

More examples of BNE: Application to the game of chicken

Felix Munoz-Garcia

EconS 503 - Washington State University

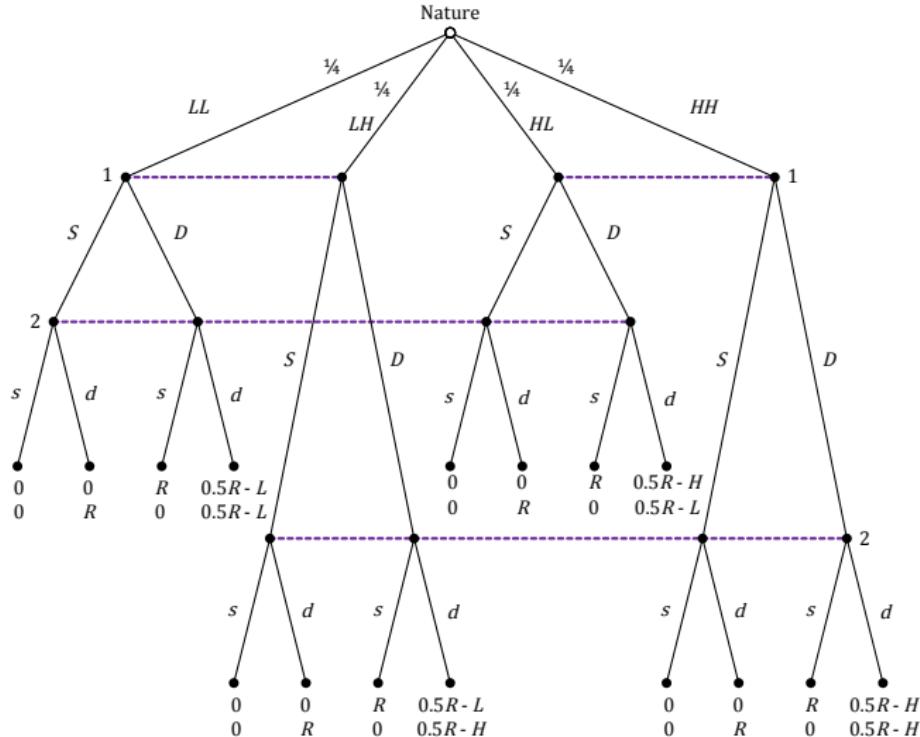
Teenagers and the Game of Chicken

- Rebel Without a Cause (1955) starring James Dean
 - Two teenagers simultaneously drive their cars toward the edge of a cliff.

Teenagers and the Game of Chicken

- The Game of Chicken

- Two teenagers are players 1 & 2
- They drive toward each other in the middle of a street and choose to either swerve (S) to the right or drive head on (D).


- Payoffs

- When both players choose to swerve to the right, they both receive 0
- When one player drives head on, and the other swerves to the right, the player who drove head on receives R (respect), while the other receives 0 (Chicken!)
- $\frac{R}{2} - K$, where K is the punishment when both players choose to drive head on (You just wrecked dad's car!)

Teenagers and the Game of Chicken

- Players' parents are either Harsh (H) or Lenient (L)
 - Each player knows their own parent's type, but not the type of the other player's parents.
 - If a player's parents are harsh, then they will severely punish their child for wrecking the car, which we denote as $K = H$.
 - If a player's parents are lenient, then they will only lecture their child if they wreck the car, which we denote as $K = L$.
 - Assume that $L < H$, and that the probability of being harsh is $p = 0.5$.

Teenagers and the Game of Chicken

Teenagers and the Game of Chicken

- If player 1 plays the strategy SD (Swerve if his parents are lenient, but Drive head on if his parents are harsh), and player 2 plays dd (Drive head on regardless of his parents' type), then the expected payoffs for player 1 are

$$\begin{aligned}Ev_1(SD, dd) &= \frac{1}{4}v_1(S, d; L) + \frac{1}{4}v_1(S, d; H) \\&\quad + \frac{1}{4}v_1(D, d; L) + \frac{1}{4}v_1(D, d; H) \\&= \frac{1}{4} * 0 + \frac{1}{4} * 0 + \frac{1}{4} * \left(\frac{R}{2} - H\right) + \frac{1}{4} * \left(\frac{R}{2} - H\right) \\&= \frac{R}{4} - \frac{H}{2}\end{aligned}$$

Teenagers and the Game of Chicken

- And the expected payoffs for player 2 are

$$\begin{aligned}Ev_2(SD, dd) &= \frac{1}{4}v_2(S, d; L) + \frac{1}{4}v_2(S, d; H) \\&\quad + \frac{1}{4}v_2(D, d; L) + \frac{1}{4}v_2(D, d; H) \\&= \frac{1}{4} * R + \frac{1}{4} * R + \frac{1}{4} * \left(\frac{R}{2} - L\right) + \frac{1}{4} * \left(\frac{R}{2} - H\right) \\&= \frac{3R}{4} - \frac{L}{4} - \frac{H}{4}\end{aligned}$$

Teenagers and the Game of Chicken

- We can represent all of the payoffs in the following normal form game:

		Player 2			
		ss	sd	ds	dd
Player 1	SS	0, 0	0, $\frac{1}{2}R$	$0, \frac{1}{2}R$	0, R
	SD	$\frac{1}{2}R, 0$	$\frac{3}{8}R - \frac{1}{4}H,$ $\frac{3}{8}R - \frac{1}{4}H$	$\frac{3}{8}R - \frac{1}{4}H,$ $\frac{3}{8}R - \frac{1}{4}L$	$\frac{1}{4}R - \frac{1}{2}H,$ $\frac{3}{4}R - \frac{1}{4}L - \frac{1}{4}H$
	DS	$\frac{1}{2}R, 0$	$\frac{3}{8}R - \frac{1}{4}L,$ $\frac{3}{8}R - \frac{1}{4}H$	$\frac{3}{8}R - \frac{1}{4}L,$ $\frac{3}{8}R - \frac{1}{4}L$	$\frac{1}{4}R - \frac{1}{2}L,$ $\frac{3}{4}R - \frac{1}{4}L - \frac{1}{4}H$
	DD	R, 0	$\frac{3}{4}R - \frac{1}{4}L - \frac{1}{4}H,$ $\frac{1}{4}R - \frac{1}{2}H$	$\frac{3}{4}R - \frac{1}{4}L - \frac{1}{4}H,$ $\frac{1}{4}R - \frac{1}{2}L$	$\frac{1}{2}R - \frac{1}{2}L - \frac{1}{2}H,$ $\frac{1}{2}R - \frac{1}{2}L - \frac{1}{2}H$

Teenagers and the Game of Chicken

- To solve for the Bayesian Nash equilibrium, let's assume that $R = 8$, $H = 16$, and $L = 0$. Updating our normal form game,

		Player 2			
		ss	sd	ds	dd
Player 1	SS	0, 0	0, 4	0, 4	0, 8
	SD	4, 0	-1, -1	-1, <u>3</u>	-6, 2
	DS	4, 0	<u>3</u> , -1	<u>3</u> , 3	<u>2</u> , 2
	DD	<u>8</u> , 0	2, -6	2, <u>2</u>	-4, -4

Teenagers and the Game of Chicken

- This game has a unique pure-strategy Bayesian Nash equilibrium of (DS, ds) .
 - The children of lenient parents will continue driving head on
 - While those of harsh parents will swerve to avoid the costly consequences.

Teenagers and the Game of Chicken

- However, if we assume $R = 8$, $H = 0$ and $L = 16$, this would result in the opposite prediction. ("I'm not mad. I'm disappointed.")

		Player 2			
		ss	sd	ds	dd
Player 1	ss	0, 0	0, 4	0, 4	0, <u>8</u>
	SD	4, 0	<u>3</u> , <u>3</u>	<u>3</u> , -1	<u>2</u> , 2
	DS	4, 0	-1, <u>3</u>	-1, -1	-6, 2
	DD	<u>8</u> , 0	2, <u>2</u>	2, -6	-4, -4

Teenagers and the Game of Chicken

- This game has a unique pure-strategy Bayesian Nash equilibrium of (SD, sd) .
 - Children of lenient parents learn somehow to respect their parents' property (the car).
 - While children of harsh parents do not respect their parents' property.