
Optimal bidding function in Common Value Auctions 
 

 
In previous sections we showed that in common value auctions every bidder must shade his bid (i.e., 
submit a bid lower than his own valuation) as otherwise he could fall prey of the “winner’s curse”, that is, 
winning the auction but paying for the good a price higher than his valuation. However, we were silent 
about how much bid shading is optimal in equilibrium. The following discussion, based on Harrington’s 
textbook, analyzes how to find optimal bidding functions in common-value auctions.  
 
Suppose a common value auction with 𝑛𝑛 ≥ 2 bidders. The true value of the object being auctioned is 𝑣𝑣 
and is the same for all bidders. Each bidder gets a noisy (or inexact) signal of 𝑣𝑣. For simplicity, assume 
that such a signal is drawn from the interval [0,1] according to a uniform distribution. The cumulative 
distribution function on bidder 𝑖𝑖’s signal, denoted 𝑠𝑠𝑖𝑖, is 
 

𝐹𝐹(𝑠𝑠𝑖𝑖) = �
0 𝑖𝑖𝑖𝑖 𝑠𝑠𝑖𝑖 < 0

𝑠𝑠𝑖𝑖  𝑖𝑖𝑖𝑖 0 ≤ 𝑠𝑠𝑖𝑖 ≤ 1.
1 𝑖𝑖𝑖𝑖 1 < 𝑠𝑠𝑖𝑖

 

 
The signal of bidder 𝑖𝑖 is known only to him; thus, a bidder’s signal is his type and the type space is [0,1]. 
It is common knowledge that each bidder’s signal is independently drawn from [0,1] according to 𝐹𝐹. 
Finally, it is assumed that the true value is randomly determined by Nature in that it is assumed to equal 
the average of all bidders’ signals: 
 

𝑣𝑣 = �1
𝑛𝑛
�∑ 𝑠𝑠𝑗𝑗.𝑛𝑛

𝑗𝑗=1      (1) 
  
Bidders participate in a first-price, sealed-bid auction, which means that if bidder 𝑖𝑖 wins, then his realized 
payoff is 𝑣𝑣 − 𝑏𝑏𝑖𝑖 where 𝑏𝑏𝑖𝑖 is his bid, though he doesn’t learn 𝑣𝑣 until after he has won. 
 
In deriving a BNE, let us conjecture that it is linear in a bidder’s signal. That is, there is some value for 
𝛼𝛼 > 0 such that 

 𝑏𝑏𝑗𝑗 = 𝛼𝛼𝑠𝑠𝑗𝑗.     (2) 
 

where 𝛼𝛼 represents bid shading.  
 
Constructing expected utility. Bidder 𝑖𝑖’s expected payoff is the probability that he wins (i.e., his bid is 
higher than all other bids) times his expected payoff, conditional on hiving submitted the highest bid: 
 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑏𝑏𝑖𝑖 > 𝑏𝑏𝑗𝑗 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 ≠ 𝑖𝑖� × {𝐸𝐸�𝑣𝑣�𝑠𝑠𝑖𝑖, 𝑏𝑏𝑖𝑖 > 𝑏𝑏𝑗𝑗 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 ≠ 𝑖𝑖� − 𝑏𝑏𝑖𝑖}   (3) 
 
𝐸𝐸[𝑣𝑣|𝑠𝑠𝑖𝑖, 𝑏𝑏𝑖𝑖 > 𝑏𝑏𝑗𝑗 for all 𝑗𝑗 ≠ 𝑖𝑖] is bidder 𝑖𝑖’s expected valuation, conditional not only on his signal, but also 
on knowing that he submitted the highest bid.  This latter fact says something about the signals of the 
other bidders and thus about the true value of the object. 
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Now let us use the property that other bidders are conjectured to use the bidding rule in (2). Substitute 𝛼𝛼𝑠𝑠𝑗𝑗 
for 𝑏𝑏𝑖𝑖 in (3): 

Prob(𝑏𝑏𝑖𝑖 > 𝛼𝛼𝑠𝑠𝑗𝑗 for all 𝑗𝑗 ≠ 𝑖𝑖) × {𝐸𝐸[𝑣𝑣|𝑠𝑠𝑖𝑖, 𝑏𝑏𝑖𝑖 > 𝛼𝛼𝑠𝑠𝑗𝑗 for all 𝑗𝑗 ≠ 𝑖𝑖] − 𝑏𝑏𝑖𝑖} 

=Prob�𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗 for all 𝑗𝑗 ≠ 𝑖𝑖) × {𝐸𝐸[𝑣𝑣|𝑠𝑠𝑖𝑖,
𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗 for all 𝑗𝑗 ≠ 𝑖𝑖] − 𝑏𝑏𝑖𝑖}. 
 
Next, substitute the expression for 𝑣𝑣 from (1): 
 

Prob(𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗 for all 𝑗𝑗 ≠ 𝑖𝑖) × {𝐸𝐸[�1
𝑛𝑛
� (𝑠𝑠𝑖𝑖 +∑ 𝑠𝑠𝑗𝑗𝑗𝑗≠𝑖𝑖 )| 𝑏𝑏𝑖𝑖

𝛼𝛼
> 𝑠𝑠𝑗𝑗 for all 𝑗𝑗 ≠ 𝑖𝑖] − 𝑏𝑏𝑖𝑖} 

 
Since bidder 𝑖𝑖 knows 𝑠𝑠𝑖𝑖, so that 𝐸𝐸[𝑠𝑠𝑖𝑖] = 𝑠𝑠𝑖𝑖, but does not know 𝑠𝑠𝑗𝑗, we can rearrange this expression as 
 

Prob(𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗 for all 𝑗𝑗 ≠ 𝑖𝑖) × {𝑠𝑠𝑖𝑖
𝑛𝑛

+ 1
𝑛𝑛
𝐸𝐸[∑ 𝑠𝑠𝑗𝑗| 𝑏𝑏𝑖𝑖

𝛼𝛼𝑗𝑗≠𝑖𝑖 > 𝑠𝑠𝑗𝑗 for all 𝑗𝑗 ≠ 𝑖𝑖] − 𝑏𝑏𝑖𝑖} 
 
And because signals are independent random variables, we can move the sum operator outside the 
expectation operator, 

Prob(𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗 for all 𝑗𝑗 ≠ 𝑖𝑖) × {𝑠𝑠𝑖𝑖
𝑛𝑛

+ 1
𝑛𝑛
∑ 𝐸𝐸 �𝑠𝑠𝑗𝑗�

𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗� − 𝑏𝑏𝑖𝑖}𝑗𝑗≠𝑖𝑖 . 
 

Using the uniform distribution on 𝑠𝑠𝑗𝑗, we see that bidder 𝑖𝑖’s expected payoff becomes 
 

�
𝑏𝑏𝑖𝑖
𝛼𝛼
�
𝑛𝑛−1

× �
𝑠𝑠𝑖𝑖
𝑛𝑛

+
1
𝑛𝑛
�

𝑏𝑏𝑖𝑖
2𝛼𝛼

− 𝑏𝑏𝑖𝑖
𝑗𝑗≠𝑖𝑖

� 

where Prob(𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗 for all 𝑗𝑗 ≠ 𝑖𝑖) = �𝑏𝑏𝑖𝑖
𝛼𝛼
�
𝑛𝑛−1

, and 𝐸𝐸 �𝑠𝑠𝑗𝑗| 𝑏𝑏𝑖𝑖
𝛼𝛼

> 𝑠𝑠𝑗𝑗� =
𝑏𝑏𝑖𝑖
𝛼𝛼−0

2
= 𝑏𝑏𝑖𝑖

2𝛼𝛼
 since we find the expectation 

of 𝑠𝑠𝑗𝑗 for all values between 0 and 𝑏𝑏𝑖𝑖
𝛼𝛼

. Summing over all 𝑗𝑗 ≠ 𝑖𝑖 (with 𝑁𝑁 − 1 components), we obtain 
 

                                    �𝑏𝑏𝑖𝑖
𝛼𝛼
�
𝑛𝑛−1

× �𝑠𝑠𝑖𝑖
𝑛𝑛

+ 𝑛𝑛−1
𝑛𝑛

𝑏𝑏𝑖𝑖
2𝛼𝛼
− 𝑏𝑏𝑖𝑖�      (4) 

 

Note that the last expression presumes that 𝑏𝑏𝑗𝑗
𝛼𝛼
≤ 1. Since we will show that 𝑏𝑏𝑖𝑖 = 𝛼𝛼𝑠𝑠𝑖𝑖 for some value of 𝛼𝛼, 

it follows that 𝑏𝑏𝑗𝑗
𝛼𝛼
≤ 1 is equivalent to 𝛼𝛼𝑠𝑠𝑖𝑖

𝛼𝛼
≤ 1, or 𝑠𝑠𝑖𝑖 ≤ 1, which is true by assumption. 

 
Ready to take FOC!! Bidder 𝑖𝑖 chooses 𝑏𝑏𝑖𝑖 to maximize (4). The first-order condition with respect to 𝑏𝑏𝑖𝑖 is 
 

(𝑛𝑛 − 1) �
1
𝛼𝛼
� �
𝑏𝑏𝑖𝑖
𝛼𝛼
�
𝑛𝑛−2

��
𝑠𝑠𝑖𝑖
𝑛𝑛
� + �

𝑛𝑛 − 1
𝑛𝑛

� �
𝑏𝑏𝑖𝑖
2𝛼𝛼
� − 𝑏𝑏𝑖𝑖� + �

𝑏𝑏𝑖𝑖
𝛼𝛼
�
𝑛𝑛−1

�
𝑛𝑛 − 1 − 2𝛼𝛼𝛼𝛼

2𝛼𝛼𝛼𝛼
� = 0. 

 
Solving this equation for 𝑏𝑏𝑖𝑖 we obtain 

𝑏𝑏𝑖𝑖 = � 2𝛼𝛼
2𝛼𝛼𝛼𝛼−(𝑛𝑛−1)

� �𝑛𝑛−1
𝑛𝑛
� 𝑠𝑠𝑗𝑗.     (5) 
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Recall that we conjectured that the symmetric equilibrium bidding rule is 𝑏𝑏𝑖𝑖 = 𝛼𝛼𝑠𝑠𝑖𝑖 for some value of 𝛼𝛼 by 
equating to the coefficient multiplying 𝑠𝑠𝑖𝑖 in (5): 
 

𝛼𝛼 = �
2𝛼𝛼

2𝛼𝛼𝛼𝛼 − (𝑛𝑛 − 1)
� �
𝑛𝑛 − 1
𝑛𝑛

� 

Solving this equation for 𝛼𝛼, we get 
 

𝛼𝛼 = �
(𝑛𝑛 + 2)(𝑛𝑛 − 1)

2𝑛𝑛2
� 

In conclusion, a symmetric BNE has a bidder using the rule 
 

𝑏𝑏𝑖𝑖 = �
𝑛𝑛 + 2

2𝑛𝑛
� �
𝑛𝑛 − 1
𝑛𝑛

� 𝑠𝑠𝑖𝑖. 

 
Comparative statics. We can finally check that, when the number of bidders is only 𝑛𝑛 = 2, the optimal 
bidding function becomes 𝑏𝑏𝑖𝑖 = 1

2
𝑠𝑠𝑖𝑖. When the number of bidders increases to 𝑛𝑛 = 3, the optimal bidding 

function rotates upward to 𝑏𝑏𝑖𝑖 = 5
9
𝑠𝑠𝑖𝑖. However, when the number of bidders further increases, for instance 

to 𝑛𝑛 = 10, the optimal bidding function now rotates downard to 𝑏𝑏𝑖𝑖 = 27
50
𝑠𝑠𝑖𝑖. More generally, the derivative 

of the optimal bidding function with respect to 𝑛𝑛 is 
 

𝜕𝜕𝑏𝑏𝑖𝑖
𝜕𝜕𝜕𝜕

=
(4 − 𝑛𝑛)

2𝑛𝑛3
𝑠𝑠𝑖𝑖 

 
which is positive (i.e., more aggressive bidding as 𝑛𝑛 grows) when 𝑛𝑛 < 4, but negative (i.e., less 
aggressive bidding as 𝑛𝑛 grows) otherwise. 


