
Examples about Mechanism Design 

Based on Chapter 9 of JR 

 

Example #1 (Public good project) 

Consider a small town with 𝑁𝑁 individuals. The town has been selected by the state to receive 
either a new swimming pool (𝑆𝑆) or a new bridge (𝐵𝐵) and must decide which it wants. Thus, the 
set of social states is 𝑋𝑋 = {𝑆𝑆,𝐵𝐵}. Each individual 𝑖𝑖 in the town has quasi-linear preferences and 
has private information 𝜃𝜃𝑖𝑖 regarding the value he places on the pool and on the bridge. 
Specifically, the values individual 𝑖𝑖 places on the swimming pool (𝑆𝑆) and on the bridge (𝐵𝐵) are 
given by, 

𝑣𝑣𝑖𝑖(𝑥𝑥,𝜃𝜃𝑖𝑖) = �𝜃𝜃𝑖𝑖 + 5,    if 𝑥𝑥 = 𝑆𝑆
2𝜃𝜃𝑖𝑖 ,          if 𝑥𝑥 = 𝐵𝐵 

where his type 𝜃𝜃𝑖𝑖 is equally likely to take on any of the values 1, 2, …, 9 and where the types are 
independent across individuals. The following figure depicts this valuation function. 
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Each individual is therefore as likely to strictly prefer the swimming pool over the bridge (i.e., 
𝜃𝜃𝑖𝑖 ∈ {1, 2, 3, 4}) as he is to strictly prefer the swimming pool over the bridge (i.e., 𝜃𝜃𝑖𝑖 ∈
{6, 7, 8, 9}). Only the individual himself knows which of these is the case and by how much he 
prefers one social state over the other. In addition, the more extreme an individual’s type, the 
more he prefers one of the social states over the other. 

 

Example #2 (VCG mechanism in the Public Good project) 

Consider the situation in Example #1. If the vector of reported types is 𝜃𝜃 ∈ 𝛩𝛩, then it is efficient 
for the town to build the bridge if ∑ 𝑣𝑣𝑖𝑖(𝐵𝐵,𝜃𝜃𝑖𝑖)𝑖𝑖 > ∑ 𝑣𝑣𝑖𝑖(𝑆𝑆,𝜃𝜃𝑖𝑖)𝑖𝑖 .1 That is, if  

� 2𝜃𝜃𝑖𝑖 > �𝜃𝜃𝑖𝑖 + 5
𝑖𝑖𝑖𝑖

 

or, rearranging, 

�2𝜃𝜃𝑖𝑖 − (𝜃𝜃𝑖𝑖 + 5) = �(𝜃𝜃𝑖𝑖 − 5) > 0
𝑖𝑖𝑖𝑖

 

given the definition of 𝑣𝑣𝑖𝑖(.), this leads to the following ex-post efficient allocation function. For 
each 𝜃𝜃 ∈ Θ,  

𝑥𝑥∗(𝜃𝜃) = �𝐵𝐵,   if � (𝜃𝜃𝑖𝑖 − 5) > 0
𝑁𝑁

𝑖𝑖=1
𝑆𝑆,   otherwise.

 

According to the VCG mechanism, if the reported vector of types is 𝜃𝜃 ∈ 𝛩𝛩, then the social state 
is 𝑥𝑥∗(𝜃𝜃). It remains to describe the transfer, 𝑡𝑡𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉(𝜃𝜃), individual 𝑖𝑖 must pay. Let us think about 
the externality that individual 𝑖𝑖 imposes on others. Suppose, for example, that the others report 
very high types, e.g., 𝜃𝜃𝑗𝑗 = 9 for all 𝑗𝑗 ≠ 𝑖𝑖. Then, if there are at least two other individuals, the 
bridge will be built regardless of 𝑖𝑖’s report. Indeed, the bridge will be built whether or not 
individual 𝑖𝑖 is present. Hence, individual 𝑖𝑖’s externality, and so also his transfer, is zero in this 
case. Similarly, 𝑖𝑖’s externality and transfer will be zero whenever his presence does not change 
the outcome. With this in mind, let us define individual 𝑖𝑖 as pivotal for social state 𝑥𝑥 ∈ {𝑆𝑆,𝐵𝐵} at 
the type vector 𝜃𝜃 ∈ 𝛩𝛩 when, given reports 𝜃𝜃, his presence changes the social state from 𝑥𝑥′ to 𝑥𝑥. 
For example, individual 𝑖𝑖 is pivotal for 𝐵𝐵 at 𝜃𝜃 ∈ Θ if 

∑ �𝜃𝜃𝑗𝑗 − 5�𝑁𝑁
𝑗𝑗=1 > 0  and  ∑ �𝜃𝜃𝑗𝑗 − 5� ≤ 0𝑁𝑁

𝑗𝑗≠1 , 

1 We assume that the swimming pool is built if the two sums are equal. 
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because the first (strict) inequality implies that the social state is 𝐵𝐵 when he is present and the 
second (weak) inequality implies that it is 𝑆𝑆 when he is absent. In this circumstance, 𝑖𝑖’s 
externality and transfer is 𝑡𝑡𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉(𝜃𝜃) = ∑ �𝜃𝜃𝑗𝑗 − 5�𝑗𝑗≠1 − ∑ 2𝜃𝜃𝑗𝑗𝑗𝑗≠1 , i.e., the difference between the 
others’ total utility when he is absent and their total utility when he is present. Altogether then, 
𝑡𝑡𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉(𝜃𝜃) is as follows,  

𝑡𝑡𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉(𝜃𝜃) =

⎩
⎪
⎨

⎪
⎧��5 − 𝑡𝑡𝑗𝑗�
𝑗𝑗≠1

,   if 𝑖𝑖 is pivotal for 𝐵𝐵 at 𝜃𝜃 ∈ Θ

��𝑡𝑡𝑗𝑗 − 5�
𝑗𝑗≠1

,   if 𝑖𝑖 is pivotal for 𝑆𝑆 at 𝜃𝜃 ∈ Θ 

0, otherwise.

 

 

Example #3 (Expected externalities) 

Continuing with examples #1 and #2, suppose that there are just two individuals, i.e., 𝑁𝑁 = 2. The 
transfer formula given in of a VCG mechanism yields. 

If your reported type, 𝜃𝜃𝑖𝑖 , is: 𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟒𝟒 𝟓𝟓 𝟔𝟔 𝟕𝟕 𝟖𝟖 𝟗𝟗 

You pay the other individual: 10
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The entries in the second row of the table are the expected VCG transfers, i.e., the 𝑡𝑡𝑖̅𝑖𝑉𝑉𝑉𝑉𝑉𝑉(𝜃𝜃𝑖𝑖). In 
particular, the fourth entry in the second row is 𝑡𝑡1̅𝑉𝑉𝑉𝑉𝑉𝑉(4), individual 1’s expected VCG cost when 
he reports that his type is 𝜃𝜃1 = 4. By reporting 𝜃𝜃1 = 4 < 5, he can be pivotal only for the 
swimming pool, and even then he is pivotal only when individual 2 reports 𝜃𝜃2 = 6, in which case 
his VCG cost (his externality) is 𝑡𝑡1𝑉𝑉𝑉𝑉𝑉𝑉(4, 6) = 6 − 5 (see Example #2). Because individual 2 
reports truthfully and the probability that player 2’s type is  𝜃𝜃2 = 6 is 1

9
 , individual 1’s expected 

externality is therefore 𝑡𝑡1̅𝑉𝑉𝑉𝑉𝑉𝑉(4) = 1
9

(6 − 5) = 1
9
 , as in the table. 

Note that one’s payment to the other individual is higher the more extreme is one’s report. This 
is in keeping with the idea that, for correct incentives, individuals should pay their externality 
(but keep in mind that the amount paid according to the table is not one’s cost, because each 
individual also receives a payment from the other individual). Indeed, the more extreme an 
individual’s report, the more likely it is that he gets his way, or, equivalently, the less likely it is 
that the other individual gets their way. Requiring individuals to pay more when their reports are 
extreme keeps them honest. 
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Thus, when 𝑁𝑁 = 2, the budget-balanced expected externality mechanism for the town is as 
follows. The two individuals are asked to report their types and make payments to one another 
according to the table above. The bridge is built if the sum of the two reports exceeds 10 and the 
swimming pool is built otherwise. This mechanism is incentive-compatible, ex-post efficient, 
budget balanced, and leads to voluntary participation. 

 

Example #4 

Reconsider Example #1 but suppose that the town itself must finance the building of either the 
bridge or the swimming pool, and that building neither (i.e., ‘Don’t Build’ (𝐷𝐷)) is a third social 
state that is available. The types are as before as are the utilities for the bridge and pool. But we 
must specify utilities for building nothing. Suppose that individual 1 is the only engineer in town 
and that he would be the one to build the bridge or the pool. His utility for the social state 𝐷𝐷 is 

𝑣𝑣1(𝐷𝐷,𝜃𝜃1) = 10, 

while for every other individual 𝑖𝑖 > 1, 

𝑣𝑣𝑖𝑖(𝐷𝐷,𝜃𝜃𝑖𝑖) = 0. 

You may think of 𝑣𝑣1(𝐷𝐷, 𝑡𝑡1) = 10 as the engineer’s (opportunity) cost of building either the 
bridge or the pool. So, if the engineer cannot be forced to build (i.e., if he has property rights 
over the social state 𝐷𝐷), then the mechanism must give him at least and expected utility of 10 
because he can ensure his utility simply by not building anything. Hence, for every profile of 
types 𝜃𝜃 ∈ 𝛩𝛩, we have that 𝑢𝑢1(𝜃𝜃1) ≥ 10 is the participation constraint (PC) of individual 1, while 
𝑢𝑢1(𝜃𝜃𝑖𝑖) ≥ 0 is the PC constraint of all other 𝑖𝑖 > 1 individuals. As we now show, the expected 
externality mechanism that worked so beautifully without participation constraints no longer 
works.  

Note that it is always efficient to build something, because total utility is equal to 10 if nothing is 
built, while it is strictly greater than 10 (assuming the engineer is not the only individual) if the 
swimming pool is built. Suppose that there are just two individuals, the engineer and one other. 
The expected externality mechanism described in Example #3 fails to work because the engineer 
will sometimes refuse to build. For instance, if the engineer’s type is 𝜃𝜃1 < 4, then whatever are 
the reports, the mechanism will indicate that either the bridge or the pool will be built and 
individual 2’s payment to the engineer will be no more than 10

9
. (See the table of transfers of 

Example #3, where transfers are always lower or equal to 10
9

.) Consequently, even ignoring the 
payment that the engineer makes to individual 2, the engineer’s expected utility if he builds is 
strictly less than his utility from not building 10, because  

4 
 



max{𝜃𝜃1 + 5, 2𝜃𝜃1} + 10
9

< 10  when his type is 𝜃𝜃1 < 4. 

In words, the highest utility from either the swimming pool (which yields 𝜃𝜃1 + 5) or the bridge 
(which gives him 2𝜃𝜃1) plus the highest possible transfer from individual 2 (10

9
), is still lower 

than his utility from not building anything. For illustration purposes, the next figure illustrates 
max {𝜃𝜃1 + 5, 2𝜃𝜃1}, given by the upper envelope of lines 𝜃𝜃1 + 5 and 2𝜃𝜃1, and the parallel shift 
that adds the transfer 10

9
 to such an upper envelope. Finally, the figure also includes a flat line at 

10, indicating that the engineer’s utility from not building any project is higher than the most 
profitable project for all 𝜃𝜃1 < 4. The engineer is, therefore, strictly better off exercising his right 
not to build. So, under the expected externality mechanism, the outcome is inefficient whenever 
𝑡𝑡1 < 4 because the engineer’s participation constraint is violated. 
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