

Auction Theory - An Introduction

Felix Munoz-Garcia
School of Economic Sciences
Washington State University

February 20, 2015

Introduction

- Auctions are a large part of the economic landscape:
 - Since Babylon in 500 BC, and Rome in 193 AC
 - Auction houses Sotheby's and Christie's founded in 1744 and 1766.

- Munch's "The Scream," sold for US\$119.9 million in 2012.

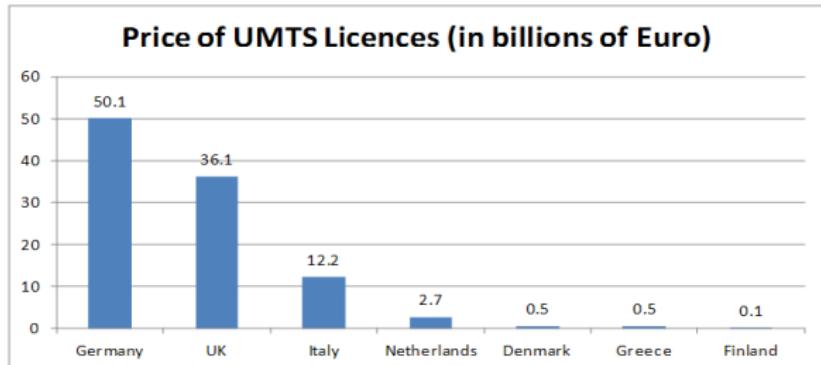
Introduction

- Auctions are a large part of the economic landscape:
 - More recently:
 - eBay: \$11 billion in revenue, 27,000 employees.

- Entry of more firms in this industry: QuiBids.com.

Introduction

- Also used by governments to sell:
 - Treasury bonds,
 - Air waves (3G technology):
 - British economists called the sale of the British 3G telecom licences "The Biggest Auction Ever" (\$36 billion)
 - Several game theorists played an important role in designing the auction.



Overview

- Auctions as allocation mechanisms:
 - types of auctions, common ingredients, etc.
- First-price auction.
 - Optimal bidding function.
 - How is it affected by the introduction of more players?
 - How is it affected by risk aversion?
- Second-price auction.
- Efficiency.
- Common-value auctions.
 - The winner's curse.

Auctions

- N bidders, each bidder i with a valuation v_i for the object.
- One seller.
- We can design many different rules for the auction:
 - ① **First price auction:** the winner is the bidder submitting the highest bid, and he/she must pay the *highest* bid (which is his/hers).
 - ② **Second price auction:** the winner is the bidder submitting the highest bid, but he/she must pay the *second highest* bid.
 - ③ **Third price auction:** the winner is the bidder submitting the highest bid, but he/she must pay the *third highest* bid.
 - ④ **All-pay auction:** the winner is the bidder submitting the highest bid, but every single bidder must pay the price he/she submitted.

Auctions

- All auctions can be interpreted as allocation mechanisms with the following ingredients:
 - ① **an allocation rule** (who gets the object):
 - ① The allocation rule for most auctions determines the object is allocated to the individual submitting the highest bid.
 - ② However, we could assign the object by a lottery, where $prob(win) = \frac{b_1}{b_1+b_2+\dots+b_N}$ as in "Chinese auctions".
 - ② **a payment rule** (how much every bidder must pay):
 - ① The payment rule in the FPA determines that the individual submitting the highest bid pays his bid, while everybody else pays zero.
 - ② The payment rule in the SPA determines that the individual submitting the highest bid pays the second highest bid, while everybody else pays zero.
 - ③ The payment rule in the APA determines that every individual must pay the bid he/she submitted.

Private valuations

- I know my own valuation for the object, v_i .
- I don't know your valuation for the object, v_j , but I know that it is drawn from a distribution function.

- ① Easiest case:

$$v_j = \begin{cases} 10 & \text{with probability 0.4, or} \\ 5 & \text{with probability 0.6} \end{cases}$$

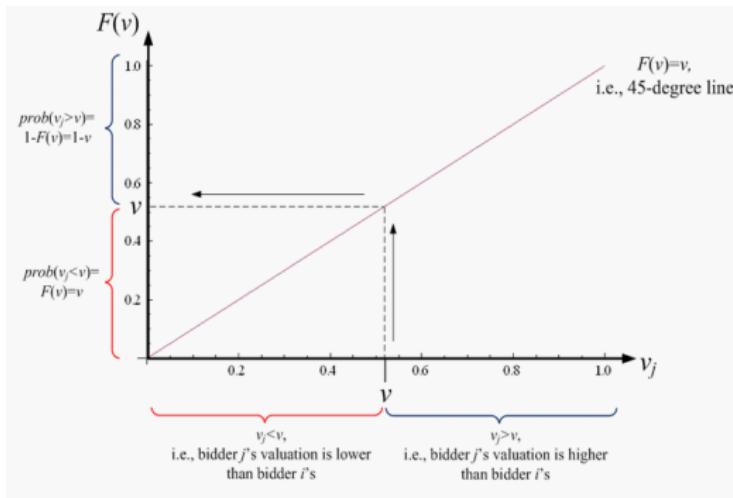
- ② More generally,

$$F(v) = \text{prob}(v_j < v)$$

- ③ We will assume that every bidder's valuation for the object is drawn from a uniform distribution function between 0 and 1.

Private valuations

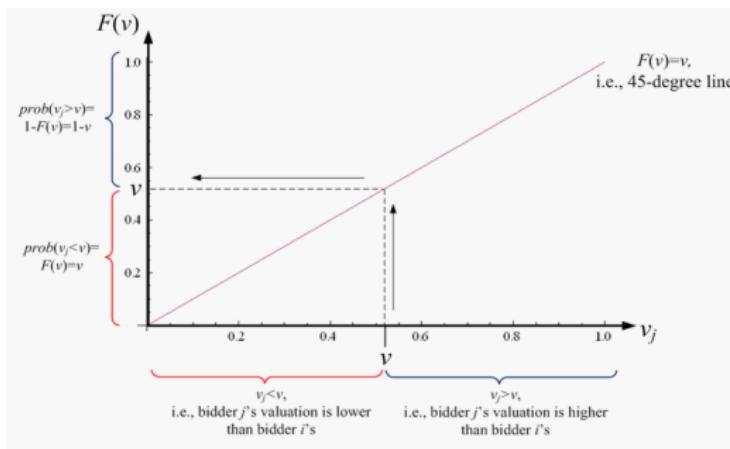
- Uniform distribution function $U[0, 1]$



- If bidder i 's valuation is v , then all points in the horizontal axis where $v_j < v$, entail...
- Probability $prob(v_j < v) = F(v)$ in the vertical axis.

Private valuations

- Uniform distribution function $U[0, 1]$



- Similarly, valuations where $v_j > v$ (horizontal axis) entail:
- Probability $prob(v_j > v) = 1 - F(v)$ in the vertical axis.
 - Under a uniform distribution, implies $1 - F(v) = 1 - v$.

Private valuations

- Since all bidders are ex-ante symmetric...
- They will all be using the same bidding function:

$$b_i : [0, 1] \rightarrow \mathbb{R}_+ \text{ for every bidder } i$$

- They might, however, submit different bids, depending on their privately observed valuation.
- **Example:**

- ① A valuation of $v_i = 0.4$ inserted into a bidding function $b_i(v_i) = \frac{v_i}{2}$, implies a bid of $b_i(0.4) = \$0.2$.
- ② A bidder with a higher valuation of $v_i = 0.9$ implies, in contrast, a bid of $b_i(0.9) = \frac{0.9}{2} = \0.45 .
- ③ Even if bidders are *symmetric* in the bidding function they use, they can be *asymmetric* in the actual bid they submit.

First-price auctions

- Let us start by ruling out bidding strategies that yield negative (or zero) payoffs, regardless of what your opponent does,
 - i.e., deleting dominated bidding strategies.
- Never bid **above your value**, $b_i > v_i$, since it yields a negative payoff if winning.

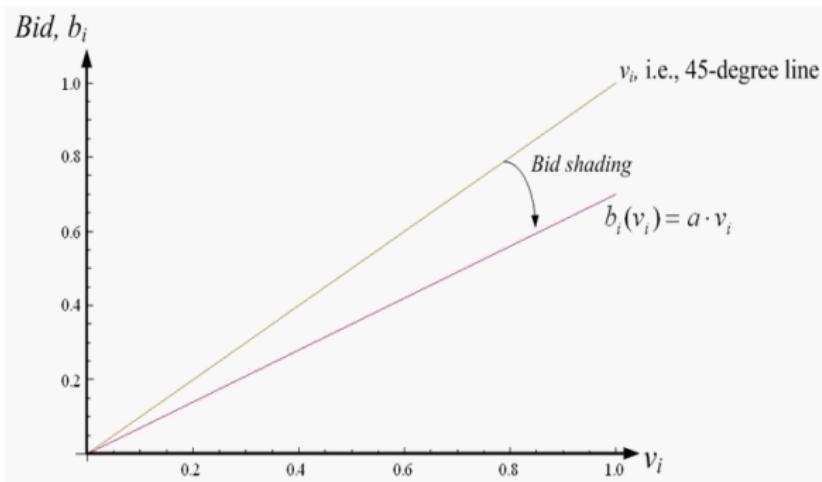
$$EU_i(b_i|v_i) = \text{prob}(win) \cdot \underbrace{(v_i - b_i)}_{-} + \text{prob}(lose) \cdot 0 < 0$$

- Never bid **your value**, $b_i = v_i$, since it yields a zero payoff if winning.

$$EU_i(b_i|v_i) = \text{prob}(win) \cdot \underbrace{(v_i - b_i)}_0 + \text{prob}(lose) \cdot 0 = 0$$

First-price auctions

- Therefore, the only bidding strategies that can arise in equilibrium imply “bid shading,”
 - That is, $b_i < v_i$.
 - More specifically, $b_i(v_i) = a \cdot v_i$, where $a \in (0, 1)$.



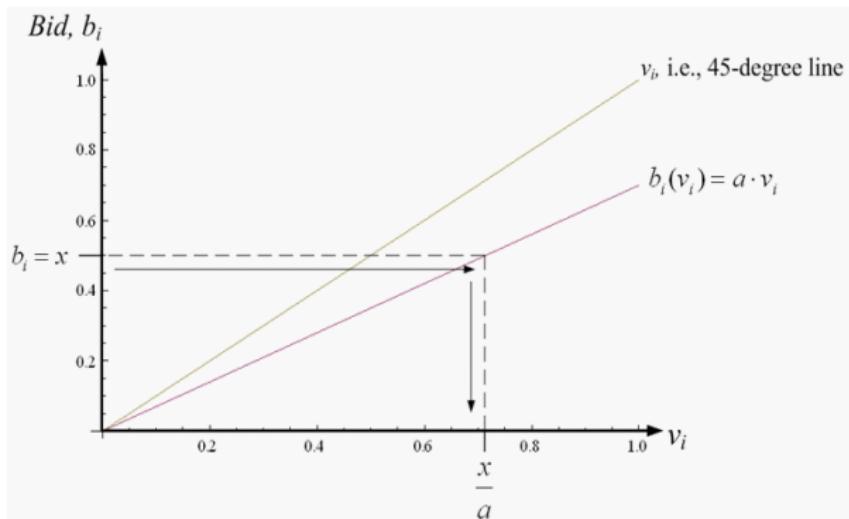
First-price auctions

- But, what is the precise value of parameter $a \in (0, 1)$.
 - That is, how much bid shading?
- Before answering that question...
 - we must provide a more specific expression for the probability of winning in bidder i 's expected utility of submitting a bid x ,

$$EU_i(x|v_i) = \text{prob}(win) \cdot (v_i - x)$$

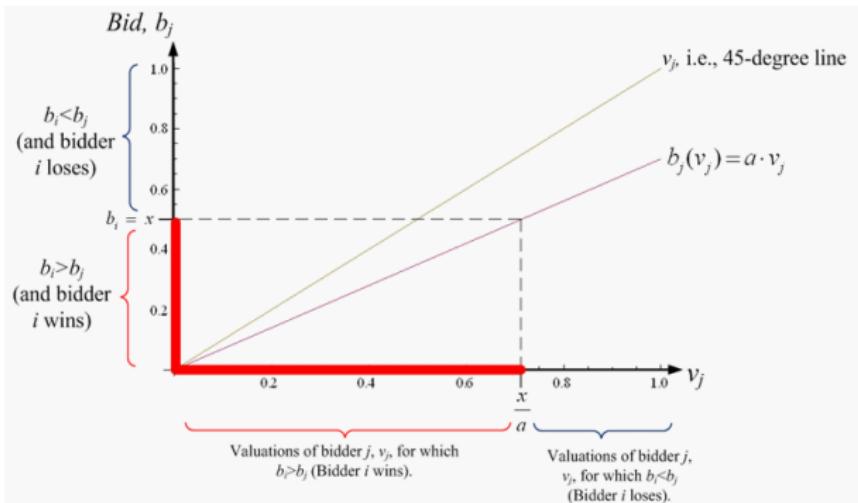
First-price auctions

- Given symmetry in the bidding function, bidder j can "recover" the valuation that produces a bid of exactly $\$x$.
 - From the vertical to the horizontal axis,
 - Solving for v_i in function $x = a \cdot v_i$, yields $v_i = \frac{x}{a}$



First-price auctions

- What is, then, the probability of winning when submitting a bid x is...
 - $\text{prob}(b_i > b_j)$ in the vertical axis, or
 - $\text{prob}(\frac{x}{a} > v_j)$ in the horizontal axis.



First-price auctions

- And since valuations are uniformly distributed...
 - $\text{prob}\left(\frac{x}{a} > v_j\right) = \frac{x}{a}$
 - which implies that the expected utility of submitting a bid x is...

$$EU_i(x|v_i) = \underbrace{\frac{x}{a}}_{\text{prob}(win)} (v_i - x)$$

- And simplifying...

$$= \frac{xv_i - x^2}{a}$$

First-price auctions

- Taking first-order conditions of $\frac{xv_i - x^2}{a}$ with respect to x , we obtain

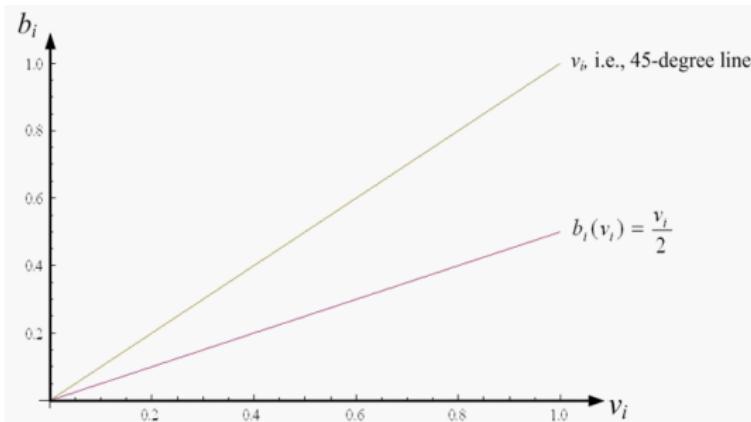
$$\frac{v_i - 2x}{a} = 0$$

and solving for x yields an optimal bidding function of

$$x(v_i) = \frac{1}{2}v_i.$$

Optimal bidding function in FPA

- $x(v_i) = \frac{1}{2}v_i$.



- *Bid shading in half:*

- for instance, when $v_i = 0.75$, his optimal bid is $\frac{1}{2}0.75 = 0.375$.

FPA with N bidders

- The expected utility is similar, but the probability of winning differs...

$$\begin{aligned} \text{prob}(win) &= \frac{x}{a} \cdot \dots \cdot \frac{x}{a} \cdot \frac{x}{a} \cdot \dots \cdot \frac{x}{a} \\ &= \left(\frac{x}{a}\right)^{N-1} \end{aligned}$$

- Hence, the expected utility of submitting a bid x is...

$$EU_i(x|v_i) = \left(\frac{x}{a}\right)^{N-1} (v_i - x) + \left[1 - \left(\frac{x}{a}\right)^{N-1}\right] 0$$

FPA with N bidders

- Taking first-order conditions with respect to his bid, x , we obtain

$$-\left(\frac{x}{a}\right)^{N-1} + \left(\frac{x}{a}\right)^{N-2} \left(\frac{1}{a}\right) (v_i - x) = 0$$

- Rearranging,

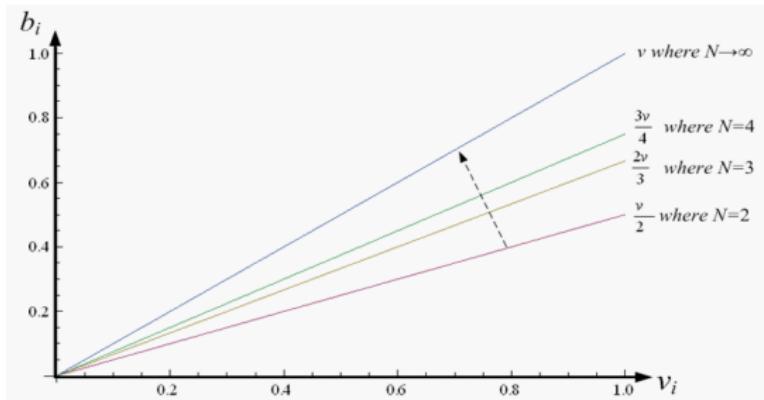
$$\left(\frac{x}{a}\right)^N \frac{a}{x^2} [(N-1)v_i - nx] = 0,$$

- and solving for x , we find bidder i 's optimal bidding function,

$$x(v_i) = \frac{N-1}{N} v_i$$

FPA with N bidders

- Optimal bidding function $x(v_i) = \frac{N-1}{N} v_i$



- Comparative statics:**

- Bid shading diminishes as N increases.
- Bidding function approaches 45° —line.

FPA - Generalization

- Let us now allow for valuations to be drawn from any cdf $F(v_i)$ (not necessarily uniform).
- First, note that, for a given bidding strategy $s : [0, 1] \rightarrow \mathbb{R}_+$, i.e., $s(v_i) = x_i$, we can define its inverse $s^{-1}(x_i) = v_i$, implying that the cdf can be rewritten as

$$F(v_i) = F(s^{-1}(x_i)).$$

- Then bidder i 's UMP becomes

$$\max_{x_i} \underbrace{\left[F(s^{-1}(x_i)) \right]^{n-1}}_{\text{prob(win)}} (v_i - x_i)$$

FPA - Generalization

- Taking first-order conditions with respect to x yields

$$- [F(s^{-1}(x_i))]^{n-1} +$$

$$(n-1) [F(s^{-1}(x_i))]^{n-2} f(s^{-1}(x_i)) \frac{ds^{-1}(x_i)}{dx_i} (v_i - x_i) = 0$$

- Since $s^{-1}(x_i) = v_i$ and $\frac{ds^{-1}(x_i)}{dx_i} = \frac{1}{s'(s^{-1}(x_i))}$, the above expression becomes

$$- [F(v_i)]^{n-1} + (n-1) [F(v_i)]^{n-2} f(v_i) \frac{1}{s'(v_i)} (v_i - x_i) = 0$$

FPA - Generalization

- Further rearranging, we obtain

$$\begin{aligned} & (n-1) [F(v_i)]^{n-2} f(v_i) v_i - (n-1) [F(v_i)]^{n-2} f(v_i) x_i \\ = & [F(v_i)]^{n-1} s'(v_i) \end{aligned}$$

or

$$\begin{aligned} & [F(v_i)]^{n-1} s'(v_i) + (n-1) [F(v_i)]^{n-2} f(v_i) v_i \\ = & (n-1) [F(v_i)]^{n-2} f(v_i) x_i \end{aligned}$$

The LHS is $\frac{d[(F(v_i))^{n-1} s(v_i)]}{dv_i}$. Hence,

$$\frac{d \left[[F(v_i)]^{n-1} s(v_i) \right]}{dv_i} = (n-1) [F(v_i)]^{n-2} f(v_i) x_i$$

FPA - Generalization

- Integrating both sides yields

$$[F(v_i)]^{n-1} s(v_i) = \int_0^{v_i} (n-1) [F(v_i)]^{n-2} f(v_i) v_i \, dv_i \quad (1)$$

Applying integration by parts on the RHS, we obtain

$$\int_0^{v_i} (n-1) [F(v_i)]^{n-2} f(v_i) v_i \, dv_i \quad (2)$$

$$= [F(v_i)]^{n-1} v_i - \int_0^{v_i} [F(v_i)]^{n-1} \, dv_i \quad (3)$$

Plugging that into the RHS of (1) yields

$$[F(v_i)]^{n-1} s(v_i) = [F(v_i)]^{n-1} v_i - \int_0^{v_i} [F(v_i)]^{n-1} \, dv_i \quad (4)$$

- A note on integration by parts (next slide)

FPA - Generalization

- Recall integration by parts: You start from two functions g and h , so that $(gh)' = g'h + gh'$. Then, integrating both sides yields

$$g(x)h(x) = \int g'(x)h(x)dx + \int g(x)h'(x)dx$$

We can then reorder the terms in the above expression as follows

$$\int g'(x)h(x)dx = g(x)h(x) - \int g(x)h'(x)dx$$

FPA - Generalization

- In order to apply integration by parts in our auction setting, let $g'(x) \equiv (n-1) [F(v_i)]^{n-2} f(v_i)$ and $h(x) \equiv v_i$. That is

$$\begin{aligned} & \int_0^{v_i} \underbrace{(n-1) [F(v_i)]^{n-2} f(v_i)}_{g'(x)} \underbrace{v_i}_{h(x)} dv_i \\ &= \underbrace{[F(v_i)]^{n-1}}_{g(x)} \underbrace{v_i}_{h(x)} - \int_0^{v_i} \underbrace{[F(v_i)]^{n-1}}_{g(x)} \underbrace{1}_{h'(x)} dv_i \end{aligned}$$

FPA - Generalization

- We can now rearrange expression (3). In particular, dividing both sides by $[F(v_i)]^{n-1}$ yields

$$s(v_i) = v_i - \frac{\int_0^{v_i} [F(v_i)]^{n-1} dv_i}{[F(v_i)]^{n-1}}$$

which is bidder i 's optimal bidding function, $s(v_i)$.

- Intuitively, he shades his bid by the amount of ratio $\frac{\int_0^{v_i} [F(v_i)]^{n-1} dv_i}{[F(v_i)]^{n-1}}$.
- As a practice, note that when $F(v_i)$ is uniform, $F(v_i) = v_i$ implying that $[F(v_i)]^{n-1} = v_i^{n-1}$. Hence,

$$s(v_i) = v_i - \frac{\frac{1}{n} v_i^n}{v_i^{n-1}} = v_i - \frac{v_i^n}{n v_i^{n-1}} = v_i \left(\frac{n-1}{n} \right)$$

FPA with risk-averse bidders

- Utility function is concave in income, x , e.g., $u(x) = x^\alpha$,
 - where $0 < \alpha \leq 1$ denotes bidder i 's risk-aversion parameter.
 - [Note that when $\alpha = 1$, the bidder is risk neutral.]
- Hence, the expected utility of submitting a bid x is

$$EU_i(x|v_i) = \underbrace{\frac{x}{a}}_{prob(\text{win})} (v_i - x)^\alpha$$

FPA with risk-averse bidders

- Taking first-order conditions with respect to his bid, x ,

$$\frac{1}{a}(v_i - x)^\alpha - \frac{x}{a}\alpha(v_i - x)^{\alpha-1} = 0,$$

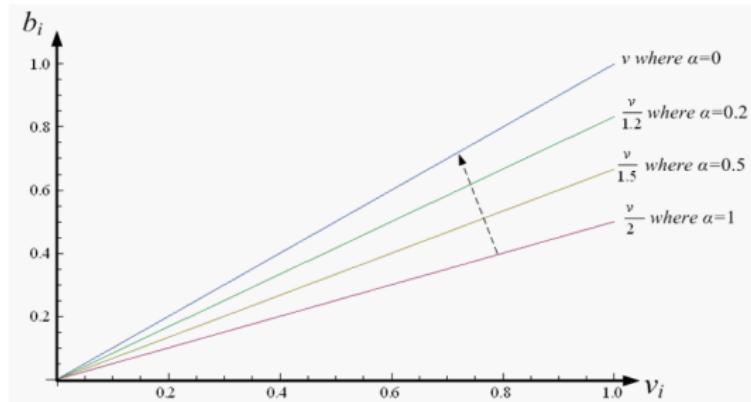
and solving for x , we find the optimal bidding function,

$$x(v_i) = \frac{v_i}{1 + \alpha}.$$

- Under risk-neutral bidders, $\alpha = 1$, this function becomes $x(v_i) = \frac{v_i}{2}$.
- But, what happens when α decreases (more risk aversion)?

FPA with risk-averse bidders

- Optimal bidding function $x(v_i) = \frac{v_i}{1+\alpha}$.



- Bid shading is *ameliorated* as bidders' risk aversion increases:
 - That is, the bidding function approaches the 45^0 —line when α approaches zero.

FPA with risk-averse bidders

- **Intuition:** for a risk-averse bidder:
 - the **positive effect** of slightly lowering his bid, arising from getting the object at a cheaper price, is offset by...
 - the **negative effect** of increasing the probability that he loses the auction.
- Ultimately, the bidder's incentives to shade his bid are diminished.

Second-price auctions

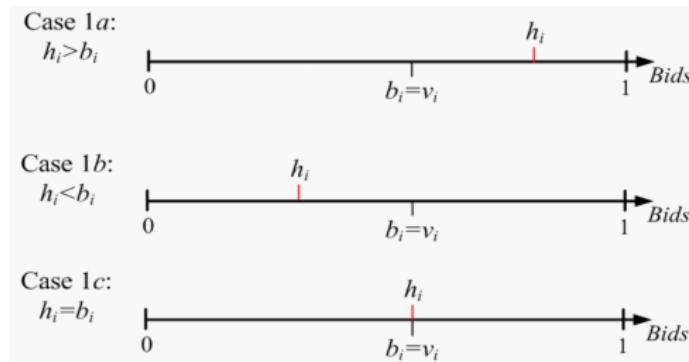
- Let's now move to second-price auctions.

Second-price auctions

- Bidding your own valuation, $b_i(v_i) = v_i$, is a weakly dominant strategy,
 - i.e., it yields a larger (or the same) payoff than submitting any other bid.
- In order to show this, let us find the expected payoff from submitting...
 - A bid that *coincides* with your own valuation, $b_i(v_i) = v_i$,
 - A bid that lies *below* your own valuation, $b_i(v_i) < v_i$, and
 - A bid that lies *above* your own valuation, $b_i(v_i) > v_i$.
- We can then compare which bidding strategy yields the largest expected payoff.

Second-price auctions

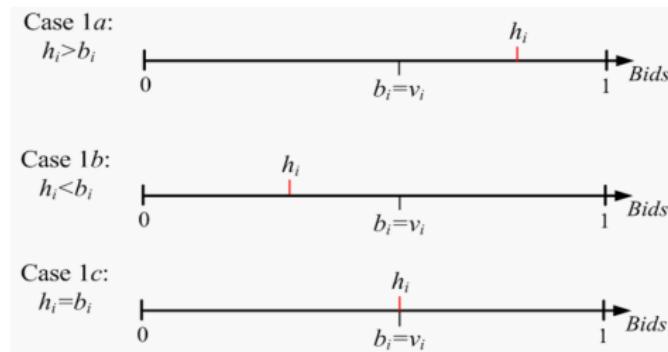
- Bidding your own valuation, $b_i(v_i) = v_i \dots$



- **Case 1a:** If his bid lies below the highest competing bid, i.e., $b_i < h_i$ where $h_i = \max_{j \neq i} \{b_j\}$,
 - then bidder i loses the auction, obtaining a zero payoff.

Second-price auctions

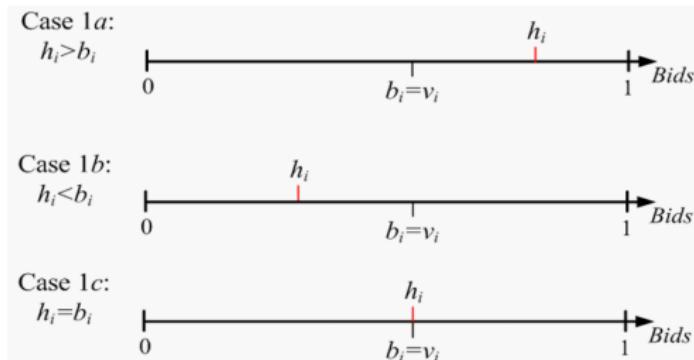
- Bidding your own valuation, $b_i(v_i) = v_i \dots$



- **Case 1b:** If his bid lies above the highest competing bid, i.e., $b_i > h_i$, then bidder i wins.
 - He obtains a net payoff of $v_i - h_i$.

Second-price auctions

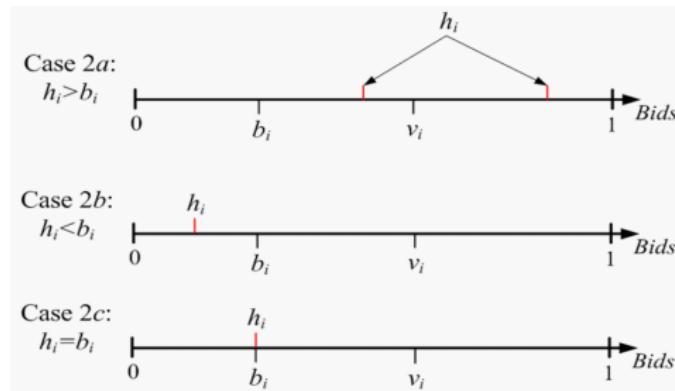
- Bidding your own valuation, $b_i(v_i) = v_i \dots$



- **Case 1c:** If, instead, his bid coincides with the highest competing bid, i.e., $b_i = h_i$, then a tie occurs.
 - For simplicity, ties are solved by randomly assigning the object to the bidders who submitted the highest bids.
 - As a consequence, bidder i 's expected payoff becomes $\frac{1}{2}(v_i - h_i)$.

Second-price auctions

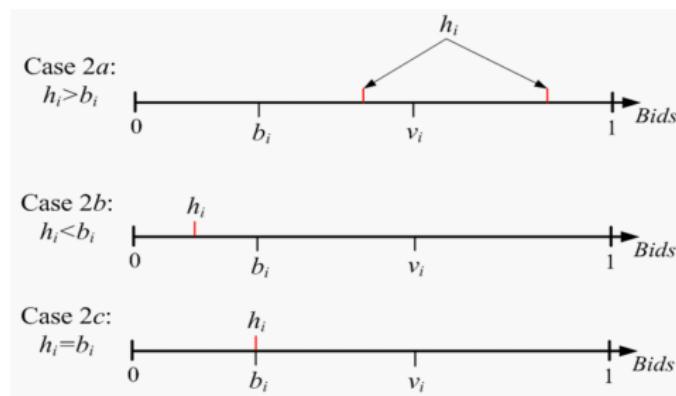
- Bidding *below* your valuation, $b_i(v_i) < v_i \dots$



- Case 2a:** If his bid lies below the highest competing bid, i.e., $b_i < h_i$,
 - then bidder i loses, obtaining a zero payoff.

Second-price auctions

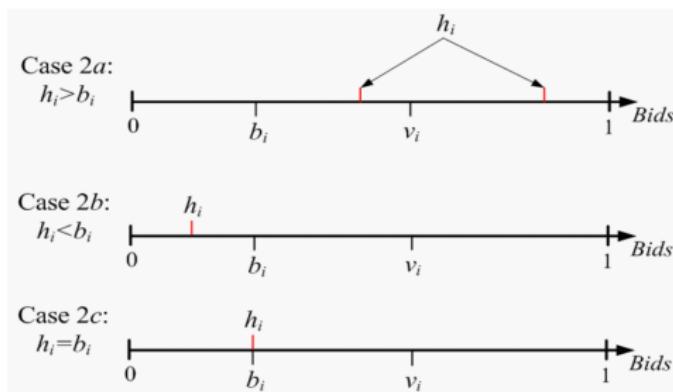
- Bidding *below* your valuation, $b_i(v_i) < v_i \dots$



- Case 2b:** if his bid lies above the highest competing bid, i.e., $b_i > h_i$,
 - then bidder i wins, obtaining a net payoff of $v_i - h_i$.

Second-price auctions

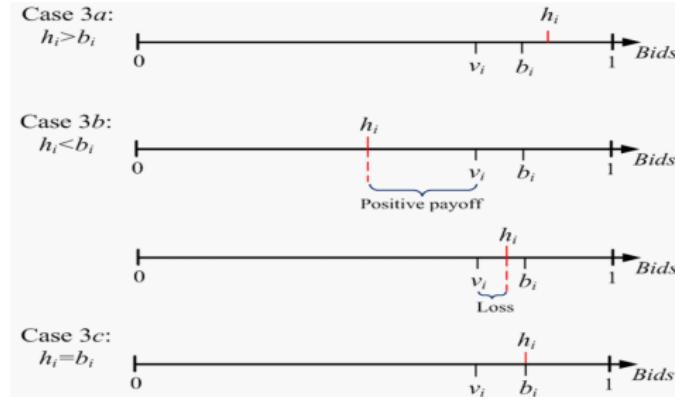
- Bidding *below* your valuation, $b_i(v_i) < v_i$...



- Case 2c:** If, instead, his bid coincides with the highest competing bid, i.e., $b_i = h_i$, then a tie occurs,
 - and the object is randomly assigned, yielding an expected payoff of $\frac{1}{2}(v_i - h_i)$.

Second-price auctions

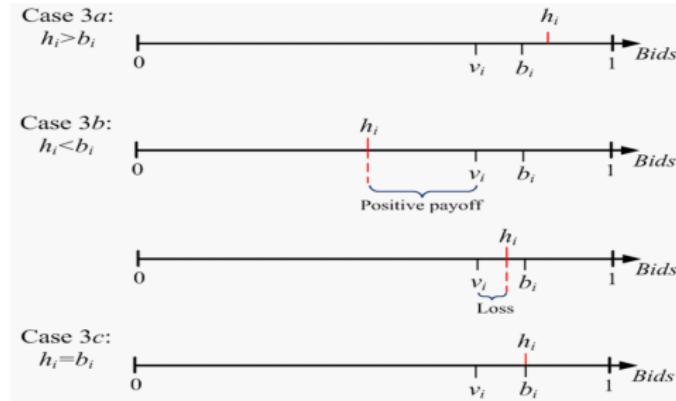
- Bidding *above* your valuation, $b_i(v_i) > v_i$...



- Case 3a:** if his bid lies below the highest competing bid, i.e., $b_i < h_i$,
 - then bidder i loses, obtaining a zero payoff.

Second-price auctions

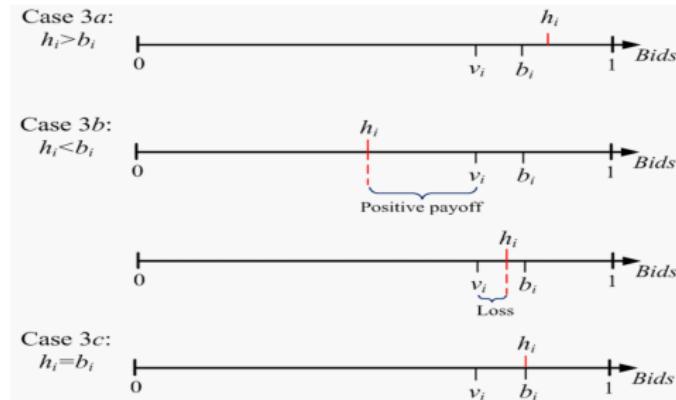
- Bidding *above* your valuation, $b_i(v_i) > v_i \dots$



- Case 3b:** if his bid lies above the highest competing bid, i.e., $b_i > h_i$, then bidder i wins.
 - His payoff becomes $v_i - h_i$, which is positive if $v_i > h_i$, or negative otherwise.

Second-price auctions

- Bidding *above* your valuation, $b_i(v_i) > v_i \dots$



- Case 3c:** If, instead, his bid coincides with the highest competing bid, i.e., $b_i = h_i$, then a tie occurs.
 - The object is randomly assigned, yielding an expected payoff of $\frac{1}{2}(v_i - h_i)$, which is positive only if $v_i > h_i$.

Second-price auctions

- **Summary:**
 - Bidder i 's payoff from submitting a bid *above* his valuation:
 - either coincides with his payoff from submitting his own value for the object, or
 - becomes strictly lower, thus nullifying his incentives to deviate from his equilibrium bid of $b_i(v_i) = v_i$.
 - Hence, there is no bidding strategy that provides a strictly higher payoff than $b_i(v_i) = v_i$ in the SPA.
 - All players bid their own valuation, without shading their bids,
 - unlike in the optimal bidding function in FPA.

Second-price auctions

- **Remark:**

- The above equilibrium bidding strategy in the SPA is unaffected by:
 - the number of bidders who participate in the auction, N , or
 - their risk-aversion preferences.

Efficiency in auctions

- The object is assigned to the bidder with the highest valuation.
 - Otherwise, the outcome of the auction cannot be efficient...
 - since there exist alternative reassessments that would still improve welfare.
 - FPA and SPA are, hence, efficient, since:
 - The player with the highest valuation submits the highest bid and wins the auction.
 - Lottery auctions are not necessarily efficient.

Common value auctions

- In some auctions all bidders assign the same value to the object for sale.
 - *Example:* Oil lease
 - Same profits to be made from the oil reservoir.

Common value auctions

- Firms, however, do not precisely observe the value of the object (profits to be made from the reservoir).
- Instead, they only observe an estimate of these potential profits:
 - from a consulting company, a bidder/firm's own estimates, etc.

Common value auctions

- Consider the auction of an oil lease.
- The true value of the oil lease (in millions of dollars) is $v \in [10, 11, \dots, 20]$
- Firm A hires a consultant, and gets a signal s

$$s = \begin{cases} v + 2 & \text{with prob } \frac{1}{2} \text{ (overestimate)} \\ v - 2 & \text{with prob } \frac{1}{2} \text{ (underestimate)} \end{cases}$$

That is, the probability that the true value of the oil lease is v , given that the firm receives a signal s , is

$$prob(v|s) = \begin{cases} \frac{1}{2} & \text{if } v = s - 2 \text{ (overestimate)} \\ \frac{1}{2} & \text{if } v = s + 2 \text{ (underestimate)} \end{cases}$$

Common value auctions

- If firm A was not participating in an auction, then the expected value of the oil lease would be

$$\underbrace{\frac{1}{2}(s-2)}_{\text{if overestimation}} + \underbrace{\frac{1}{2}(s+2)}_{\text{if underestimation}} = \frac{s-2+s+2}{2} = \frac{2s}{2} = s$$

- Hence, the firm would pay for the oil lease a price $p < s$, making a positive expected profit.

Common value auctions

- What if the firm participates in a FPA for the oil lease against firm B?
- Every firm uses a different consultant...
 - but they don't know if their consultant systematically overestimates or underestimates the value of the oil lease.
- Every firm receives a signal s from its consultant,
 - observing its own signal, but not observing the signal the other firm receives, every firm submits a bid from $\{1, 2, \dots, 20\}$.

Common value auctions

- We want to show that bidding $b = s - 1$ cannot be optimal for any firm.
- Notice that this bidding strategy seems sensible at first glance:
 - Bidding less than the signal, $b < s$.
 - So, if the true value of the oil lease was s , the firm would get some positive expected profit from winning.
 - Bidding is increasing in the signal that the firm receives.

Common value auctions

- Let us assume that firm A receives a signal of $s = 10$.
 - Then it bids $b = s - 1 = 10 - 1 = \$9$.
- Given such a signal, the true value of the oil lease is

$$v = \begin{cases} s + 2 = 12 \text{ with prob } \frac{1}{2} \\ s - 2 = 8 \text{ with prob } \frac{1}{2} \end{cases}$$

- In the first case (true value of 12)
 - firm A receives a signal of $s_A = 10$ (underestimation), and
 - firm B receives a signal of $s_B = 14$ (overestimation).
- Then, firms bid $b_A = 10 - 1 = 9$, and $b_B = 14 - 1 = 13$, and firm A loses the auction.

Common value auctions

- In the second case, when the true value of the oil lease is $v = 8$,
 - firm A receives a signal of $s_A = 10$ (overestimation), and
 - firm B receives a signal of $s_B = 6$ (underestimation).
- Then, firms bid $b_A = 10 - 1 = 9$, and $b_B = 6 - 1 = 5$, and firm A wins the auction.
 - However, the winner's expected profit becomes

$$\frac{1}{2}(8 - 9) + \frac{1}{2}0 = -\frac{1}{2}$$

- Negative profits from winning.
- Winning is a curse!!

Winner's curse

- In auctions where all bidders assign the same valuation to the object (common value auctions),
 - and where every bidder receives an inexact signal of the object's true value...
- The fact that you won...
 - just means that you received an overestimated signal of the true value of the object for sale (oil lease).
- How to avoid the winner's curse?
 - Bid $b = s - 2$ or less,
 - take into account the possibility that you might be receiving overestimated signals.

Winner's curse - Experiments I

- **In the classroom:** Your instructor shows up with a jar of nickels,
 - which every student can look at for a few minutes.

- Paying too much for it!

Winner's curse - Experiments II

- **In the field:** Texaco in auctions selling the mineral rights to off-shore properties owned by the US government.
 - All firms avoided the winner's curse (their average bids were about 1/3 of their signal)...
 - Expect for Texaco:
 - Not only their executives fall prey of the winner's curse,
 - They submitted bids above their own signal!
 - They needed some remedial auction theory!