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Abstract

This paper provides a non-technical introduction to auction theory. Despite the rapidly

expanding literature using auction theory, and the few textbooks introducing it to upper-level

Ph.D. students, most undergraduate textbooks do not cover the topic, or present short verbal

descriptions about it. This paper o¤ers an introduction to auctions, emphasizing their common

ingredients, analyzes optimal bidding behavior in �rst- and second-price auctions, and �nally

examines bidding strategies in common-value auctions and the winner�s curse. Unlike graduate

textbooks on auction theory, the paper only assumes a basic knowledge of algebra and cal-

culus, and uses worked-out examples and �gures, thus making the explanation attractive and

understandable for most economics and business majors.
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1 Introduction

Auctions have always been a large part of the economic landscape, with some auctions reported

as early as in Babylon in about 500 B.C. and during the Roman Empire, in 193 A.D.1 Auctions

with precise set of rules emerged in 1595, where the Oxford English Dictionary �rst included the

entry; and auctions houses like Sotheby�s and Christie�s were founded as early as 1744 and 1766,

respectively. Commonly used auctions nowadays, however, are often online, with popular websites

such as eBay, with US$11 billion in total revenue and more than 27,000 employees worldwide,

which attracted the entry of several competitors into the online auction industry, such as QuiBids

recently.

Auctions have also been used by governments throughout history. In addition to auctioning

o¤ treasury bonds, in the last decade governments started to sell air waves (3G technology). For

instance, the British 3G telecom licenses generated Euro 36 billion in what British economists

called �the biggest auction ever,� and where several game theorists played an important role in

designing and testing the auction format before its �nal implementation. In fact, the speci�c design

of 3G auctions created a great controversy in most European countries during the 1990s since,

as the following �gure from McKinsey (2002) shows, countries with similar population collected

enormously di¤erent revenues from the sale, thus suggesting that some countries (such as Germany

and the UK) better understood bidders�strategic incentives when participating in these auctions,

while others essentially overlooked these issues, e.g., Netherlands or Italy.

Fig 1. Prices of 3G licences.

Despite the rapidly expanding literature using auction theory, only a few graduate-level text-

books about this topic have been published; such as Krishna (2002), Milgrom (2004), Menezes and

1 In particular, the Praetorian Guard, after killing Pertinax, the emperor, announced that the highest bidder could
claim the Empire. Didius Julianus was the winner, becoming the emperor for two short months, after which he was
beheaded.
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Monteiro (2004) and Klemperer (2004). These textbooks, however, introduce auction theory to

upper-level (second year) Ph.D. students, using advanced mathematical statistics and, hence, are

not accessible for undergraduate students. In addition, most undergraduate textbooks do not cover

the topic, or present short verbal descriptions about it; see, for instance, Pindyck and Rubinfeld

(2012) pp. 516-23, Perlo¤ (2011) pp. 462-66, or Besanko and Braeutigam (2011) pp. 633-42.2

In order to provide an attractive introduction to auction theory to undergraduate students, this

paper only assumes a basic knowledge of algebra and calculus, and uses worked-out examples and

�gures. As a consequence, the explanations are appropriate for intermediate microeconomics and

game theory courses, both for economics and business majors. In particular, the paper emphasizes

the common ingredients in most auction formats (understanding them as allocation mechanism).

Then, it analyzes optimal bidding behavior in �rst-price auctions (section three) and in second-price

auctions (section four). Finally, section �ve examines bidding strategies in common-value auctions

and the winner�s curse.

2 Auctions as allocation mechanisms

Consider N bidders who seek to acquire a certain object, where each bidder i has a valuation vi
for the object, and assume that there is one seller. Note that we can design many di¤erent rules

for the auction, following the same auction formats we commonly observe in real life settings. For

instance, we could use:

1. First-price auction (FPA), whereby the winner is the bidder submitting the highest bid, and

he/she must pay the highest bid (which in this case is his/hers).

2. Second-price auction (SPA), where the winner is the bidder submitting the highest bid, but

in this case he/she must pay the second highest bid.

3. Third-price auction, where the winner is still the bidder submitting the highest bid, but now

he/she must pay the third highest bid.

4. All-pay auction, where the winner is still the bidder submitting the highest bid, but in this

case every single bidder must pay the price he/she submitted.

Importantly, several features are common in the above auction formats, implying that all auc-

tions can be interpreted as allocation mechanisms with two main ingredients:

a) An allocation rule, specifying who gets the object. The allocation rule for most auctions

determines that the object is allocated to the bidder submitting the highest bid. This was,

in fact, the allocation rule for all four auction formats considered above. However, we could

assign the object by using a lottery, where the probability of winning the object is a ratio of

2Varian�s (2010) textbook provides a more complete introduction to auctions and mechanism design but, unlike
this paper, it does not focus on equilibrium bidding strategies.
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my bid relative to the sum of all bidders�bids, i.e., prob(win) = b1
b1+b2+:::+bN

, an allocation

rule often used in certain Chinese auctions.

b) A payment rule, which describes how much every bidder must pay. For instance, the payment

rule in the FPA determines that the individual submitting the highest bid pays his own bid,

while everybody else pays zero. In contrast, the payment rule in the SPA speci�es that

the individual submitting the highest bid (the winner) pays the second-highest bid, while

everybody else pays zero. Finally, the payment rule in the all-pay auction determines that

every individual must pay the bid that he/she submitted.3

2.1 Privately observed valuations

Before analyzing equilibrium bidding strategies in di¤erent auction formats, note that auctions are

strategic settings where players must choose their strategies (i.e., how much to bid) in an incomplete

information context.4 In particular, every bidder knows his/her own valuation for the object, vi,

but does not observe other bidder j�s valuation, j 6= i. That is, bidder i is �in the dark�about his
opponent�s valuation.

Despite not observing j�s valuation, bidder i knows the probability distribution behind bidder

j�s valuation. For instance, vj can be relatively high, e.g., vj = 10, with probability 0:4, or low,

vj = 5, otherwise (with probability 0:6). More generally, bidder j�s valuation, vj , is distributed

according to a cumulative distribution function F (v) = prob(vj < v), intuitively representing that

the probability that vj lies below a certain cuto¤ v is exactly F (v). For simplicity, we normally

assume that every bidder�s valuation for the object is drawn from a uniform distribution function

between 0 and 1, i.e., vj � U [0; 1].5 The following �gure illustrates this uniform distribution where

the horizontal axis depicts vj and the vertical axis measures the cumulated probability F (v). For

instance, if bidder i�s valuation is v, then all points to the left-hand side of v in the horizontal axis

represent that vj < v, entailing that bidder j�s valuation is lower than bidder i�s. The mapping

of these points into the vertical axis gives us the probability prob(vj < v) = F (v) which, in the

case of a uniform distribution entails F (v) = v. Similarly, the valuations to the right-hand side

of v describe points where vj > v and, thus, bidder j�s valuation is higher than that of bidder i.

Mapping these points into the vertical axis we obtain the probability prob(vj > v) = 1 � F (v)
which, under a uniform distribution, implies 1� F (v) = 1� v.

3This auction format is used by the internet seller QuiBids.com. For instance, if you participate in the sale of a
new iPad, and you submit a low bid of $25 but some other bidder wins by submitting a higher bid, you will still see
your $25 bid withdrawn from your QuiBids account.

4Auctions are, hence, regarded as an example of Bayesian game.
5Note that this assumption does not imply that bidder j does not assign a valuation vj larger than one to the

object but, instead, that his range of valuations, e.g., from 0 to v, can be normalized to the interval [0; 1].
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Fig 2. Uniform probability distribution.

Importantly, since all bidders are ex-ante symmetric, they will all be using the same bidding

function, bi : [0; 1] ! R+, which maps bidder i�s valuation, vi 2 [0; 1], into a precise bid, bi 2 R+.
However, the fact that bidders use a symmetric function does not imply that all of them submit the

same bid. Indeed, depending on his privately observed valuation for the object, bidding function

bi(vi) prescribes that bidders can submit di¤erent bids. As an example, consider a symmetric

bidding function bi(vi) = vi
2 . Hence, a bidder with valuation vi = 0:4 will submit a bid of bi(0:4) =

0:4=2 = $0:2, while a di¤erent bidder whose valuation is vi = 0:9 would submit a bid of bi(0:9) =

0:9=2 = $0:45. In other words, even if bidders are symmetric in the bidding function they use, they

can be asymmetric in the actual bid they submit.

3 First-price auctions

Let�s start analyzing equilibrium bidding behavior in the �rst-price auction (FPA). First, note

that submitting a bid above one�s valuation, bi > vi, is a dominated strategy. In particular, the

bidder would obtain a negative payo¤ if winning, since his expected utility from participating in

the auction

EUi(bijvi) = prob(win) � (vi � bi) + prob(lose) � 0

would be negative, since vi < bi, regardless of his probability of winning. Note that in the above

expected utility, we specify that, upon winning, bidder i receives a net payo¤ of vi � x, i.e., the
di¤erence between his true valuation for the object and the bid he submits (which ultimately
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constitutes the price he pays for the good if he were to win).6 Similarly, submitting a bid bi that

exactly coincides with one�s valuation, bi = vi, also constitutes a dominated strategy since, even if

the bidder happens to win, his expected utility would be zero, i.e., EUi(bijvi) = prob(win) �(vi�bi),
given that bi = vi. Therefore, the equilibrium bidding strategy in a FPA must imply a bid below

one�s valuation, bi < vi. That is, bidders must practice what is usually referred to as �bid shading.�

In particular, if bidder i�s valuation is vi, his bid must be a share of his true valuation, i.e.,

bi(vi) = a � vi, where a 2 (0; 1). The following �gure illustrates bid shading in the FPA, since
bidding strategies must lie below the 45-degree line.

Fig 3. �Bid shading�in the FPA.

A natural question at this point is: How intense bid shading must be in the FPA? Or, alterna-

tively, what is the precise value of the bid shading parameter a? In order to answer such question,

we must �rst describe bidder i�s expected utility from submitting a given bid x, when his valuation

for the object is vi,

EUi(xjvi) = prob(win) � (vi � x) + prob(lose) � 0

Before continuing our analysis, we still must precisely characterize the probability of winning

in the above expression, i.e., prob(win). Speci�cally, upon submitting a bid bi = x, bidder j can

anticipate that bidder i�s valuation is xa , by just inverting the bidding function bi(vi) = x = a � vi,
i.e., solving for vi in x = a � vi yields vi = x

a . This inference is illustrated in the �gure below where

bid x in the vertical axis is mapped into the bidding function a �vi, which corresponds to a valuation
of xa in the horizontal axis. Intuitively, for a bid x, bidder j can use the symmetric bidding function

a � vi to �recover�bidder i�s valuation, xa .
6Upon loosing, bidders do not obtain any object and, in this auction, do not have to pay any monetary amount,

thus implying a zero payo¤.
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Fig 4. �Recovering�bidder i�s valuation.

Hence, the probability of winning is given by prob(bi � bj) and, according to the vertical

axis in the previous �gure, prob(bi > bj) = prob(x > bj). If, rather than describing probability

prob(x > bj) from the point of view of bids (see shaded portion of the vertical axis in �gure 5 below),

we characterize it from the point of view of valuations (in the shaded segment of the horizontal

axis), we obtain that prob(bi > bj) = prob(xa > vj).

Fig. 5. Probability of winning in the FPA.
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Indeed, the shaded set of valuations in the horizontal axis illustrates valuations of bidder j, vj ,

for which his bid lies below player i�s bid x. In contrast, valuations vj satisfying vj > x
a entail that

player j�s bids would exceed x, implying that bidder j wins the auction. Hence, if the probability

that bidder i wins the object is given by prob(xa > vj), and valuations are uniformly distributed, we

have that prob(xa > vj) =
x
a .
7 We can now plug this probability of winning into bidder i�s expected

utility from submitting a bid of x in the FPA, as follows

EUi(xjvi) =
x

a
(vi � x) =

vix� x2
a

Taking �rst-order conditions with respect to bidder i�s bid, x, we obtain vi�2x
a = 0 which,

solving for x yields bidder i�s optimal bidding function x(vi) = 1
2vi. Intuitively, this bidding

function informs bidder i how much to bid, as a function of his privately observed valuation for the

object, vi. For instance, when vi = 0:75, his optimal bid is 120:75 = 0:375. This bidding function

implies that, when competing against another bidder j, and only N = 2 players participate in the

FPA, bidder i shades his bid in half, as the following �gure illustrates.

Fig 6. Optimal bidding function with N = 2 bidders.

3.1 Extending the �rst-price auction to N bidders

Our results are easily extensible to FPA with N bidders. In particular, the probability of bidder i

winning when submitting a bid of $x is

prob(win) = prob
�x
a
> v1

�
� ::: � prob

�x
a
> vi�1

�
� prob

�x
a
> vi+1

�
� ::: � prob

�x
a
> vN

�
=

x

a
� ::: � x

a
� x
a
� ::: � x

a
=
�x
a

�N�1
7Recall that, if a given random variable y is distributed according to a uniform distribution function U [0; 1], the

probability that the value of y lies below a certain cuto¤ c, is exactly c, i.e., prob(y < c) = F (c) = c.
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where we evaluate the probability that the valuation of all other N � 1 bidders, v1, v2,: : :, vi�1,
vi+1,: : :, vN (expect for bidder i) lies above the valuation vi = x

a that generates a bid of exactly $x.

Hence, bidder i�s expected utility from submitting x becomes

EUi(xjvi) =
�x
a

�N�1
(vi � x) +

�
1�

�x
a

�N�1�
0

Taking �rst-order conditions with respect to his bid, x, we obtain

�
�x
a

�N�1
+
�x
a

�N�2�1
a

�
(vi � x) = 0

Rearranging,
�
x
a

�N a
x2
[(N � 1)vi � nx] = 0, and solving for x, we �nd bidder i�s optimal bidding

function, x(vi) = N�1
N vi. The following �gure depicts the bidding function for the case of N = 2,

N = 3, and N = 4 bidders, showing that bid shading is ameliorated when more bidders participate

in the auction, i.e., bidding functions approach the 45-degree line. Indeed, for N = 2 the optimal

bidding function is 1
2vi, but it increases to

2
3vi when N = 3 bidders compete for the object, to

3
4vi when N = 4 players participate in the auction, etc. For a extremely large number of bidders,

e.g., N = 2; 000, bidder i�s optimal bidding function becomes bi(vi) =
1;999
2;000vi ' vi and, hence,

bidder i�s bid almost coincides with his valuation for the object, describing a bidding function that

approaches the 45-degree line.

Fig 7. Optimal bidding function increases in N .

Intuitively, if bidder i seeks to win the object, he can shade his bid when only another bidder

competes for the good, since the probability of him assigning a large valuation to the object is

relatively low. However, when several players compete in the auction, the probability that some

of them has a high valuation for the object (and, thus submits a high bid) increases. That is,
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competition gets �tougher�as more bidders participate and, as a consequence, every bidder must

increase his bid, ultimately ameliorating his incentives to practice bid shading.

3.2 First-price auctions with risk-averse bidders

Let us next analyze how our equilibrium results would be a¤ected if bidders are risk averse, i.e.,

their utility function is concave in income , x, e.g., u(x) = x�, where 0 < � � 1 denotes bidder

i�s risk-aversion parameter. In particular, when � = 1 he is risk neutral, while when � decreases,

he becomes risk averse.8 First, note that the probability of winning is una¤ected, since, for a

symmetric bidding function bi(vi) = a � vi for every bidder i, where a 2 (0; 1), the probability that
bidder i wins the auction against another bidder j is

prob(bi > bj) = prob(x > bj) = prob
�x
a
> vj

�
=
x

a

Therefore, bidder i�s expected utility from participating in this auction is

EUi(xjvi) =
x

a
� (vi � x)� +

�
1� x

a

�
� 0

where, relative to the case of risk-neutral bidders analyzed above, the only di¤erence arises in

the evaluation of the net payo¤ from winning, vi � x, which it is evaluated as (vi � x)�. Taking
�rst-order conditions with respect to his bid, x, we have

1

a
(vi � x)� �

x

a
�(vi � x)��1 = 0;

and solving for x, we �nd the optimal bidding function, x(vi) = vi
1+� . Importantly, this case

embodies that of risk-neutral bidders analyzed above as a special case. Speci�cally, when � = 1,

bidder i�s optimal bidding function becomes x(vi) = vi
2 . However, when his risk aversion increases,

i.e., � decreases, bidder i�s optimal bidding function increases. Speci�cally, @x(vi)@� = � vi
(1��)2 , which

is negative for all parameter values. In the extreme case in which � decreases to �! 0, the optimal

bidding function becomes x(vi) = vi, and players do not practice bid shading. The following �gure

illustrates the increasing pattern in players�bidding function, starting from vi
2 when bidders are

risk neutral, � = 1, and approaching the 45-degree line (no bid shading) as players become more

risk averse.
8A tipical example you have probably encountered in intermediate microeconomics courses includes u(x) =

p
x

since
p
x = x1=2. As a practice, note that the Arrow-Pratt coe¢ cient of absolute risk aversion rA(x) = �u00(x)

u0(x) for

this utility function yields 1��
x
, con�rming that, when � = 1, the coe¢ cient of risk aversion becomes zero, but when

0 < � < 1, the coe¢ cient is positive.

10



Fig. 8. Optimal bidding function with risk-averse bidders.

Intuitively, a risk-averse bidder submits more aggressive bids than a risk-neutral bidder in order

to minimize the probability of losing the auction. In particular, consider that bidder i reduces his

bid from bi to bi � ". In this context, if he wins the auction, he obtains an additional pro�t of
", since he has to pay a lower price for the object he acquires. However, by lowering his bid, he

increases the probability of losing the auction. Importantly, for a risk-averse bidder, the positive

e¤ect of slightly lowering his bid, arising from getting the object at a cheaper price, is o¤set by

the negative e¤ect of increasing the probability that he loses the auction. In other words, since the

possible loss from losing the auction dominates the bene�t from acquiring the object at a cheaper

price, the risk-averse bidder does not have incentives to reduce his bid, but rather to increase it,

relative to the risk-neutral bidders.

4 Second-price auction

In this class of auctions, bidding your own valuation, i.e., bi(vi) = vi, is a weakly dominant strategy

for all players. That is, regardless of the valuation you assign to the object, and independently

on your opponents�valuations, submitting a bid bi(vi) = vi yields expected pro�t equal or above

that from submitting any other bid, bi(vi) 6= vi. In order to show this bidding strategy is an

equilibrium outcome of the SPA, let�s �rst examne bidder i�s expected payo¤ from submitting a

bid that coincides with his own valuation vi (which we refer to as the First case below), and then

compare it with what he would obtain from deviating to bids below his valuation for the object,

bi(vi) < vi (denoted as Second case), or above his valuation, bi(vi) > vi (Third case). Let us next

separately analyze the payo¤s resulting from each bidding strategy.

First case: If the bidder submits his own valuation, bi(vi) = vi, then either of the following
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situations can arise (for presentation purposes, the �gure below depicts each of the three cases

separately):

Fig 9. Cases arising when bi(vi) = vi.

1a) If his bid lies below the highest competing bid, i.e., bi < hi where hi = max
j 6=i

fbjg,9 then bidder
i loses the auction, obtaining a zero payo¤.

1b) If his bid lies above the highest competing bid, i.e., bi > hi, then bidder i wins the auction.

In this case, he obtains a net payo¤ of vi � hi, since in a SPA the winning bidder does not
have to pay the bid he submitted, but the second-highest bid, which is hi in this case since

bi > hi.

1c) If, instead, his bid coincides with the highest competing bid, i.e., bi = hi, then a tie occurs.

For simplicity, ties are normally solved in auctions by randomly assigning the object to the

bidders who submitted the highest bids. As a consequence, bidder i�s payo¤ becomes vi�hi,
but with only 1

2 probability, i.e., his expected payo¤
1
2(vi � hi).

10

Second case: Let us now compare the above equilibrium payo¤s with those bidder i could obtain

by deviating towards a bid that shades his valuation, i.e., bi < vi. In this case, we can also identify

three cases emerging (see �gure 10), depending on the ranking between bidder i�s bid, bi, and the

highest competing bid, hi.

9 Intuitively, expression hi = max
j 6=i

fbjg just �nds the highest bid among all bidders di¤erent from bidder i, j 6= i.
10Note that, more generally, if K � 2 bidders coincide in submitting the highest bid, their expected payo¤ becomes

1
K
(vi � hi).
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Fig 10. Cases arising when bi(vi) < vi.

2a) If his bid lies below the highest competing bid, i.e., bi < hi, then bidder i loses the auction,

obtaining a zero payo¤.

2b) If his bid lies above the highest competing bid, i.e., bi > hi, then bidder i wins the auction,

obtaining a net payo¤ of vi � hi.

2c) If, instead, his bid coincides with the highest competing bid, i.e., bi = hi, then a tie occurs,

and the object is randomly assigned, yielding an expected payo¤ of 12(vi � hi).

Hence, we just showed that bidder i obtains the same payo¤ submitting a bid that coincides

with his privately observed valuation for the object (bi = vi, as in the First case) and shading his

bid (bi < vi, as described in teh Second case). Therefore, he does not have incentives to conceal his

bid, since his payo¤ would not improve from doing so.

Third case: Let us �nally examine bidder i�s equilibrium payo¤ from submitting a bid above

his valuation, i.e., bi(vi) > vi. In this case, three cases also arise (see �gure 11).
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Fig 11. Cases arising when bi(vi) > vi.

3a) If his bid lies below the highest competing bid, i.e., bi < hi, then bidder i loses the auction,

obtaining a zero payo¤.

3b) If his bid lies above the highest competing bid, i.e., bi > hi, then bidder i wins the auction.

In this scenario, his payo¤ becomes vi�hi, which is positive if vi > hi, or negative otherwise.
(These two situations are depicted in case 3b of �gure 11.) The latter case, in which bidder i

wins the auction but at a loss (negative expected payo¤), did not exist in our above analysis

of bi(vi) = vi and bi(vi) < vi, since players did not submit bids above their own valuation.

Intuitively, the possibility of a negative payo¤ arises because bidder i�s valuation can lie below

the second-highest bid, as �gure 11 illustrates, where vi < hi < bi.

3c) If, instead, his bid coincides with the highest competing bid, i.e., bi = hi, then a tie occurs,

and the object is randomly assigned, yielding an expected payo¤ of 12(vi � hi). Similarly as
our above discussion, this expected payo¤ is positive if vi > hi, but negative otherwise.

Hence, bidder i�s payo¤ from submitting a bid above his valuation either coincides with his

payo¤ from submitting his own value for the object, or becomes strictly lower, thus nullifying his

incentives to deviate from his equilibrium bid of bi(vi) = vi. In other words, there is no bidding

strategy that provides a strictly higher payo¤ than bi(vi) = vi in the SPA, and all players bid their

own valuation, without shading their bids; a result that di¤ers from the optimal bidding function

in FPA, where players shade their bids unless N !1.
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Remark. The above equilibrium bidding strategy in the SPA is, importantly, una¤ected by

the number of bidders who participate in the auction, N , or their risk-aversion preferences. In

particular, our above discussion considered the presence of N bidders, and an increase in their

number does not emphasize or ameliorate the incentives that every bidder has to submit a bid that

coincides with his own valuation for the object, bi(vi) = vi. Furthermore, the above results remain

when bidders evaluate their net payo¤, e.g., vi � hi, according to a concave utility function, such
as u(x) = x�, exhibiting risk aversion. Speci�cally, for a given value of the highest competing bid,

hi, bidder i�s expected payo¤ from submitting a bid bi(vi) = vi would still be weakly larger than

from deviating to a bidding strategy above, bi(vi) > vi, or below, bi(vi) < vi, his true valuation for

the object.

4.1 E¢ ciency in auctions

Auctions, and generally allocation mechanism, are characterized as e¢ cient if the bidder (or agent)

with the highest valuation for the object is indeed the person receiving the object. Intuitively, if

this property does not hold, the outcome of the auction (i.e., the allocation of the object) would

open the door to negotiations and arbitrage among the winning bidder � who, despite obtaining

the object, is not the player who assigns the highest value to it� and other bidder/s with higher

valuations who would like to buy the object from him. In other words, the auction�s outcome

would still allow for negotiations that are bene�cial for all parties involved, i.e., Pareto improving

negotiations, thus suggesting that the initial allocation was not Pareto e¢ cient.

According to this criterion, both the FPA and the SPA are e¢ cient, since the bidder with the

highest valuation submits the highest bid, and the object is ultimately assigned to the player who

submits the highest bid. Other auction formats, such as the Chinese (or lottery) auction described

in the Introduction, are not necessarily e¢ cient, since they may assign the object to an individual

who did not submit the highest valuation for the object. In particular, recall that the probability of

winning the object in this auction is a ratio of the bid you submit relative to the sum of all players�

bids. Hence, a bidder with a low valuation for the object, and who submits the lowest bid, e.g.,

$1, can still win the auction. Alternatively, the person that assigns the highest value to the object,

despite submitting the highest bid, might not end up receiving the object for sale. Therefore, for

an auction to satisfy e¢ ciency, bids must be increasing in a player�s valuation, and the probability

of winning the auction must be one (100%) if a bidder submits the highest bid.

5 Common-value auctions

The auction formats considered above assume that each bidders privately observes his own valuation

for the object, and this valuation is distributed according to a distribution function F (v), e.g., a

uniform distribution, implying that two bidders are unlikely to assign the same value to the object

for sale. However, in some auctions, such as the government sale of oil leases, bidders (oil companies)

might assign the same monetary value to the object (common value), i.e., the pro�ts they would
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obtain from exploiting the oil reservoir. Bidders are, nonetheless, unable to precisely observe the

value of this oil reservoir but, instead, gather estimates of its value. In the oil lease example, �rms

cannot accurately observe the exact volume of oil in the reservoir, or how di¢ cult it will be to

extract, but can accumulate di¤erent estimates from their own engineers, or from other consulting

companies, that inform the �rm about the potential pro�ts to be made from the oil lease. Such

estimates are, nonetheless, imprecise, and only allow the �rm to assign a value to the object (pro�ts

from the oil lease) within a relatively narrow range, e.g., v 2 [10; 11; : : : ; 20] in millions of dollars.
Consider that oil company A hires a consultant, and gets a signal (a report), s, as follows

s =

(
v + 2 with prob. 12 , and

v � 2 with prob. 12

and, hence, the signal is above the true value to the oil lease with 50% probability, or below its

value otherwise. We can alternatively represent this information by examining the conditional

probability that the true value of the oil lease is v, given that the �rm receives a signal s, is

prob(vjs) =
(

1
2 if v = s� 2 (overestimate), and
1
2 if v = s+ 2 (underestimate)

since the true value of the lease is overestimated when v = s � 2, i.e., s = v + 2 and the signal is
above v; and underestimated when v = s + 2, i.e., s = v � 2 and the signal lies below v. Notice
that, if company A was not participating in the auction, then the expected value of the oil lease

would be
1

2
(s� 2)| {z }

if overestimation

+
1

2
(s+ 2)| {z }

if underestimation

=
(s� 2) + (s+ 2)

2
= s

implying that the �rm would pay for the oil lease a price p < s, making a positive expected pro�t.

But, what if the oil company participates in a FPA for the oil lease against another company B?

In this context, every �rm uses a di¤erent consultant, i.e., can receive di¤erent signals, but does

not know whether their consultant systematically over- or under-estimates the true value of the oil

lease. In particular, consider that every �rm receives a signal s from their consultant. Observing its

own signal, but not observing the signal received by the other �rm, every �rm i = fA;Bg submits
a bid from the set f1; 2; : : : ; 20g, where the upper bound of this interval represents the maximum
value of the oil lease according to all estimates.

We will next show that slightly shading your bid, e.g., submitting b = s� 1, cannot be optimal
for any �rm. At �rst glance, however, such a bidding strategy seems sensitive: the �rm bid is

increasing in the signal it receives and, in addition, its bid is below the signal, b < s, entailing

that, if the true value of the oil lease was s, the �rm would obtain a positive expected pro�t from

winning. In order to show that bid b = s � 1 cannot be optimal, consider that �rm A receives a

signal s = 10, and thus submits a bid b = s� 1 = 10� 1 = $9. Given such a signal, the true value
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of the oil lease is

v =

(
s+ 2 = 12 with prob. 12 , and

s� 2 = 8 with prob. 12

Speci�cally, when the true value of the oil lease is v = 12, �rm A receives a signal of sA = 10

(an underestimation of the true valuation, 12), while �rm B receives a signal of sB = 14 (an

overestimation). In this setting, �rms bid bA = 10� 1 = $9 and bB = 14� 1 = $13 and, thus, �rm
A loses the auction. If, in contrast, the true value of the lease is v = 8, �rm A receives a signal

of sA = 10 (an overestimation of the true valuation, 8), while �rm B receives a signal sB = 6 (an

underestimation). In this context, �rms bid bA = 10 � 1 = $9, and bB = 6 � 1 = $5, and �rm A

wins the auction. In particular, �rm A�s expected pro�t from participating in this auction is

1

2
(8� 9) + 1

2
0 = �1

2

which is negative! This is the so-called �winner�s curse�in common-value auctions. In particular,

the fact that a bidder wins the auction just means that he probably received an overestimated

signal of the true value of the object for sale, as �rm A receiving signal sA = 10 in the above

example. Therefore, in order to avoid the winner�s curse, participants in common-value auctions

must signi�cantly shade their bid, e.g., b = s � 2 or less, in order to consider the possibility that
the signals they receive are overestimating the true value of the object.11

The winner�s curse in practice. Despite the straightforward intuition behind this result, the
winner�s curse has been empirically observed in several controlled experiments. A common example

is that of subjects in an experimental lab, where they are asked to submit bids in a common-value

auction where a jar of nickels is being sold. Consider that your instructor shows up in class with

a bid jar plenty of nickels. The monetary value you assign to the jar coincides with that of your

classmates, but none of you can accurately estimate the number of nickels in the jar, since you can

only gather some imprecise information about its true value by looking at it for a few seconds. In

these experiments, it is usual to �nd that the winner ends up submitting a bid a monetary amount

beyond the jar�s true value, i.e., the winner�s curse emerges.12

More surprisingly, the winner�s curse has also been shown to arise among oil company executives.

Hendricks et al. (2003) analyze the bidding strategies of companies, such as Texaco, Exxon, an

British Petroleum, when competing for the mineral rights to properties 3-200 miles o¤-shore and

initially owned by the U.S. government. Generally, executives did not systematically fall prey of the

winner�s curse, since their bids were about 1/3 of the true value of the oil lease. As a consequence,

if their bids resulted in their company winning the auction, their expected pro�ts would become

positive. Texaco executives, however, not only fell prey of the winner�s curse, but submitted bids

above the estimated value of the oil lease. Such a high bid, if winning, would have resulted in

11 It can be formally shown that, in the case of N = 2 bidders, the optimal bidding function is bi(vi) = 1
2
si,

where si denotes the signal that bidder i receives. More generally, for N bidders, bidder i�s optimal bid becomes
bi(vi) =

(N+2)(N�1)
2N2 si. For more details, see Harrington (2009), pp. 321-23.

12For some experimental evidence on the winner�s curse see, for instance, Thaler (1988).
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negative expected pro�ts. One cannot help but wonder if Texaco executives were enrolled in a

remedial course on auction theory.

6 Suggested exercises

1. Consider an auction with �ve participants, each of them with the following (privately ob-

served) valuation of the object for sale: Person A ($10), Person B ($6), Person C ($45),

Person D ($81), and Person E ($62).

(a) If the seller organizes a second-price auction, who will be the winner? What will be his

winning bid? What price he will pay for the object?

(b) Suppose now that bidders can observe each other�s valuations, but the seller cannot. The

seller, however, only knows that bidders�valuations are in the range f0; 1; :::; $90g. If
players participate in a �rst-price auction, how will be the winner? What is his winning

bid?

2. [All-pay auction] Consider the following all-pay auction with two bidders privately observ-
ing their valuation for the object. Valuations are uniformly distributed vi � U [0; 1]. The

player submitting the highest bid wins the object, but all players must pay the bid they

submitted. Find the optimal bidding strategy, taking into account that it is of the form

bi(vi) = m � v2i , where m denotes a positive constant.

3. [Third-price auction] Consider a third-price auction, where the winner is the bidder who
submits the highest bid, but he/she only pays the third highest bid. Assume that you compete

against two other bidders, whose valuations you are unable to observe, and that your valuation

for the object is $10. Show that bidding above your valuation (with a bid of, for instance,

$15) can be a best response to the other bidders�bid, while submitting a bid that coincides

with your valuation ($10) might not be a best response to your opponents�bids.
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