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Introduction

@ Auctions are a large part of the economic landscape:

e Since Babylon in 500 BC, and Rome in 193 AC
e Auction houses Shotheby's and Christie's founded in 1744 and
1766.

e Munch's “The Scream,” sold for US$119.9 million in 2012.



Introduction

@ Auctions are a large part of the economic landscape:
e More recently:

@ eBay: $11 billion in revenue, 27,000 employees.

d)\

e Entry of more firms in this industry: QuiBids.com.
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Introduction

@ Also used by governments to sell:
e Treasury bonds,
o Air waves (3G technology):

e British economists called the sale of the British 3G
telecom licences "The Biggest Auction Ever" ($36 billion)

e Several game theorists played an important role in
designing the auction.
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Overview

@ Auctions as allocation mechanisms:

e types of auctions, common ingredients, etc.

First-price auction.

o Optimal bidding function.
e How is it affected by the introduction of more players?
e How is it affected by risk aversion?

Second-price auction.

Efficiency.
@ Common-value auctions.

e The winner's curse.



Auctions

@ N bidders, each bidder i with a valuation v; for the object.
@ One seller.
@ We can design many different rules for the auction:

© First price auction: the winner is the bidder submitting the
highest bid, and he/she must pay the highest bid (which is
his/hers).

© Second price auction: the winner is the bidder submitting the
highest bid, but he/she must pay the second highest bid.

© Third price auction: the winner is the bidder submitting the
highest bid, but he/she must pay the third highest bid.

@ All-pay auction: the winner is the bidder submitting the
highest bid, but every single bidder must pay the price he/she
submitted.



Auctions

@ All auctions can be interpreted as allocation mechanisms with
the following ingredients:

@ an allocation rule (who gets the object):

o

2]

The allocation rule for most auctions determines the
object is allocated to the individual submitting the

highest bid.
However, we could assign the object by a lottery, where
prob(win) = m as in "Chinese auctions".

@ a payment rule (how much every bidder must pay):

o

(2]

The payment rule in the FPA determines that the
individual submitting the highest bid pays his bid, while
everybody else pays zero.

The payment rule in the SPA determines that the
individual submitting the highest bid pays the second
highest bid, while everybody else pays zero.

The payment rule in the APA determines that every
individual must pay the bid he/she submitted.



Private valuations

@ | know my own valuation for the object, v;.

@ | don’t know your valuation for the object, v;, but | know that
it is drawn from a distribution function.

@ Easiest case:

~_ | 10 with probability 0.4, or
S 5 with probability 0.6

@ More generally,
F(v) = prob(v; < v)

© We will assume that every bidder’s valuation for the object is
drawn from a uniform distribution function between 0 and 1.



Private valuations

@ Uniform distribution function U]0, 1]
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@ If bidder /'s valuation is v, then all points in the horizontal axis
where vi <, entail...
@ Probability prob(vj < v) = F(v) in the vertical axis.



Private valuations

@ Uniform distribution function U[0, 1]

F(v)
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i.e., bidder ;s valuation is lower

v,
i.e., bidder j’s valuation is higher
than bidder i's

@ Similarly, valuations where v; > v (horizontal axis) entail:
@ Probability prob(v; > v) =1 — F(v) in the vertical axis.

o Under a uniform distribution, implies 1 — F(v) =1 —v.



Private valuations

Since all bidders are ex-ante symmetric...

They will all be using the same bidding function:

bi : [0,1] — Ry for every bidder i

They might, howver, submit different bids, depending on their
privately observed valuation.

Example:

© A valuation of v; = 0.4 inserted into a bidding function
bi(v;) = %, implies a bid of b;(0.4) = $0.2.

@ A bidder with a higher valuation of v; = 0.9 implies, in
contrast, a bid of b;(0.9) = %2 = $0.45.

© Even if bidders are symmetric in the bidding function they use,
they can be asymmetric in the actual bid they submit.



First-price auctions

@ Let us start by ruling out bidding strategies that yield negative
(or zero) payoffs, regardless of what your opponent does,

@ i.e., deleting dominated bidding strategies.
@ Never bid above your value, b; > v;, since it yields a

negative payoff if winning.

EU;(bj|vi) = prob(win) - (vi — b;) + prob(lose) -0 < 0
~———

@ Never bid your value, b; = v;, since it yields a zero payoff if
winning.

EU;(bi|vi) = prob(win) - (v; — b;) + prob(lose) -0 = 0
0



First-price auctions

@ Therefore, the only bidding strategies that can arise in
equilibrium imply “bid shading,”
e Thatis, b; < v;.
o More specifically, b;(v;) = a- v;, where a € (0,1).
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First-price auctions

@ But, what is the precise value of parameter a € (0, 1).
e That is, how much bid shadding?
@ Before answering that question...

e we must provide a more specific expression for the probability
of winning in bidder i's expected utility of submitting a bid x,

EU;(x|v;) = prob(win) - (v; — x)



First-price auctions

@ Given symmetry in the bidding function, bidder j can
"recover" the valuation that produces a bid of exactly $x.
e From the vertical to the horizontal axis,

o Solving for v; in function x = a- v;, yields v; = %

Bid, b,
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First-price auctions

@ What is, then, the probability of winning when submitting a

bid x is...

o prob(b; > b;) in the vertical axis, or
o prob(% > v;) in the horizontal axis.

v;, i.e., 45-degree line

b(v)=a-v,
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First-price auctions

@ And since valuations are uniformly distributed...
o prob(% > v;) =%
e which implies that the expected utility of submitting a bid x
is...

X
EUi(xlvi) = < (vi=x)
~—
prob(win)
e And simplifying...
xvj — x°



First-price auctions

.. . e
o Taking first-order conditions of == with respect to x, we

obtain
v, — 2x

=0
a

and solving for x yields an optimal bidding function of

1
x(vi) = SV



v, 1.e., 45-degree line

Optimal bidding function in FPA

]

0l
2|

bl
- b(v)

Vi

@ Bid shadding in half:
e for instance, when v; = 0.75, his optimal bid is %0.75 = 0.375.



FPA with N bidders

@ The expected utility is similar, but the probability of winning
differs...

I
L | X
L | X

prob(win) =

@ Hence, the expected utility of submitting a bid x is...

EUi(x|vi) = (f) =)+ [1 - <’;)Nl} 0

a



FPA with N bidders

@ Taking first-order conditions with respect to his bid, x, we
obtain

@ Rearranging,
x\N a
(5> SIN=1)v—n] =0,
@ and solving for x, we find bidder i's optimal bidding function,

N—-1
N

x(v;) = Vi



FPA with N bidders
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o Comparative statics:

e Bid shadding diminishes as /N increases.
e Bidding function approaches 450 —line.



FPA - Generalization

@ Let us now allow for valuations to be drawn from any cdf
F(v;i) (not necessarily uniform).

e First, note that, for a given bidding strategy s : [0,1] — R,
i.e., s(v;) = x;, we can define its inverse s (x;) = v;,
implying that the cdf can be rewritten as

F(vi) = F(s’l(x,-)).
@ Then bidder i's UMP becomes

max [F(s™ )] (v = x0)

prob(win)




FPA - Generalization

@ Taking first-order conditions with respect to x yields

—[FGs7H )]

—1/..
(s 0D E o (v ) =0
71(Xi) _ 1

. _ ds
e Since s~ !(x;) = v; and el e

n—2

(n—1) [F(s7 ()]

ik the above
expression becomes

1
s'(vi)

—[F))" "+ (n = 1) [F(w)]" " F(w) (vi—x) =0



FPA - Generalization

o Further rearranging, we obtain

(n—=1) [F(vi)]" 2 Fvi)vi — (n— 1) [F(v)]" 2 F(vi)x;
= [F(w)]" " s'(v)

[F(v)]" ' (vi) + (n= 1) [F(w)]"* F(vi)v,
= (- )
The LHS is {LECIS00] pence,




FPA - Generalization

@ Integrating both sides yields
[F(v)]" " s(vi) = /OVI(” —D[FW)]" 2 Fvi)vi dvi (1)
Applying integration by parts on the RHS, we obtain
L a=niFer v di @)
= FI = TR 9)
Plugging that into the RHS of (1) yields
)" () = [FO)I" v = [ R dv @)

@ A note on integration by parts (next slide)



FPA - Generalization

@ Recall integration by parts: You start from two functions g
and h, so that (gh)’ = g’h+ gh’. Then, integrating both
sides yields

g(x)h(x) = [ & ()h(x)dx+ [ g(x)h (x)dx

We can then reorder the terms in the above expression as
follows

| € (0n()dx = g(xh() ~ [ g()H (x)d



FPA - Generalization

@ In order to apply integration by parts in our auction setting,
let g'(x) = (n—1) [F(v;)]"? f(vi) and h(x) = v;. That is

T (=) [FW"Fv) v dv,
L= D) Fw) v dv
g'(x) h(x)

= Fr v [ Eer L
N———— N~ 0 S o——~
g(x) h(x) g(x) h'(x)




FPA - Generalization

@ We can now rearrange expression (3). In particular, dividing
both sides by [F(v;)]""! yields

Jo TF(vi)]" ™ dv;
[F(v)]"

which is bidder i's optimal bidding function, s(v;).

s(vi) =v; —

@ Intuitively, he shades his bid by the amount of ratio
S TF ()] tdv;
[Fw)"™

@ As a practice, note that when F(v;) is uniform, F(v;) = v;
implying that [F(v;)]"" = v"~!. Hence,

%v,-” v n—1
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FPA with risk-averse bidders

@ Utility function is concave in income, x, e.g., u(x) = x%,

o where 0 < a < 1 denotes bidder i’s risk-aversion parameter.
o [Note that when a = 1, the bidder is risk neutral.]

@ Hence, the expected utility of submitting a bid x is

EUi(x|vi) =

(vi = x)*

{o1>

prob(win)



FPA with risk-averse bidders

e Taking first-order conditions with respect to his bid, x,

1 . 13 X . a—1 __
a(v, x) aoc(v, x)*71 =0,

and solving for x, we find the optimal bidding function,

x(v;)

Vi

T 1ta

@ Under risk-neutral bidders, &« = 1, this function becomes
vi

x(vj) = 4.

e But, what happens when « decreases (more risk aversion)?



FPA with risk-averse bidders

e Optimal bidding function x(v;) = %
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@ Bid shading is ameliorated as bidders’ risk aversion increases:

e That is, the bidding function approaches the 459 —line when «
approaches zero.



FPA with risk-averse bidders

@ Intuition: for a risk-averse bidder:

o the positive effect of slightly lowering his bid, arising from
getting the object at a cheaper price, is offset by...

e the negative effect of increasing the probability that he loses
the auction.

o Ultimately, the bidder's incentives to shade his bid are
diminished.



Second-price auctions

@ Let's now move to second-price auctions.



Second-price auctions

e Bidding your own valuation, b;(v;) = v;, is a weakly dominant
strategy,
e i.e, it yields a larger (or the same) payoff than submitting any
other bid.
@ In order to show this, let us find the expected payoff from
submitting...

o A bid that coincides with your own valuation, b;(v;) = v;,
o A bid that lies below your own valuation, b;(v;) < v;, and
o A bid that lies above your own valuation, b;(v;) > v;.
@ We can then compare which bidding strategy yields the
largest expected payoff.



Second-price auctions

e Bidding your own valuation, b;(v;) = v;...

Case la: h
hi>b; } I I +
0 B 1 Bids
Case 1b: hy
hi<bi ' - b
0 By 1 Bids
Case lc: Iy
h=be } i
0 B 1 Bids

e Case la: If his bid lies below the highest competing bid, i.e.,
b; < h; where h; = m;\x{bj},
Wl

e then bidder / loses the auction, obtaining a zero payoff.



Second-price auctions

e Bidding your own valuation, b;(v;) = v;...

Case la h
h>b; } | ] }
0 B 1 Bids
Case 15 h
hi<bi | : . -
0 B 1 Bids
Case lc: h
hi=b; L { }
0 B, 1 Bids

@ Case 1b: If his bid lies above the highest competing bid, i.e.,
b; > h;, then bidder i wins.

e He obtains a net payoff of v; — h;.



Second-price auctions

e Bidding your own valuation, b;(v;) = v;...

Case la: h
hi>b; | , I }
0 B 1 Bids
Case 1b: h;
h<b; } | | b
0 B 1 Bids
Case lc: h;
hi=bi ] b
0 B 1 Bids

e Case 1c: If, instead, his bid coincides with the highest competing
bid, i.e., bj = h;, then a tie occurs.
e For simplicity, ties are solved by randomly assigning the object
to the bidders who submitted the highest bids.
e As a consequence, bidder i's expected payoff becomes

L(vi—h).



Second-price auctions

e Bidding below your valuation, b;(v;) < v;...

h;

Case 2a: /\
hi>b; | |

T T v ids
0 b, 2 1 Bids
Case 2b: h;
hi<b; | | : I .
0 b, o 1 Bids
Case 2c¢: hy
hebi | | : .
0 b, M 1 Bids

@ Case 2a: If his bid lies below the highest competing bid, i.e.,
b; < h;,
o then bidder i loses, obtaining a zero payoff.



Second-price auctions

e Bidding below your valuation, b;(v;) < v;...

h;

Case 2a: A
hi=b; | |

T T T ide
0 b, M 1 Bids
Case 2b: h;
h.<b, I | 1
i<bi |} T T ™5
0 b, 2 1 Bids
Case 2c¢: h
hbi | | , .
0 b e 1 Bids

@ Case 2b: if his bid lies above the highest competing bid, i.e.,
b; > h;,

e then bidder / wins, obtaining a net payoff of v; — h;.



Second-price auctions

e Bidding below your valuation, b;i(v;) < v;...

Case 2a: A
hi>b; | 1

T T " Bids

0 b; v; 1
Case 2b: h;
h.<b, L | 1
o (') T ‘| ; Bids
Case 2¢: h;
h;=b; } I 1
T T T 97
0 b, M 1 Bids

@ Case 2c: If, instead, his bid coincides with the highest competing
bid, i.e., bj = h;, then a tie occurs,

e and the object is randomly assigned, yielding an expected
payoff of %(v,- — hy).



Second-price auctions

e Bidding above your valuation, b;(v;) > v;...

Case 3a: h;
h;>b; I 1 1
I T T 1 .
0 \ b, 1 Bids
Case 3b: h;
hi<bi : — b
0 i N by 1 Bids
Positive payoff
h;
I T -
0 vi b, 1 Bids
-~
Loss
Case 3c: h;
h;=b; I - | +
0 &7 b 1 Bids

@ Case 3a: if his bid lies below the highest competing bid, i.e.,

b; < h;,

o then bidder i loses, obtaining a zero payoff.



Second-price auctions

e Bidding above your valuation, b;(v;) > v;...

Case 3a: h;
h,>b; I Il I
I T T T ids
0 % 1 Bids
Case 3b: h;
hi=<Db, F 1 1
el i U 1 Bids
o ] v b 1
Positive payoff
h;
t —T i
& L) 1 Bids
T
Loss
Case 3c: h;
hi=b; ! - : }
0 N b 1 Bids

@ Case 3b: if his bid lies above the highest competing bid, i.e.,

b; > h;, then bidder i wins.

e His payoff becomes v; — h;, which is positive if v; > h;, or

negative otherwise.



Second-price auctions

e Bidding above your valuation, b;(v;) > v;...

Case 3a: h;
h;>b; I 1 1
I T T s
0 % o 1 Bids
Case 3b: h;
hi<b, ! ] 1
=6 ¥ T T T T pids
° H MY | Bids
Positive payoff
h;
| e :
Bids
¢ e
Loss
Case 3c: hy
h=bi | —t e
0 % b 1 Bids

e Case 3c: If, instead, his bid coincides with the highest competing
bid, i.e., bj = h;, then a tie occurs.

e The object is randomly assigned, yielding an expected payoff of
%(v,- — h;), which is positive only if v; > h;.



Second-price auctions

e Summary:
o Bidder i's payoff from submitting a bid above his valuation:

@ either coincides with his payoff from submitting his own value
for the object, or

o becomes strictly lower, thus nullifying his incentives to deviate
from his equilibrium bid of b;(v;) = v;.

@ Hence, there is no bidding strategy that provides a strictly
higher payoff than b;(v;) = v; in the SPA.

@ All players bid their own valuation, without shading their bids,
e unlike in the optimal bidding function in FPA.



Second-price auctions

o Remark:

e The above equilibrium bidding strategy in the SPA is
unaffected by:

@ the number of bidders who participate in the auction, N, or
@ their risk-aversion preferences.



Efficiency in auctions

@ The object is assigned to the bidder with the highest
valuation.

o Otherwise, the outcome of the auction cannot be efficient...
@ since there exist alternative reassignments that would still

improve welfare.

e FPA and SPA are, hence, efficient, since:
e The player with the highest valuation submits the highest bid

and wins the auction.
Lottery auctions are not necessarily efficient.



Common value auctions

@ In some auctions all bidders assign the same value to the
object for sale.

o Example: Oil lease
e Same profits to be made from the oil reservoir.




Common value auctions

@ Firms, however, do not precisely observe the value of the
object (profits to be made from the reservoir).

@ Instead, they only observe an estimate of these potential
profits:

e from a consulting company, a bidder/firm's own estimates, etc.



Common value auctions

@ Consider the auction of an oil lease.

@ The true value of the oil lease (in millions of dollars) is
v € [10,11, ..., 20]

@ Firm A hires a consultant, and gets a signal s

L vt 2 with prob % (overestimate)
~ | v—2 with prob  (underestimate)

That is, the probability that the true value of the oil lease is v,
given that the firm receives a signal s, is

rob(v|s) = 3 if v.= s — 2 (overestimate)
g B % if v = s+ 2 (underestimate)



Common value auctions

o If firm A was not participating in an auction, then the
expected value of the oil lease would be

1 1 s—2+s+4+2 2s
5(5—2) + 5(54'2) —72 —?—5
——
if overestimation if underestimation

@ Hence, the firm would pay for the oil lease a price p < s,
making a positive expected profit.



Common value auctions

@ What if the firm participates in a FPA for the oil lease against
firm B?

@ Every firm uses a different consultant...

o but they don't know if their consultant systematically
overestimates or underestimates the value of the oil lease.

@ Every firm receives a signal s from its consultant,

e observing its own signal, but not observing the signal the other
firm receives, every firm submits a bid from {1,2, ..., 20}.



Common value auctions

@ We want to show that bidding b = s — 1 cannot be optimal
for any firm.

@ Notice that this bidding strategy seems sensible at first glance:
e Bidding less than the signal, b < s.

e So, if the true value of the oil lease was s, the firm would
get some positive expected profit from winning.

e Bidding is increasing in the signal that the firm receives.



Common value auctions

@ Let us assume that firm A receives a signal of s = 10.
o Thenitbids b=s—1=10—1 = $9.

@ Given such a signal, the true value of the oil lease is

L= s+2:12withprob%
| s—2=28with prob %

@ In the first case (true value of 12)

o firm A receives a signal of s, = 10 (underestimation), and
o firm B receives a signal of sg = 14 (overestimation).

@ Then, firms bid b4 =10—1=9, and bg =14 —1 =13, and
firm A loses the auction.



Common value auctions

@ In the second case, when the true value of the oil lease is
v =28,

o firm A receives a signal of s4 = 10 (overestimation), and
o firm B receives a signal of sg = 6 (underestimation).

@ Then, firms bid by =10—1=9, and bg =6—1 =5, and
firm A wins the auction.

e However, the winner’s expected profit becomes

1 1 1
5(8=9)+50=—3

@ Negative profits from winning.

@ Winning is a curse!!



Winner's curse

@ In auctions where all bidders assign the same valuation to the
object (common value auctions),

e and where every bidder receives an inexact signal of the
object’s true value...

@ The fact that you won...

e just means that you received an overestimated signal of the
true value of the object for sale (oil lease).

@ How to avoid the winner’s curse?

e Bid b=15—2 or less,
o take into account the possibility that you might be receiving
overestimated signals.



Winner's curse - Experiments |

@ In the classroom: Your instructor shows up with a jar of
nickels,

e which every student can look at for a few minutes.

e Paying too much for it!



Winner's curse - Experiments Il

@ In the field: Texaco in auctions selling the mineral rights to
off-shore properties owned by the US government.

o All firms avoided the winner's curse (their average bids were
about 1/3 of their signal)...
o Expect for Texaco:

e Not only their executives fall prey of the winner's curse,
e They submitted bids above their own signall!
e They needed some remedial auction theory!



