summary

- **Adverse selection:**

- The employer does not know which type of employee he is hiring.
- That is, the employer doesn't observe the productivity of the employee, θ .
 - (Importantly, in adverse selection models the employer doesn't observe the realization of a random variable which is observed by the agent before the contractual relationship starts.)
- In a Spence's labor market signaling game, the employee acts first, using education as a signal of his type.
- In a screening game, the employer acts first, offering a menu of contracts (w_H, t_H) for the high productivity, and (w_L, t_L) for the low productivity worker, where t_i denotes the difficulty of the task.

Summary

Adverse Selection

Nature determines
the agent ' s type
e.g., his productivity, θ

Principal designs
the contract

Agent accepts
or rejects the
contract

Agent acquires
education

Outcomes and
payoffs

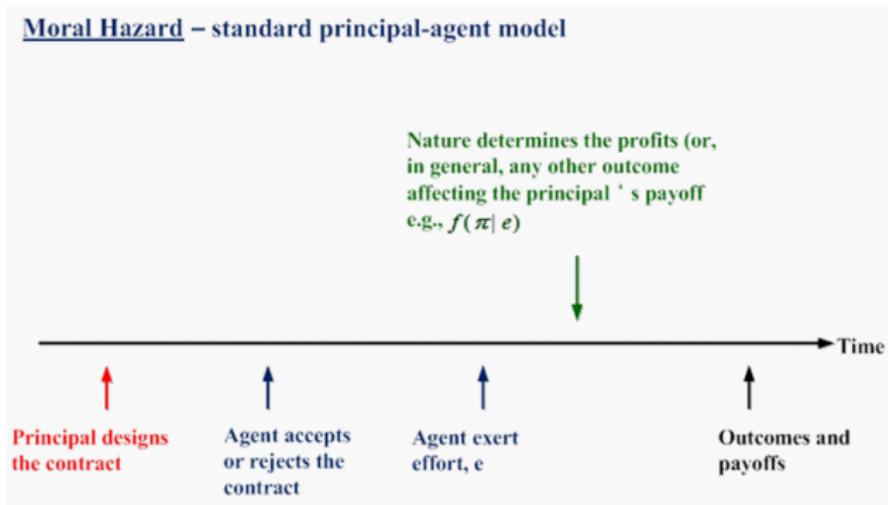
Summary

- **Moral hazard:**

- The employer knows which type of employee he is hiring, but cannot observe the effort that the employee will exert once he is on the job, e.
- However, the employer observes profits π (and potentially more signals, s) as an imperfect indication of the effort the worker exerted.
 - Hence, the source of uncertainty for the employer is post-contractual, as opposed to pre-contractual in adverse selection models.
- *Standard moral hazard:* we determine salaries first. Then find which effort level is optimal for the principal given those salaries.

Summary

Moral Hazard – standard principal-agent model



Summary

- **Moral hazard:**

- *Hidden information*: the employer observes effort, but the employee gets to observe how difficult the task is (disutility of effort, $g(e, \theta)$) which the employer cannot observe.
 - Hence, the employer is still uninformed about a post-contractual element whose realization only the employee observes.
- *Alternative of hidden info.*: the employee observes how profitable each unit of effort is, $\pi(e, \theta)$, but the employer doesn't.
 - He is still uncertain about a post-contractual element whose realization only the employee observes.

Summary

