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1 Introduction

In the context of games of incomplete information, the term “cheap talk” refers to
direct and costless communication among players. Cheap-talk models should be con-
trasted with more standard signalling models. In the latter, informed agents commu-
nicate private information indirectly via their choices—concerning, say, levels of edu-
cation attained—and these choices are costly. Indeed, signalling is credible precisely
because choices are differentially costly—for instance, high productivity workers may
distinguish themselves from low productivity workers by acquiring levels of education
that would be too costly for the latter.

The central question addressed in cheap-talk models is the following: How much
information, if any, can be credibly transmitted when communication is direct and
costless? Interest in this question stems from the fact that with cheap talk, there is
always a "babbling" equilibrium in which the participants deem all communication
to be meaningless—after all it has no direct payoff consequences—and as a result, no
one has any incentive to communicate anything meaningful. It is then natural to ask
if there are also equilibria in which communication is meaningful and informative.

We begin by examining the question posed above in the simplest possible setting:
there is a single informed party—an expert—who offers information to a single un-
informed decision maker. This simple model forms the basis of much work on cheap
talk and was introduced in a now classic paper by Crawford and Sobel (1982). In
what follows, we first outline the main finding of this paper—while there are informa-
tive equilibria, these entail a significant loss of information. We then examine various
remedies that have been proposed to solve (or at least alleviate) the “information
problem.”

2 The Information Problem

We begin by considering the leading case in the model of Crawford and Sobel, hence-
forth CS. A decision maker must choose some decision y. Her payoff depends on
y and on an unknown state of the world #, which is distributed uniformly on the



unit interval. The decision maker can base her decision on the costless message m

sent by an expert who knows the precise value of . The decision maker’s payoff is

U(y,0) = — (y — 0)*, and the expert’s payoff is V (y,6,b) = — (y — (§ + b))*, where

b > 0 is a “bias” parameter that measures how closely aligned the preferences of the

two are. Because of the tractability of the “uniform-quadratic” specification, this

paper, and indeed much of the cheap talk literature, restricts attention to this case.
The sequence of play is as follows:

| | |
[ [ |

Expert Expert sends Decision maker
learns 6 message m chooses y

What can be said about (Bayesian-perfect) equilibria of this game? As noted
above, there is always an equilibrium in which no information is conveyed—even in
the case where preferences are perfectly aligned (i.e. b = 0). In such a “babbling”
equilibrium, the decision maker believes (correctly it turns out) that there is no
information content in the expert’s message and hence chooses her decision only on
the basis of her prior information. Given this, the expert has no incentive to be
convey any information—he may as well send random, uninformative messages—and
hence the expert indeed “babbles.” This reasoning is independent of any of the details
of the model other than the fact that the expert’s message is “cheap talk.”

Are there equilibria in which all information is conveyed? When there is any
misalignment of preferences, the answer turns out to be no. Specifically,

Proposition 1 If the expert is even slightly biased, all equilibria entail some infor-
mation loss.

The proposition follows from the fact that if the expert’s message always revealed
the true state and the decision maker believed him, then the expert would have the
incentive to exaggerate the state—in some states 6, he would report ¢ + b.

Are there equilibria in which some but not all information is shared? Suppose that
following message m, the decision maker holds posterior beliefs given by distribution
function GG. The action y is chosen to maximize her payoffs given G. Because payoffs
are quadratic, this amounts to choosing a y satisfying:

y (m) = E0]m] (1)

Suppose that the expert faces a choice between sending a message m that induces
action y or an alternative message, m/, that induces an action v’ > y. Suppose further
that in state ' the expert prefers ¢’ to y and vice-versa in state # < . Since the
preferences satisfy the single-crossing condition, Vi > 0, the expert would prefer v’
to y in all states higher than @’. This implies that there is a unique state a, satisfying
0 < a < @', in which the expert is indifferent between the two actions. Equivalently,



the distance between y and the expert’s “bliss” (ideal) action in state a is equal to
the distance between action 3y’ and the expert’s bliss action in state a. Hence,

a+b—y=19y —(a+b) (2)

Thus, message m is sent for all states f < a and message m' for all states 6 > a.
To comprise an equilibrium where exactly two actions are induced, one would
need to find values for a, y, and 3 that simultaneously satisfy equations (1) and (2).

Since m is sent in all states § < a, from equation (1), y = %. Similarly, y’ = 2.
Inserting these expressions into equation (2) yields
1
=—-—-2b 3
0= 3)

Equation (3) has several interesting properties. First, notice that a is uniquely
determined for a given bias. Second, notice that when the bias gets large (b > ;11) ,
there is no feasible value of a, so no information is conveyed in any equilibrium.
Finally, notice that when the expert is unbiased (b = 0), there exists an equilibrium
where the state space is equally divided into “high” (6 > %) and “low” (9 < %) regions
and the optimal actions respond accordingly. As the bias increases, the low region
shrinks in size while the high region grows; thus, less information is conveyed the
higher is the bias.

For all b < }l, we constructed an equilibrium that partitions the state space into
two intervals. As the bias decreases, equilibria exist that partition the state space
into more than two intervals. Indeed, Crawford and Sobel (1982) showed that:

Proposition 2 All equilibria partition the state space into a finite number of inter-
vals. The information conveyed in the most informative equilibrium is decreasing in
the bias of the expert.

If the expert were able to commit to fully reveal what he knows, both parties
would be better off than in any equilibrium of the game described above. With full
revelation, the decision maker would choose y = 6 and earn a payoff of 0 while the
expert would earn a payoff of —b?. It is easily verified that in any equilibrium the
payofts of both parties are lower than this. The overall message of the CS model is
that, absent any commitment possibilities, cheap talk inevitably leads to information
loss, which is increasing in the bias of the expert. The remainder of the paper studies
various “remedies” for the information loss problem: more extensive communication,
delegation, contracts, and multiple experts.

3 Remedies

3.1 Extensive communication

In the CS model, the form of the communication between the two parties was one-
sided—the expert simply offered a report to the decision maker who then acted on
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this. Of course, communication can be much richer than this, and it is natural to
ask if its form affects information transmission. One might think that it would not.
First, one-sided communication where the expert speaks two or more times is no
better than having him speak once since any information the expert might convey in
many messages can be encoded in a single message. Now, suppose the communication
is two-sided—it is a conversation—so the decision maker also speaks. Since she has no
information of her own to contribute, all she can do is to send random messages and
at first glance, this seems to add little. As we will show, however, random messages
improve information transmission by acting as coordinating devices.

To see this, suppose the expert has bias b = % As we previously showed, when
only he speaks, the best equilibrium is where the expert reveals whether the state
is above or below % Suppose instead that we allow for face-to-face conversation—a
simultaneous exchange of messages—and that the sequence of play is:

| | | |
[ [ [ |

Expert Expert and DM Expert sends Decision maker
learns 6 meet “face-to-face” “written report” chooses y

The following strategies constitute an equilibrium: The expert reveals some in-
formation at the face-to-face meeting, but there is also some randomness in what
transpires. Depending on how the conversation goes, the meeting is deemed by both
parties to be a “success” or a “failure.” After the meeting, and depending on its
outcome, the expert may send an additional “written report” to the decision maker.

During the meeting, the expert reveals whether 6 is above or below %; he also
sends some additional messages that affect the success or failure of the meeting. If he
reveals that 6 < %, the meeting is adjourned, no more communication takes place, and
the decision maker chooses a low action y;, = 1—12 that is optimal given the information
that 6 < ¢.

If, however, he reveals that 6 > %, then the written report depends on whether the
meeting was a success or a failure. If the meeting is a failure, no more communication
takes place, and the decision maker chooses the “pooling” action yp = 1—72 that is
optimal given that 6 > %. If the meeting is a success, however, the written report
further divides the interval [¢,1] into [¢, 3] and [, 1]. In the first subinterval, the
medium action yy; = 2—74 is taken and in the second subinterval the high action ygz = %
is taken. The actions taken in different states are depicted in Figure 1. The dotted
line depicts the actions, 6 + %, that are “ideal” for the expert.

Notice that in state %, the expert prefers y; to yp (yr is closer to the dotted
line than is yp) and prefers yy to yr, . Thus if there were no uncertainty about
the outcome of the meeting—for instance, if all meetings were “successes,” then the
expert would not be willing to reveal whether the state is above or below %; for states
0= é — g, the expert would say 0 € [%, %] , thereby inducing ¥y, instead of y. If all
meetings were failures, then for states 6 = % + &, the expert would say 6 < %, thereby
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Figure 1: Equilibrium with Face-to-Face Meeting

inducing yy, instead of yp.

There exists a probability p = % such that when 6 = % the expert is indifferent
between y;, and a (p,1 — p) lottery between y); and yp (whose certainty equivalent
is labelled y¢o in the figure). Also, when 6 < %, the expert prefers y; to a (p,1 —p)
lottery between y,, and yp, and when 6 > %, the expert prefers a (p,1 — p) lottery
between y,; and yp to y.

It remains to specify a conversation such that the meeting is successful with prob-
ability p = %. Suppose the expert sends a message (Low, A;) or (High, A;) and the
decision maker sends a message A;, where 7,j € {1,2,...,21}. These messages are
interpreted as follows: Low signals that 6 < % and High signals that 6 > %. The A;
and A; messages play the role of a coordinating device and determine whether the
meeting is successful. The expert chooses A; at random and each A; is equally likely.
Similarly, the decision maker chooses A; at random. Given these choices, the meeting
is a

Success if 0<i—j<l6orj—i>5H
Failure otherwise

For example, if the messages of the expert and the decision maker are (High, A7)

and As, respectively, then it is inferred that 6 > % and since 1 — j = 12 < 16, the

meeting is a success. Observe that with these strategies, given any A; or A;, the
probability that the meeting is a success is exactly %.

The equilibrium constructed above conveys more information than any equilibria



of the CS game. The remarkable fact about the equilibrium is that this improvement
in information transmission is achieved by adding a stage in which the uninformed
decision maker also participates. While the analysis above concerns itself with the
case where b = %, informational improvement through via a “conversation” is a
general phenomenon (Krishna and Morgan, 2004):

Proposition 3 Multiple stages of communication together with active participation
by the decision maker always improve information transmission.

What happens if the two parties converse than once? Does every additional stage
of communication lead to more information transmission? In a closely related setting,
Aumann and Hart (2003) obtain a precise but abstract characterization of the set of
equilibrium payoffs that emerge in sender-receiver games with a finite number of states
and actions when the number of stages of communication is infinite. Because the CS
model has a continuum of states and actions, their characterization does not directly
apply. Nevertheless, it can be shown that even with an unlimited conversation, full
revelation is impossible. A full characterization of the set of equilibrium payoffs with
multiple stages remains an open question.

3.2 Delegation

A key tenet of organizational theory is the “delegation principle” which says that the
power to make decisions should reside in the hands of those with the relevant infor-
mation (Milgrom and Roberts, 1992). Thus, one approach to solving the information
problem is simply to delegate the decision to the expert. However, the expert’s bias
will distort the chosen action from the decision maker’s perspective. Delegation this
leads to a trade-off between an optimal decision by an uninformed party and a biased
decision by an informed party.

Is delegation worthwhile? Consider again an expert with bias b = % The decision
maker’s payoff from the most informative partition equilibrium is —%. Under dele-
gation, the action chosen is y = § + b and the payoff is —b? = —ﬁ. Thus delegation
is preferred. Dessein (2001) shows that this is always true:

Proposition 4 If the expert’s bias is not too large, delegation is better than all equi-
libria of the CS model.

In fact, by exerting only slightly more control, the decision maker can do even
better. As first pointed out by Holmstroém (1984), the optimal delegation scheme
involves limiting the scope of actions from which the expert can choose. Under
the uniform-quadratic specification, the decision maker should optimally limit the
expert’s choice of actions to y € [0,1 — b]. When b = -5, limiting actions in this way

12’
. o . 9 1 1
raises the decision maker’s payoff from —7; to —55-



Optimal delegation still leads to information loss. When the expert’s choice is
“capped,” in high states the action is unresponsive to the state.

An application of the delegation principle arises in the US House of Representa-
tives. Typically a specialized committee—analogous to an informed expert—sends
a bill to the floor of the House—the decision maker. How it may then be amended
depends on the legislative rule under effect. Under the so-called closed rule the floor
is limited in its ability to amend the bill while under the open rule the floor may freely
amend the bill. Thus operating under a closed rule is similar to delegation while an
open rule is similar to the CS model. The proposition above suggests, and Gilligan
and Krehbiel (1987, 1989) have shown, that, in some circumstances, the floor may
benefit by adopting a closed rule.

3.3 Contracts

Up until now we have assumed that the decision maker did not compensate the expert
for his advice. Can compensation, via an incentive contract, solve the information
problem? To examine this, we amend the model to allow for compensation and use
mechanism design to find the optimal contract. Suppose that the payoffs are now
given by

U<y797t) = _<y_9)2_t

where t > 0 is the amount of compensation.

Using the revelation principle, we can restrict attention to a direct mechanism
where both ¢ and y depend on the state 6 reported by the expert. Notice that such
mechanisms directly link the expert’s reports to payoffs—talk is no longer cheap.

Contracts are powerful instruments. A contract that leads to full information
revelation and first-best actions is:

t@H) = 2b(1—40)
y(@) = 0

where 0 is the state reported by the expert. Under this contract, the expert can do no
better than to tell the truth, that is, to set 0= f, and, as a consequence, the action
undertaken in this scheme is the “bliss” action for the decision maker. Full revelation
is expensive however. When b = 1—12, the decision maker’s payoff from this scheme
is —%. Notice that this is worse than the payoff of —% in the best CS equilibrium,
which can be obtained with no contract at all. The costs of implementing the fully
revealing contract outweigh the benefits.

In general, Krishna and Morgan (2005) show:

Proposition 5 With contracts, full revelation is always feasible but never optimal.
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Figure 2: Optimal Contract with Perfect Commitment, b <

The proposition above shows that full revelation is never optimal. No contract
at all is also not optimal—delegation is preferable. What is the structure of the
optimal contract? A typical optimal contract is depicted as the dark line in Figure
2. First, notice that even though the decision maker could induce his bliss action for
some states, it is never optimal to do so. Instead, for low states (f < b), the decision
maker implements a “compromise” action—an action that lies between # and 6 + b.
When 6 > b, the optimal contract simply consists of capped delegation.

3.4 Multiple senders

Thus far we have focused attention on how a decision maker should consult a single
expert. In many instances, decision makers consult multiple experts—often with sim-
ilar information but differing ideologies (biases). Political leaders often form cabinets
of advisors with overlapping expertise. How should a cabinet be constituted? Is a
balanced cabinet—one with advisors with opposing ideologies—helpful? How should
the decision maker structure the “debate” among her advisors?

To study these issues, we add a second expert having identical information to the
CS model. To incorporate ideological differences, suppose the experts have differing
biases. When both b; and by are positive, the experts have like bias— both prefer
higher actions compared to the decision maker. In contrast, if by > 0 and by < 0,
then the experts have opposing bias—expert 1 prefers a higher action and expert 2 a
lower action compared to the decision maker.



3.4.1 Simultaneous talk

When both experts report to the decision maker simultaneously, the information
problem is apparently solved—full revelation is now an equilibrium. To see this,
suppose the experts have like bias and consider the following strategy for the decision
maker: choose the action that is the more “conservative” of the two recommendations.
Precisely, if m; < ms, choose action m; and vice-versa if my < m;. Under this
strategy, each expert can do no better than to report # honestly if the other does
likewise. If expert 2 reports mo = 6, then a report m; > 0, has no effect on the
action. However, reporting m; < 6 changes the action to y = my, but this is worse
for expert 1. Thus, expert 1 is content to simply tell the truth. Opposing bias
requires a more complicated construction, but the effect is the same—full revelation
is an equilibrium (see Krishna and Morgan, 2001b).

Notice that the above construction is fragile because truth-telling is a weakly dom-
inated strategy. Each expert is at least as well off by reporting m; = 0+0b; and strictly
better off in some cases. Battaglini (2001) defines an equilibrium refinement for such
games which, like the notion of perfect equilibrium in finite games, incorporates the
usual idea that players may make mistakes. He then shows that such a refinement
rules out all equilibria with full revelation regardless of the direction of the biases.
While the set of equilibria satisfying the refinement is unknown, the fact that full
revelation is ruled out means that simply adding a second expert does not solve the
information problem satisfactorily.

3.4.2 Sequential talk

Finally, we turn to the case where the experts offer advice in sequence:

| | | |
[ [ [ |

Both experts Expert 1 sends Expert 2 sends Decision maker
learn 6 message mi message ms chooses y
Suppose that the two experts have biases b; = % and by = é, respectively. It

is easy to verify (using (2)) that if only expert 1 were consulted, then the most
informative equilibrium entails his revealing that the state is either below %, between
é and %, or above g. If only expert 2 were consulted, then the most informative
equilibrium is where he reveals whether the state is below or above % If the decision
maker were able to consult only one of the two experts, she would be better off
consulting the more loyal expert 1.

But what happens if she consults both? It turns out that if both experts actively
contribute information, then decision maker can do no better than the following
equilibrium: Expert 1 speaks first and reveals whether or not the state is above or

below L. If expert 1 reveals that the state is above 1, expert 2 reveals nothing further.
P 277 EXP g
11 “then expert 2 reveals further

27
If, however, expert 1 reveals that the state is below o,
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whether or not it is above or below 2% That this is an equilibrium may be verified
again by using (2) and recognizing that, in state ==, expert 2 must be indifferent

27
between the optimal action in the interval [0, =] and the optimal action in [, 5] .
In state %, expert 1 must be indifferent between the optimal action in [%, ﬁ] and

the optimal action in B—%, 1] .

Sadly, by actively consulting both experts, the decision maker is worse off than
if she simply ignored expert 2 and consulted only her more loyal advisor, expert 1.
This result is quite general, as shown by Krishna and Morgan (2001a):

Proposition 6 When experts have like biases, actively consulting the less loyal expert
never helps the decision maker.

The situation is quite different when experts have opposing biases; that is, when
the cabinet is balanced. To see this, suppose that the cabinet is comprised of two
equally loyal experts biases b = 1—12 and by = —1—12. Consulting expert 1 alone leads to
a partition [0, %} , [%, 1] while consulting expert 2 alone leads to the partition [0, %] ,
[%, 1} . If instead, the decision maker asked both experts for advice, the following is
an equilibrium: expert 1 reveals whether 6 is above or below %. If he reveals that the
state is below %, the discussion ends. If, however, expert 1 indicates that the state is
above %, expert 2 is actively consulted and reveals further whether the state is above
or below g. Based on this, the decision maker takes the appropriate action. One may
readily verify that this is an improvement over consulting either expert alone. Once

again the example readily generalizes:

Proposition 7 When experts have opposing biases, actively consulting the both ex-
perts always helps the decision maker.

Indeed, the decision maker can be more clever than this. One can show that with
experts of opposing bias, there exist equilibria where a portion of the state space
is fully revealed. By allowing for a “rebuttal” stage in the debate, there exists an
equilibrium where all information is fully revealed.
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