

Core and Equilibria

- While we know that WEAs are part of the Core...
- In this section we seek to show that, as the economy becomes larger, the Core shrinks until it exactly coincides with the set of WEAs.
 - Section 5.5 in JR.
- Consider an economy with I consumers, each with (u^i, \mathbf{e}^i) .
 - Now consider its replica: we double the number of consumers to $2I$, each of them still with (u^i, \mathbf{e}^i) .
 - There are now two consumers of each type, i.e., "twins," having identical preferences and endowments.

Core and Equilibria

- We can now define an **r -fold replica economy** \mathcal{E}_r :
 - \mathcal{E}_r has r consumers of each type, for a total of rI consumers.
 - In addition, for any type $i \in I$, all r consumers of that type share the common utility function u^i and have identical endowments $\mathbf{e}^i \gg 0$.
- When comparing two replica economies, the largest will be that having more of every type of consumer.

Core and Equilibria

- Let us now examine the core of the replica economy \mathcal{E}_r :
 - From our assumptions on consumer preferences, we know that the WEA will exist, and that it will be in the Core.
 - Then, the core of the replica economy \mathcal{E}_r will exist.

Core and Equilibria

- Notation:

- Allocation \mathbf{x}^{iq} indicates the vector of goods for the q th consumer of type i (you can think about consumer i existing in the original economy, and now having $r > q$ twins in the r -fold replica economy).
- Given this notation, we can rewrite feasibility in this setting as follows:

$$\sum_{i=1}^I \sum_{q=1}^r \mathbf{x}^{iq} = r \sum_{i=1}^I \mathbf{e}^i$$

since each of the r consumers of type i has a endowment vector \mathbf{e}^i .

- Not only similar types start with the same endowment vector \mathbf{e}^i , but they also end up with the same allocation at the Core (next slide).

- **Equal treatment at the Core:**

- If \mathbf{x} is an allocation in the Core of \mathcal{E}_r , then every consumer of type i must have the same bundle, i.e.,

$$\mathbf{x}^{iq} = \mathbf{x}^{iq'}$$

for every two "twins" q and q' of type i , $q \neq q' \in \{1, 2, \dots, r\}$, and for every type $i \in I$.

- **Proof:**

- We will prove the above result for a two-fold replica economy, \mathcal{E}_2 . You can easily generalize it to r -fold replicas.
- Suppose that allocation

$$\mathbf{x} \equiv \left\{ \mathbf{x}^{11}, \mathbf{x}^{12}, \mathbf{x}^{21}, \mathbf{x}^{22} \right\}$$

is an allocation at the core of \mathcal{E}_2 (as required in the premise of the above claim).

- **Equal treatment at the Core:**

- **Proof (cont'd):**

- Since \mathbf{x} is in the core, then it must be feasible

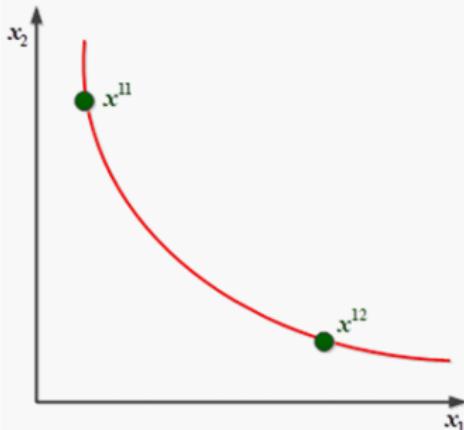
$$\mathbf{x}^{11} + \mathbf{x}^{12} + \mathbf{x}^{21} + \mathbf{x}^{22} = 2\mathbf{e}^1 + 2\mathbf{e}^2$$

because the two type-1 consumers have identical endowments, and so do the two type-2 consumers.

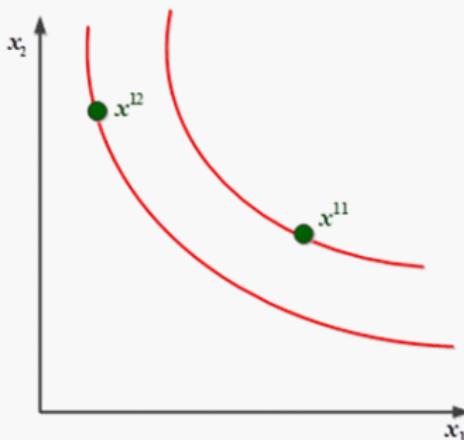
- By contradiction: assume now that \mathbf{x} , despite being at the core, does not assign the same consumption vectors to the two twins of type-1, i.e., $\mathbf{x}^{11} \neq \mathbf{x}^{12}$.
 - WLOG $\mathbf{x}^{11} \succsim^1 \mathbf{x}^{12}$ which is true for both type-1 twins, since they have the same preferences.
 - Figures depicting $\mathbf{x}^{11} \succsim^1 \mathbf{x}^{12}$ and $\mathbf{x}^{11} \succ^1 \mathbf{x}^{12}$.

Core and Equilibria

An allocation $x = (x^{11}, x^{12}, x^{21})$ where $x^{11} \neq x^{12}$ thus violating the equal treatment at the core property



In this case $x^{11} \sim x^{12}$ since both bundles lie on the same indifference curve



In this case $x^{11} \succ x^{12}$

- **Equal treatment at the Core:**

- **Proof (cont'd):**
- Before going any further: What are we looking for?
- If we are operating by contradiction, we need that...
 - When the premise of the claim is satisfied (x is at the core) but the conclusion is violated (*unequal* treatment at the core, $x^{11} \neq x^{12}$),
 - We end up with the original premise being contradicted (i.e., x is *not* at the core because we can find a blocking coalition).

- **Equal treatment at the Core:**

- **Proof (cont'd):**
- In designing a potential blocking coalition, consider that for type-2 consumers we have $\mathbf{x}^{21} \succsim^2 \mathbf{x}^{22}$.
 - (This is done WLOG, since the same result would apply if we revert this preference relation, making consumer 1 of type 2 the worst off.)
- Hence, consumer 2 of type 1 is the worst off type 1 consumer, i.e., $\mathbf{x}^{11} \succsim^1 \mathbf{x}^{12}$, and consumer 2 of type 2 is the worst off type 2 consumer.
- Let's take these two "poorly treated" consumers, and check if they can form a blocking coalition to oppose \mathbf{x} .

- **Equal treatment at the Core:**
 - **Proof (cont'd):**
 - Define the average bundles

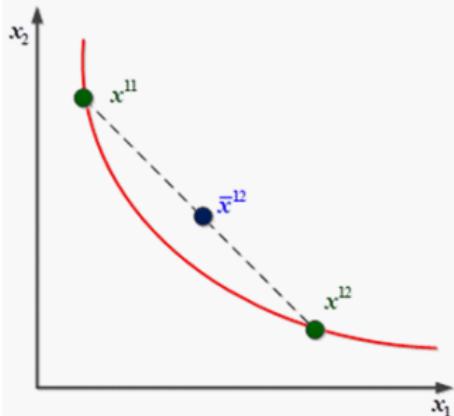
$$\bar{x}^{12} = \frac{x^{11} + x^{12}}{2} \text{ and } \bar{x}^{22} = \frac{x^{21} + x^{22}}{2}$$

where the first (second) bundle is the average of the bundles going to the type-1 (type-2, respectively) consumers.

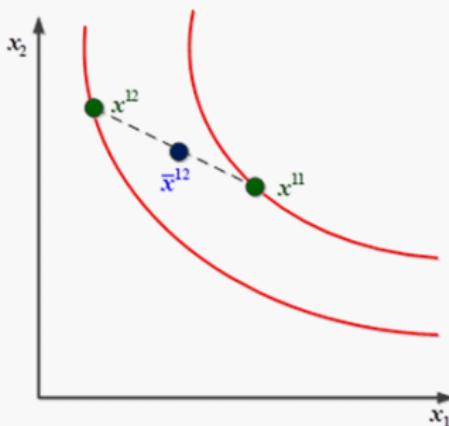
- See figure in next slide for the location of these bundles.

Core and Equilibria

Finding a blocking coalition to $x = (x^{11}, x^{12}, x^{21})$ where $x^{11} \neq x^{12}$



In this case $x^{11} \sim^1 x^{12}$ but we can find another bundle, \bar{x}^{12} , which satisfies $\bar{x}^{12} \succ^1 x^{12}$



In this case $x^{11} \succ^1 x^{12}$, but we can still find another bundle, \bar{x}^{12} , which satisfies $\bar{x}^{12} \succ^1 x^{12}$

- **Equal treatment at the Core:**

- **Proof (cont'd):**
- Because of preferences being strictly convex, the worst off type-1 consumer prefers

$$\bar{x}^{12} \succ^1 x^{12},$$

since \bar{x}^{12} is a linear combination between x^{11} and his original bundle x^{12} . (See previous figures.)

- A similar argument applies to the worst off type-2 consumer, $\bar{x}^{22} \succ^2 x^{22}$.
- We have now found a pair of bundles $(\bar{x}^{12}, \bar{x}^{22})$, which would both consumers 12 and 22 better off than at the original allocation (x^{12}, x^{22}) .
- The question that still remains is: Can they achieve this pair of bundles, i.e., is $(\bar{x}^{12}, \bar{x}^{22})$ feasible?

Core and Equilibria

- **Equal treatment at the Core:**

- **Proof (cont'd):**
- Finally checking for the **feasibility of the pair of bundles** $(\bar{\mathbf{x}}^{12}, \bar{\mathbf{x}}^{22})$.
- We can rewrite the amount of goods they need to achieve $(\bar{\mathbf{x}}^{12}, \bar{\mathbf{x}}^{22})$ as follows:

$$\begin{aligned}\bar{\mathbf{x}}^{12} + \bar{\mathbf{x}}^{22} &= \frac{\mathbf{x}^{11} + \mathbf{x}^{12}}{2} + \frac{\mathbf{x}^{21} + \mathbf{x}^{22}}{2} \\ &= \frac{1}{2} (\mathbf{x}^{11} + \mathbf{x}^{12} + \mathbf{x}^{21} + \mathbf{x}^{22}) \\ &= \frac{1}{2} (2\mathbf{e}^1 + 2\mathbf{e}^2) \\ &= \mathbf{e}^1 + \mathbf{e}^2\end{aligned}$$

- **Equal treatment at the Core:**

- **Proof (cont'd):**
- Hence, the pair of bundles $(\bar{x}^{12}, \bar{x}^{22})$ is feasible.
- Since this pair of bundles makes the consumers 12 and 22 better off than at the original allocation (x^{12}, x^{22}) , and $(\bar{x}^{12}, \bar{x}^{22})$ is feasible, these consumers will get together to block (x^{12}, x^{22}) .
- As a consequence, the original allocation (x^{12}, x^{22}) cannot be at the Core, since we found a blocking coalition.
- Then, if an allocation is at the Core of the replica economy, it must give consumers of the same type the same bundle.

Core and Equilibria

- After proving the "equal treatment at the core" property...
- We are ready to continue with our main goal of this section:
 - As the economy becomes larger (r increases), the Core shrinks, and if r is sufficiently large the Core converges to the set of WEAs.

Core and Equilibria

- *Remark:*

- The "equal treatment at the core" property helps us describe core allocations in a r -fold replica economy \mathcal{E}_r by reference to a similar allocation in the original (unreplicated) economy \mathcal{E}_1
- In particular, if \mathbf{x} is in the core of a r -fold replica economy \mathcal{E}_r , then by the equal treatment property, allocation \mathbf{x} must be of the form

$$\mathbf{x} = \left(\underbrace{\mathbf{x}^1, \dots, \mathbf{x}^1}_{r \text{ times}}, \underbrace{\mathbf{x}^2, \dots, \mathbf{x}^2}_{r \text{ times}}, \dots, \underbrace{\mathbf{x}^l, \dots, \mathbf{x}^l}_{r \text{ times}} \right)$$

because all consumers of the same type must receive the same bundle.

Core and Equilibria

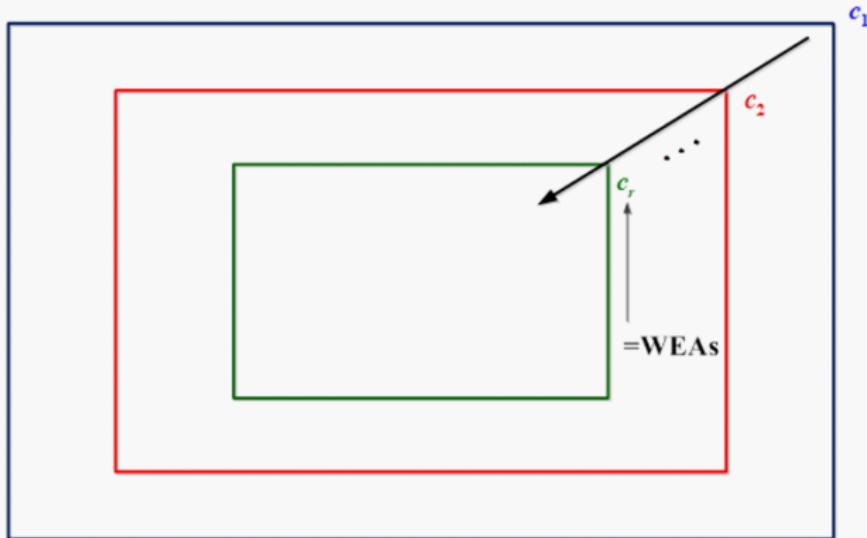
- Therefore, core allocations in \mathcal{E}_r are just r -fold copies of allocations in \mathcal{E}_1 , $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^r)$.
 - *Notation:* We define the core in \mathcal{E}_r as C_r .
- We can now show that, as r increases, the core shrinks.

Core and Equilibria

- **The core shrinks as the economy enlarges:**
 - The sequence of core sets C_1, C_2, \dots is decreasing.
 - That is, the core of the original (unreplicated) economy, C_1 , is a superset of that in the 2-fold replica economy, C_2 .
 - In addition, the core in the 2-fold replica economy, C_2 , is a superset of the 3-fold replica economy, C_3 ; etc.
 - More compactly, $C_1 \supseteq C_2 \supseteq C_3 \supseteq \dots \supseteq C_r \supseteq \dots$
- Silly figure, and then proof.

Core and Equilibria

The core shrinks as the economy enlarges



Core and Equilibria

- **The core shrinks as the economy enlarges:**

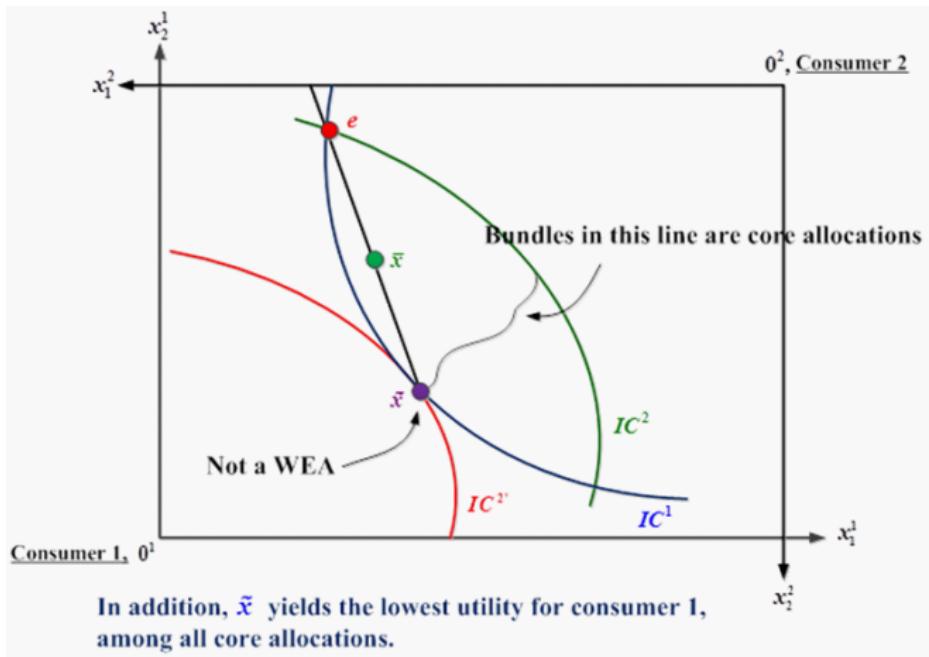
- *Proof:*
- It suffices to show that, for any $r > 1$, $C_{r-1} \supseteq C_r$.
- First, suppose that allocation $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^r) \in C_r$.
Intuitively, we cannot find any blocking coalition to \mathbf{x} in the r -fold replica economy \mathcal{E}_r .
- We now need to show that \mathbf{x} cannot be blocked by any coalition in the $(r - 1)$ -fold replica economy \mathcal{E}_{r-1} either.
- But if we could find a blocking coalition to \mathbf{x} in \mathcal{E}_{r-1} then we could also find a blocking coalition in \mathcal{E}_r :
 - Indeed, all members in \mathcal{E}_{r-1} are also present in the larger economy \mathcal{E}_r and their endowments haven't changed.

Core and Equilibria

- **The core shrinks as the economy enlarges:**

- *Graphical representation*
- See next figure.
- In the unreplicated economy \mathcal{E}_1 the set of core allocations is the line between \tilde{x} and e
- Some point in the line connecting \tilde{x} and e are WEAs and some aren't.
 - For instance, \tilde{x} is not a WEA: the price line through \tilde{x} and e is not tangent to \tilde{x} to the consumer's indifference curve at \tilde{x} .
 - In addition, note that allocation \tilde{x} , despite being at the core, yields the same utility level as endowment e for consumer 1. That is, is the "worst" admissible allocation for consumer 1 among all core allocations.

Core and Equilibria



Core and Equilibria

- **The core shrinks as the economy enlarges:**

- *Question:* Does allocation \tilde{x} remain at the core of the two-fold replica economy \mathcal{E}_2 ?
- No!
 - In particular, any point on the line connecting \tilde{x} and e is strictly preferred by both types of consumer 1 (he now has a twin!).
- Let's next try to build a blocking coalition against \tilde{x} :
 - We will need to guarantee:
 - *Acceptance* by all coalition members, and
 - *Feasibility* of the proposed allocation.

Core and Equilibria

- **The core shrinks as the economy enlarges:**

- Building a blocking coalition against $\tilde{\mathbf{x}}$:
 - Consider the midpoint allocation $\bar{\mathbf{x}}$ and the coalition $S = \{11, 12, 21\}$.
 - *Acceptance:* If the midpoint allocation $\bar{\mathbf{x}}$ is offered to 11 and 12, and the content in $\tilde{\mathbf{x}}$ is offered to 21, will they accept? Yes:

$$\begin{aligned}\bar{\mathbf{x}}^{11} &\equiv \frac{1}{2} (\mathbf{e}^1 + \tilde{\mathbf{x}}^{11}) \succ^1 \tilde{\mathbf{x}}^{11}, \\ \bar{\mathbf{x}}^{12} &\equiv \frac{1}{2} (\mathbf{e}^1 + \tilde{\mathbf{x}}^{12}) \succ^1 \tilde{\mathbf{x}}^{12}, \\ \tilde{\mathbf{x}}^{21} &\sim 2\tilde{\mathbf{x}}^{21}\end{aligned}$$

Core and Equilibria

- **The core shrinks as the economy enlarges:**

- Building a blocking coalition against $\tilde{\mathbf{x}}$ (cont'd):
- *Feasibility:* Let us now check that the suggested allocation $\{\bar{\mathbf{x}}^{11}, \bar{\mathbf{x}}^{12}, \tilde{\mathbf{x}}^{21}\}$ is feasible for coalition S .
 - Since $\bar{\mathbf{x}}^{11} = \bar{\mathbf{x}}^{12}$, then the sum of the suggested allocation yields

$$\begin{aligned}\bar{\mathbf{x}}^{11} + \bar{\mathbf{x}}^{12} + \tilde{\mathbf{x}}^{21} &= 2\frac{1}{2} \left(\mathbf{e}^1 + \tilde{\mathbf{x}}^{11} \right) + \tilde{\mathbf{x}}^{21} \\ &= \mathbf{e}^1 + \tilde{\mathbf{x}}^{11} + \tilde{\mathbf{x}}^{21}\end{aligned}$$

- Recall now that $\tilde{\mathbf{x}}$ was part of the unreplicated economy \mathcal{E}_1 . It then must be feasible, i.e., $\tilde{\mathbf{x}}^1 + \tilde{\mathbf{x}}^2 = \mathbf{e}^1 + \mathbf{e}^2$. Hence, $\tilde{\mathbf{x}}^{11} + \tilde{\mathbf{x}}^{21} = \mathbf{e}^1 + \mathbf{e}^2$.

Core and Equilibria

- **The core shrinks as the economy enlarges:**

- Building a blocking coalition against \tilde{x} (cont'd):
 - Combining the above two results, we obtain

$$\begin{aligned}\bar{x}^{11} + \bar{x}^{12} + \bar{x}^{21} &= \mathbf{e}^1 + \underbrace{\tilde{x}^{11} + \tilde{x}^{21}}_{\mathbf{e}^1 + \mathbf{e}^2} \\ &= \mathbf{e}^1 + \mathbf{e}^1 + \mathbf{e}^2 \\ &= 2\mathbf{e}^1 + \mathbf{e}^2\end{aligned}$$

Thus confirming feasibility.

- **WEA in replicated economies.**

- Consider a WEA in the unreplicated economy \mathcal{E}_1 ,

$$\left(\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^l \right)$$

- Then, an allocation \mathbf{x} is a WEA for the r -fold replica economy \mathcal{E}_r if and only if it is of the form

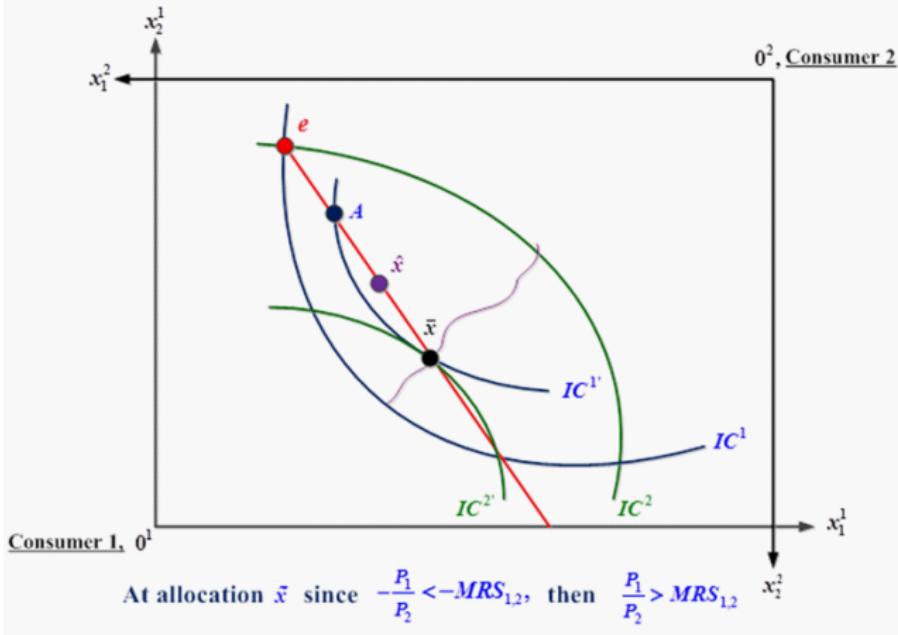
$$\mathbf{x} = \left(\underbrace{\mathbf{x}^1, \dots, \mathbf{x}^1}_{r \text{ times}}, \underbrace{\mathbf{x}^2, \dots, \mathbf{x}^2}_{r \text{ times}}, \dots, \underbrace{\mathbf{x}^l, \dots, \mathbf{x}^l}_{r \text{ times}} \right)$$

- *Proof:* If \mathbf{x} is a WEA for \mathcal{E}_r , then it also belongs to the core of \mathcal{E}_r . By the "equal treatment at the core" property, the result follows.

- We are now ready to present the main result of this section.
- **A limit theorem on the Core:**
 - If allocation \mathbf{x} is in the Core of the r -fold replica economy \mathcal{E}_r , for every $r \geq 1$, then \mathbf{x} is a WEA for the unreplicated economy \mathcal{E}_1 .
 - Let's consider, by contradiction, that an allocation $\tilde{\mathbf{x}}$ is not a WEA, but still belongs to the core of the r -fold replica economy \mathcal{C}_r ; see next figure.
 - Then, $\tilde{\mathbf{x}} \in \mathcal{C}_1$ since $\mathcal{C}_1 \supset \mathcal{C}_r$.
 - In the next figure, this means that allocation $\tilde{\mathbf{x}}$ must be within the lens and on the contract curve.

Core and Equilibria

Allocation \tilde{x} is not a WEA, but is still part of the core c_1 .



Core and Equilibria

- Consider the line connecting $\tilde{\mathbf{x}}$ and \mathbf{e} .
- Since $\tilde{\mathbf{x}} \notin W(\mathbf{e})$, then either $\frac{p_1}{p_2} > MRS$ or $\frac{p_1}{p_2} < MRS$.
 - (The figure depicts the first case; the second is analogous.)
- By convexity of preferences, we can find a set of bundles, such as those between A and $\tilde{\mathbf{x}}$ in the figure, that consumer 1 prefers to $\tilde{\mathbf{x}}$.
- One example of such bundle is the linear combination

$$\hat{\mathbf{x}} \equiv \frac{1}{r} \mathbf{e}^1 + \frac{r-1}{r} \tilde{\mathbf{x}}^1$$

for some $r > 1$, where $\frac{1}{r} + \frac{r-1}{r} = 1$.

Core and Equilibria

- The question we now pose is, can allocation $\tilde{\mathbf{x}}$ be at the core of the r -fold replica economy \mathcal{E}_r if it is not a WEA?
 - No, if we can find a blocking coalition.
 - Consider a coalition S with all r type 1 consumers and $r - 1$ type 2 consumers.
 - *Acceptance:*
 - If we give every type 1 consumer the bundle $\hat{\mathbf{x}}^1$, we know that $\hat{\mathbf{x}}^1 \succ^1 \tilde{\mathbf{x}}^1$
 - If we give every type 2 consumer in the coalition the bundle $\hat{\mathbf{x}}^2 = \tilde{\mathbf{x}}^2$, then $\hat{\mathbf{x}}^2 \sim^2 \tilde{\mathbf{x}}^2$.

Core and Equilibria

- *Feasibility:*

- Summing over the consumers in coalition S , their aggregate allocation is

$$\begin{aligned} r\hat{\mathbf{x}}^1 + (r-1)\hat{\mathbf{x}}^2 &= r \left[\frac{1}{r}\mathbf{e}^1 + \frac{r-1}{r}\tilde{\mathbf{x}}^1 \right] + (r-1)\tilde{\mathbf{x}}^2 \\ &= \mathbf{e}^1 + (r-1) \left(\tilde{\mathbf{x}}^1 + \tilde{\mathbf{x}}^2 \right) \end{aligned}$$

- Since $\tilde{\mathbf{x}} \equiv (\tilde{\mathbf{x}}^1, \tilde{\mathbf{x}}^2)$ is in the core of the unreplicated economy \mathcal{E}_1 , then it must be feasible

$$\tilde{\mathbf{x}}^1 + \tilde{\mathbf{x}}^2 = \mathbf{e}^1 + \mathbf{e}^2$$

Core and Equilibria

- *Feasibility* (cont'd):

- Combining the above two results, we find that

$$\begin{aligned} r\hat{\mathbf{x}}^1 + (r-1)\hat{\mathbf{x}}^2 &= \mathbf{e}^1 + (r-1)\underbrace{(\mathbf{e}^1 + \mathbf{e}^2)}_{\hat{\mathbf{x}}^1 + \hat{\mathbf{x}}^2} \\ &= r\mathbf{e}^1 + r(\mathbf{e}^1 + \mathbf{e}^2) - (\mathbf{e}^1 + \mathbf{e}^2) \\ &= r\mathbf{e}^1 + (r-1)\mathbf{e}^2 \end{aligned}$$

Thus confirming feasibility.

- Hence, r type 1 consumers and $r-1$ type 2 consumers can get together in coalition S , and block allocation $\tilde{\mathbf{x}}$.
- Therefore, $\tilde{\mathbf{x}}$ cannot be in the Core of the r -fold replica economy \mathcal{E}_r .
- Then, if $\tilde{\mathbf{x}} \in C_r$, then $\tilde{\mathbf{x}}$ must be a WEA.