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Mechanism Design

There are many situations in which some central authority
wishes to implement a decision that depends on the private
information of a set of players.

Government may wish to choose the design of a public-works
project based on preferences of its citizens who have private
information about their preferences.
Monopolistic �rms may wish to determine a set of consumers�
willingness to pay for di¤erent products it can produce with
the goal of making as high a pro�t as possible.

Mechanism design is a study of what kinds of mechanisms
that the central authority can devise in order to reveal the
private information of players.

Central authority is mechanism designer.



Cake Cutting Problem

Consider a mother of two children, who has to design a
mechanism to make her kids share a cake equally. The mother
is the central authority in this case.

If the mother slices the cake into two equal pieces and
distributes one piece to each of the kids, the solution is not
necessarily acceptable to the kids because each kid will be left
with the perception that they got the smaller of the two
pieces.

Can mom design a mechanism to make everyone happy?

Of course she can!



Cake Cutting Problem

Consider the following mechanism:

Stage 1: One of the kids slices the cake into two pieces.
Stage 2: The other kid gets to choose which piece they want,
with the leftover piece going to the �rst (slicing) child.



Cake Cutting Problem

Child 1, who sliced the cake, will slice it exactly into two equal
halves (in their eyes), as he knows that any other division will
leave him with the smaller piece.

Child 2 is happy because they got to choose the bigger piece
(in their eyes).

Thus, this mechanism implements the desirable outcome of
the kids sharing the cake equally and furthermore, each kid
has every reason to be happy about this mechanism.

At least until it is time to do the dishes.



Set up: Mechanism as Bayesian Games

A set of players N = f1, 2, . . . , ng .
A set of public alternatives X that could represent many kinds
of alternatives.

e.g., an alternative x 2 X could represent the attributes of a
public good or service, like investment in education or in
preserving the environment.

The reason that X is called as public alternatives is the
chosen alternative a¤ects all the players in N,

e.g., in an auction, if one player gets a private good then the
consequence is that everyone else does not.



Environment set up � Players

Each player i privately observes his type θi 2 Θi which
determines his preferences.

Let θ = (θ1, θ2, . . . , θn) be the state of the world.
State θ is drawn randomly from the state space
Θ � Θ1 �Θ2 � � � � �Θn.

The draw of θ is according to some prior distribution φ (�)
over Θ.
θi is player i�s private information; φ (�) is common
knowledge.



Environment set up � Players

Each player i has quasilinear preference:
vi (x ,m, θi ) = ui (x , θi ) +mi

Alternatives have a "money-equivalent" value, and preferences
are additive in money.

mi is the amount of money that is given to individual i . mi can
be negative meaning money is taken away from individual i .

ui (x , θi ) is money-equivalent value of alternative x 2 X when
i�s type is θi .

An outcome would be represented as y = (x ,m1, . . . ,m2) .



Environment set up � Mechanism Designer

The mechanism designer has the objective of achieving an
outcome that depends on the types of players

Assume that mechanism designer does not have a source of
funds to pay the players.

Monetary payments have to be self-�nanced, which is
∑ni=1 mi � 0

When ∑n
i=1mi < 0, it means that mechanism designer keeps

some of the money that he raises from players.

The set of outcomes is restricted as follows:

Y =

(
(x ,m1, . . . ,m2) : x 2 X ,mi 2 R8i 2 N,

n

∑
i=1
mi � 0

)



Environment set up � Mechanism Designer

The mechanism designer�s objective is given by a choice rule:

f (θ) = (x (θ) ,m1 (θ) , . . . ,mn (θ)) ,

where x (θ) 2 X and ∑ni=1 mi � 0.

x (θ) is the decision rule; (m1 (θ) , . . . ,mn (θ)) is the transfer
rule.



Environment set up � Mechanism Designer

Example 1:

Let X = [0, x̄ ] be the size of a water treatment plant.

The plant will bene�t some citizens and may displease others.

The citizens are the group of players, N.

Player i�s willingness to pay from x 2 X of the plant is
ui (x , θi )

The utilitarian mechanism designer maximizes the sum of the
players�valuations by choosing the value of x .

So his decision rule x (θ) would maximize ∑n
i=1 ui (x , θi ) .



Environment set up

Example 2:

A good: a license to use a certain portion of the
electromagnetic spectrum for cell coverage.
The license can be allocated to one of a group of cellular
carriers i 2 N.
xi 2 f0, 1g indicates whether player i receives the license
(xi = 1) or not (xi = 0) .
The possible set of alternatives is

X = f(x1, . . . , xn)g

such that xi 2 f0, 1g and ∑ni=1 xi = 1

Player i�s willingness to pay for the license is ui (x , θi ) = θixi .
The mechanism designer maximizes the sum of the players�
valuations by choosing x .
So his decision rule x (θ) would maximize ∑n

i=1 ui (x , θi ) .



The Mechanism Game

The mechanism designer desires to implement a choice rule
f : Θ ! Y .

The problem is that the mechanism designer�s choice rule
depends on the unobserved state Θ.
Two ways that the mechanism designer have to solve the
problem.

The �rst method is to ask each player directly. But are they
willing to share their true preference?



The Mechanism Game

Example 3 (MWG 23.B.1): Consider an abstract case, where
we are given a set of alternatives X = fx , y , zg and two
players.

Suppose that agent 1 has one possible type, so that
Θ1 = fθ̄1g and that agent 2 has two possible types, so that
Θ2 = fθ02, θ

00
2g.

The agents�possible preference orderings are given as

θ̄1 θ02 θ002
Best x z y
Middle y y x
Worst z x z



The Mechanism Game

Suppose that the agents wish to implement the ex post
e¢ cient social choice function f (�) with

f (θ̄1, θ
0
2) = y and f (θ̄1, θ

00
2 ) = x

If so, then agent 2 must be relied upon to truthfully reveal his
preferences.

It is apparent, however, that he will not �nd it in his interest
to do so. When θ2 = θ002 , agent 2 will wish to lie and claim
that his type is θ02.

In the words of a famous American TV Doctor, "Everyone
lies."
Let�s look at the alternative way.



The Mechanism Game

In the second way, the mechanism designer designs some
clever game that ends up revealing the players�private
information..

The rules of the game endows each player i with an action set
Ai .

Following the choice ai 2 Ai by each player, there is some
outcome function g (a1, . . . , an) .
That makes a choice of an outcome y 2 Y .
The payo¤s of player i over outcomes is vi (g (s) , θi ) .



The Mechanism Game

De�nition

A mechanism, Γ = fA1,A2, . . . ,An, g (�)g is a collection of n
action sets A1,A2, . . . ,An and an outcome function
g : A1 � A2 � � � � � An ! Y . A pure strategy for player i in the
mechanism Γ is a function that maps types into actions,
si : Θi ! Ai . The payo¤s of the players are given by vi (g (s) , θi ) .



The Mechanism Game

De�nition

The strategy pro�le s� (�) = (s�1 (�) , . . . , s�n (�)) is a Bayesian
Nash equilibrium of the mechanism Γ = fA1, . . . ,An, g (�)g if for
every i 2 N and for every θi 2 Θi

Eθ�i [vi (g (s
�
i (θi ) , s

�
�i (θ�i )) , θi ) jθi ]

� Eθ�i

�
vi
�
g
�
a0i , s

�
�i (θ�i )

�
, θi
�
jθi
�
for all a0i 2 Ai

That is, if player i believes that other players are playing
according to s��i (θ) then he maximizes his expected payo¤ by
following the behavior prescribed by s�i (θi ) regardless of
which type player i is



The Mechanism Game

The mechanism designer designs a mechanism in which
s�i ! Ai such that the outcome is exactly what the
mechanism designer desires given each θi .

for all θ 2 Θ, g (s�1 (θ1) , s
�
2 (θ2) , . . . , s�n (θn)) = f (θ)

De�nition

A mechanism Γ implements the choice rule f (�) if there exists a
Bayesian Nash equilibrium of the mechanism Γ,
(s�1 (θ1) , s

�
2 (θ2) , . . . , s�n (θn)) , such that

g (s�1 (θ1) , s
�
2 (θ2) , . . . , s�n (θn)) = f (θ) for all θ 2 Θ.



The Mechanism Game

That is, it instead implements f (�) after knowing the true θ,
the mechanism does what the mechanism designer wants to
do: g (a (θ)) = f (θ) .

It is a partial implementation because it requires that the
desired outcome be an equilibrium, but allows for other,
undersirable equilibrium outcomes as well

The implementation without "bad equilibria" is called full
implementation.



The Mechanism Game



The Revelation Principle

The mechanism game is a Bayesian game.

It is useful when the mechanism designer cannot get players
to reveal their types.

There is a particular mechanism which is also a Bayesian
game in which the mechanism designer asks players directly to
reveal their types in order to implement f (�) .
The mechanism designer implements f

�
θ̂
�
, with θ̂ is

announced by the players.

De�nition

Γ = fΘ1, . . . ,Θn, f (�)g is a direct revelation mechanism for
choice rule f (�) if Ai = Θi for all i 2 N and g (θ) = f (θ) for all
θ 2 Θ.



The Revelation Principle

The straightforward direct revelation mechanism will actually
have an equilibrium that implements the mechanism
designer�s intended outcome.

De�nition

The choice rule f (�) is truthfully implementable in Bayesian
Nash equilibrium if for all θ the direct revelation mechanism
Γ = fΘ1, . . . ,ΘI , f (�)g has a Bayesian Nash equilibrium
s�i (θi ) = θi for all i . Equivalently, for all i ,

Eθ�i [vi (f (θi , θ�i ) , θi ) jθi ] � Eθ�i

�
vi
�
f
�
θ̂i , θ�i

�
, θi
�
jθi
�

for all θ̂i 2 Θi .



The Revelation Principle

That is, f (�) is truthfully implementable in Bayesian Nash
equilibrium if truthtelling is a Bayesian Nash equilibrium
strategy in the direct revelation mechanism.

If every player i believes that all other players are reporting
their types truthfully, then player i is also willing to report
truthfully.



The Revelation Principle

Example 4 (MWG 23.B.7): Consider a �rst-price sealed-bid
auction where two potential buyers have valuations θi that are
drawn from a uniform distribution on [0, 1].

Recall that the equilibrium bidding function for each player i is
bi (θi ) =

1
2 θi .

When facing the direct revelation mechanism
Γ = fΘ1, ...,ΘI , f (�)g, buyer 1�s optimal announcement θ̂1
when he has type θ1 solves

max
θ̂1

�
θ1 �

1
2

θ̂1

�
Pr(θ2 � θ̂1)

= max
θ̂1

�
θ1 �

1
2

θ̂1

�
θ̂1



The Revelation Principle

The �rst-order condition is

θ1 � θ̂1 = 0 =) θ̂1 = θ1

Hence, truth telling is buyer 1�s optimal strategy given that
buyer 2 always tells the truth.

A similar conclusion follows for buyer 2.

Thus, the social choice function implemented by the �rst-price
sealed-bid auction (in a Bayesian Nash equilibrium) can also
be truthfully implemented (in a Bayesian Nash equilibrium)
through a direct revelation mechanism!



The Revelation Principle

Proposition: (The Revelation Principle for Bayesian Nash
Implementation) A choice rule f (�) is implementable in Bayesian
Nash equilibrium if and only if it is truthfully implementable in
Bayesian Nash equilibrium.



The Revelation Principle

Proof:

IF part: By de�nition, if f (�) is truthfully implementable in
Bayesian Nash equilibrium then it is implementable in
Bayesian Nash equilibrium using the direct revelation
mechanism.

ONLY IF part: Suppose that there exists some mechanism
Γ = (A1, . . . ,An, g (�)) that implements f (�) using the
equilibrium strategy pro�le s� (�) = (s�1 (�) , . . . , s�n (�)) and
g (s� (�)) = f (�) , so that for every i 2 N and θi 2 Θi ,

Eθ�i [vi (g (s
�
i (θi ) , s

�
�i (θ�i )) , θi ) jθi ]

� Eθ�i

�
vi
�
g
�
a0i , s

�
�i (θ�i )

�
, θi
�
jθi
�
for all a0i 2 Ai

which means that no player i wishes to deviate from s�i (�) .



The Revelation Principle

However, when player i is asked his type, if he pretends that
his type is θ̂i rather than θi , then a0i = s

�
i

�
θ̂i
�
.

Thus

Eθ�i [vi (g (s
�
i (θi ) , s

�
�i (θ�i )) , θi ) jθi ]

� Eθ�i

�
vi
�
g
�
s�i
�
θ̂i
��
, s��i (θ�i ) , θi

�
jθi
�
for every θ̂i 2 Θi

Because g (s� (θ)) = f (θ) for all θ 2 Θ,

Eθ�i [vi (f (θi , θ�i ) , θi ) jθi ] � Eθ�i

�
vi
�
f
�
θ̂i , θ�i

�
, θi
�
jθi
�

for every θ̂i 2 Θi

This is just the condition for f (�) to be truthfully
implementable in Bayesian Nash equilibrium.



The Revelation Principle

If the mechanism designer cannot implement f (�) directly
then there is no mechanism in the world that can.

The designed mechanism and direct revelation mechanism are
equivalent.

In equilibrium the players know that the mechanism
implements f (�) , and they choose to stick to it.
So they announce their types truthfully and have the
mechanism designer implement f (�) directly.



Dominant Strategies Implementation

De�nition

The strategy pro�le s� (�) = (s�1 (�) , . . . , s�n (�)) is a dominant
strategy equilibrium of the mechanism
Γ = fA1,A2, . . . ,An, g (�)g if for every i 2 N and for every θi 2 Θi

vi (g (s�i (θ) , a�i ) , θ) � vi
�
g
�
a0i , a�i

�
, θ
�

for all a0i 2 Ai and for all a�i 2 Ai

Is there a mechanism Γ that implements f (�) in dominant
strategies?



Dominant Strategies Implementation

Since a dominant strategy equilibrium is a special case of a
Bayesian equilibrium, the revelation principle applies.

So we only check that f (�) is implementable in dominant
strategies directly to see if f (�) is implementable in dominant
strategies. That is

vi (f (θi , θ�i ) , θi ) � vi
�
f
�
θ̂i , θ�i

�
, θi
�

for all θ̂i 2 Θi , and for all θ�i 2 Θ�i



Vickrey-Clarke-Groves Mechanism

Recall that our quasilinear preferences are additive in money,
vi (x ,mi , θi ) = ui (x , θi ) +mi .
There is a nice feature of this quasilinear environment:
Monetary transformation can bene�t the whole group.
Imagine player i with θi and player j with θj such that
ui (x 0, θi ) > ui (x , θi ), uj (x , θi ) > uj (x 0, θj )

Intuitively, player i would prefer alternative x 0 and player j
would prefer alternative x .

Furthermore, let

ui
�
x 0, θi

�
� ui (x , θi ) > uj (x , θi )� uj

�
x 0, θj

�
which implies that the gains received by player i when
implementing alternative x 0 are greater than the gains
received by player j when implementing alternative x .



Vickrey-Clarke-Groves Mechanism

There is any amount of money k > 0, satisfying

ui
�
x 0, θi

�
� ui (x , θi ) > k > uj (x , θi )� uj

�
x 0, θj

�
.

So both players will better o¤ if we replace x with x 0 and
transfer k from player i to player j .



Vickrey-Clarke-Groves Mechanism

Proposition: In the quasilinear environment, given a state of the
world θ 2 Θ, an alternative x� 2 X is Pareto optimal if and only if
it is a solution to

max
x2X

I

∑
i=1
ui (x , θi ) .

Proof: If an alternative a did not maximize this sum, then there
was another x 0 that did. Then money transfers among players that
would ensure the gains of some players more than compensate for
the losses of others.



Vickrey-Clarke-Groves Mechanism

De�nition

We call a decision rule x� (�) the �rst-best decision rule if for all
θ 2 Θ, x� (θ) is Pareto optimal.

x� (θ) 2 argmax
x2X

I

∑
i=1
ui (x , θi ) 8θ 2 Θ.

When faced with the Pareto optimal choice rule
(x� (�) ,m1 (�) , . . . ,mn (�)) , will truth-telling be a dominant
strategy for each player in the direct revelation mechanism?
No, when mi

�
θ̂i , θ̂�i

�
� 0

�
θ̂i is announced by player i

�
. The

reason is that each player i only maximizes his own payo¤, not
the total surplus.
This problem could be solved by having a clever transfer rule
mi
�
θ̂i , θ̂�i

�
to let player internalize the externality.



Vickrey-Clarke-Groves Mechanism

De�nition

Given announcements θ̂, the choice rule
f
�
θ̂
�
=
�
x�
�
θ̂
�
,m1

�
θ̂
�
, . . . ,mn

�
θ̂
��
is a Vickrey-Clarke-Groves

(VCG) mechanism if x� (�) is the �rst-best decision rule and if for
all i 2 N

mi
�
θ̂
�
= ∑

j 6=i
uj
�
x�
�
θ̂i , θ̂�i

�
, θ̂j
�
+ hi

�
θ̂�i
�

where hi
�
θ̂�i
�
is an arbitrary function of θ̂�i .



Vickrey-Clarke-Groves Mechanism

Proposition: Any VCG mechanism is truthfully implementable in
dominant strategies.

In the VCG mechanism every player i solves

max
θ̂i2Θi

ui
�
x�
�
θ̂i , θ̂�i

�
, θi
�
+mi

�
θ̂i , θ̂�i

�
= max

θ̂i2Θi

ui
�
x�
�
θ̂i , θ̂�i

�
, θi
�
+∑
j 6=i
uj
�
x�
�
θ̂i , θ̂�i

�
, θ̂j
�

| {z }
total surplus

+ hi
�
θ̂�i
�

hi
�
θ̂�i
�
does not a¤ect i 0s choice.

player i indeed maximizes total surplus according to his type
and others�announced types.

So player i would tell the truth θ̂i = θi .



Vickrey-Clarke-Groves Mechanism

Pivotal mechanism suggested by Clarke (1971) is a
particular VCG mechanism.

It is obtained by setting

hi
�
θ̂�i
�
= �∑

j 6=i
uj
�
x��i

�
θ̂�i
�
, θ̂j
�
,

where
x��i

�
θ̂�i
�
2 argmax

x2X ∑
j 6=i
uj
�
x , θ̂j

�
is the optimal choice of x for a society from which player i was
absent. Thus

mi
�
θ̂
�
= ∑

j 6=i
uj
�
x�
�
θ̂i , θ̂�i

�
, θ̂j
�
�∑
j 6=i
uj
�
x��i

�
θ̂�i
�
, θ̂j
�



Vickrey-Clarke-Groves Mechanism

Pivotal mechanism lets player i make his announcement that
a¤ects the outcome had he not been part of society.

There are relevant cases:

Case 1: x�
�
θ̂i , θ̂�i

�
= x��i

�
θ̂�i
�
where player i�s

announcement does not change what would have happened if
he were not part of society. Then the mechanism speci�es a
transfer of zero to i .
Case 2: x�

�
θ̂i , θ̂�i

�
6= x��i

�
θ̂�i
�
where player i is pivotal that

his announcement changes what would have happened without
him. His transfer ends up taxing him for the externality that
his announcement imposes on the other players.



Example: allocation of an indivisible private good

Returning to Example 2, where the mechanism designer is
trying to determine who to give a license to use a certain
portion of the electromagnetic spectrum for cell coverage.

An object can be allocated to one of N players.

The value of owning the private good for player i is given by
ui (x , θi ) = θixi .

The �rst-best allocation solves

max
(x1,...xn)2f0,1gn

∑
i=1

θixi subject to ∑
i
xi = 1,



Example: allocation of an indivisible private good

Which results in allocating the good to the player i� with the
highest valuation: i� 2 argmax xi θi , and

x�i (θ) =
�
1 if i = i�

0 otherwise

The pivotal mechanism then has transfers

mi
�
θ̂
�
= ∑

j 6=i
uj
�
x�
�
θ̂
�
, θ̂�i

�
�∑
j 6=i
uj
�
x��i

�
θ̂�i
�
, θ̂
�

=

�� �maxj 6=i � θ̂j
	
1 if i = i�

0 otherwise



Example: allocation of an indivisible private good

That is, every player i 6= i� is not pivotal and his presence
does not a¤ect the allocation.

Therefore mi
�
θ̂
�
= 0.

Player i� is pivotal: without him, the object would go to the
player with the second-highest valuation.

The total surplus would be maxj 6=i � θj .

This is the externality player i� imposes on the others by
being present, and how much he has to pay in the pivotal
mechanism.

Notice that this mechanism is identical to the second-price
sealed-bid auction.


